碩士學位請求論文

A Note About a Right Group in the Semigroup

指導教授 玄 進 五

濟州大學校 教育大學院

數學教育專攻

李 鍾 宇

1985 年度

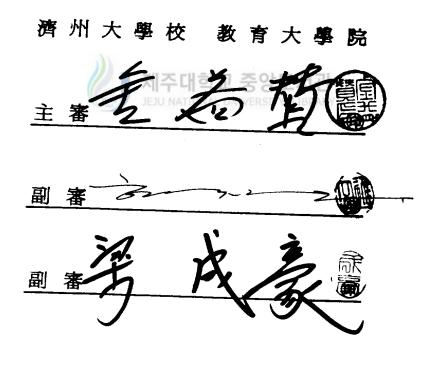
A Note About a Right Group in the Semigroup

濟州大學校 教育大學院 數學教育專攻

- 提出者 李 鍾 宇
- 指導教授 玄 進 五

1985年5月 日

李鍾宇의 碩士學位 論文을 認准함.



1985年5月 日

감사의 글

본 논문이 나오기까지 아낌없이 지도해 주신 현진오 교수님께 감사드리며, 아울러 그 동안 많은 도움을 주신 수학과 여러 교수님께 감사드립니다.

그리고 그 동안 저에게 격려를 하여 주신 주위의 많

은 분들에게 감사를 드립니다.

1985 년 5월 일

이 종 우

•

Contents

1.	Introduction	1
2.	The basic properties and definitions	1
3.	The properties of a group as a semigroup	6
4.	Main theorem	9
	References	14
	Korean Abstract 제주대학교 중앙도서관	

1. Introduction

In [1], J.M.Howie has induced the definition of group by the property of a semigroup. In [2], T.K. Dutta has studied the relative ideals in a group.

In this paper we will review the definitions and properties of a semigroup and study properties of a group as a semigroup. Finally we will study the theorem with respect to a right group with the help of [1] and [2].

2. The basic properties and definitions

<u>Definition 2-1</u>) Let S be a non-empty set on which a binary operation μ is defined. We shall say that (S,μ) is a *semigroup* if μ is associative, i.e. if $((x,y)\mu, z)\mu = (x, (y,z)\mu)\mu$ for any $x, y, z \in S$.

<u>Remark 2-2</u>) Following the usual practice in algebra we shall write $(x, y)\mu$ simply as xy.

<u>Definition 2-3</u>) If a semigroup (S, \cdot) has the additional property that xy = yx for any $x, y \in S$, then it is called a *commutati*ve semigroup.

<u>Definiton 2-4</u>) If a semigroup (S, \cdot) has an element 1 such that x1 = 1x = x for any $x \in S$, then 1 is called an *identity* (*element*) of S and S is called a *semigroup with identity*, or *monoid*.

<u>Remark 2-5</u>) If a semigroup S has no identity element it is very easy to adjoin an extra element 1 to the set S. Then if we define 1s = s1 = s, and 11 = 1, S [1] becomes a semigroup with identity element 1.

$$\frac{\text{Definition } 2-6)}{\text{Let } S^{1}} = \begin{cases} S & \text{if } S \text{ has an identity element} \\ S & \cup \{1\} \text{ otherwise.} \end{cases}$$

S¹ is called the semigroup obtained from S by adjoining an identity if necessary.

Definition 2-7) If S is any non-empty set and xy = x for any x, $y \in S$, then S is called a *left zero semigroup*. Right zero semigroup are defined analogously.

<u>Remark 2-8</u>) If A and B are subsets of a semigroup S, we write

$$AB = \{ab \mid a \in A, b \in B\}$$

 $\{a\}B = aB = \{ab \mid b \in B\}$ for $a \in S$.

It is easy to see that

(AB)
$$C = A(BC)$$
 for any A, B, C \subseteq S.

<u>Proposition 2-9</u>) If S is a semigroup with a, then the following properties are satisfied.

 $(1) \quad \mathbf{S}^{\mathbf{1}} a = \mathbf{S} a \cup \{a\}$

-2-

- $(2) \quad aS^1 = aS \cup \{a\}$
- $(3) \quad S^1 a S^1 = SaS \cup Sa \cup aS \cup \{a\}$

<u>Proof</u>) (1). If $x \in S^1 a$, then x = sa for some $s \in S \cup \{1\}$. Here if $s \in S$, then $x \in Sa \subset Sa \cup \{a\}$ and if $s \in \{1\}$, i.e. s = 1, then $x = sa = a \in \{a\} \subset Sa \cup \{a\}$. Thus $S^1a \subset Sa \cup \{a\}$.

Conversely, if $y \in Sa \cup \{a\}$, then $y \in Sa$ or $y \in \{a\}$. Here if $y \in Sa$, then y = sa for some $s \in S$, it follows that $y = sa \in Sa \subset S^1a$ and if $y \in \{a\}$, i.e. $y = a \in \{1\}a \subset S^1a$, then $Sa \cup \{a\} \subset S^1a$. Now we can easily prove (2) and (3) by similar method.

Definition 2-10) If a semigroup S has the property aS = Sa = Sa for any $a \in S$, then S is called a group.

<u>Proposition 2-11</u>) Definition 2-10) is equivalent to the usual definiton.

<u>Proof</u>) Suppose that aS = S = Sa for some $a \in S$. Then there exist e, e' $\in S$ such that ae = a, e' a = a. Let $g \in S$. Then there exist u, $v \in S$ such that au = g = va.

Here ge = (va)e = v(ae) = va = g and

$$e'g = e'(au) = (e'a)u = au = g.$$

Thus e = e'e = e' and ge = eg = g for any $g \in S$. Hence e is the unigue identity in S. Since $e \in S$ and aS = Sa = S, there exist $a_1, a_2 \subseteq S$ such that $e = aa_1$, $e=a_2a$ for any $a \in S$. It follows that $a_2e = a_2aa_1 = ea_1$, i.e. $a_1 = a_2$. Hence $a_1 = a_2 = a^{-1}$ is the unique inverse of a_1 . Thus S is a group.

Conversely, if S is a group, then $x = s = a\overline{a^{-1}s} \in aS$ for any $x \in S$. Since $aS \subset S$, we have aS = S = Sa.

<u>Proposition 2-12</u>) Definition 2-10) is equivalent to the fact that there exist x, y in S such that $a_x = b$ yb = b for any $a, b \in S$.

Proof) Suppose that aS = Sa = S for any $a \in S$. Then there exist x, y in S such that ax = b, ya = b for any a, b $\in S$.

Conversely, assume that there exist x, y in S such that ax = b, ya = b. If α belongs to S, then there exists x in S such that $ax = a \in aS$. Thus S is a subset of Sa. Since aS and Sa are subsets of S. Hence S = aS = Sa.

<u>Definition 2-13</u>) If (S, \cdot) is a semigroup, then a non-empty subset T of S is called a *subsemigroup* of S if it is closed under the multiplication, i.e. if $xy \in T$ for any $x, y \in T$.

<u>Definition 2-14</u>) If \emptyset is a mapping from a semigroup (S, \cdot) into a semigroup (T, \cdot) we say that \emptyset is a homomorphism if (xy) $\emptyset = (x\emptyset)(y\emptyset)$ for any $x, y \in S$.

If \emptyset is one-one we shall call it a monomorphism, and if it is both one-one and onto we shall call it an *isomorphism*.

<u>Definition 2-15</u>) Let S and T be semigroups. Then the Cartesian product $S \times T$ becomes a semigroup if we define (s,t)(s',t') =(ss',tt'). We shall refer to this semigroup as the *direct product* of S and T.

<u>Definition 2-16</u>) A non-empty subset A of a semigroup S is called a *left ideal* if $SA \subseteq A$, a *righ ideal* if $AS \subseteq A$, and a (two-sided)*ideal* if it is both a left and a right ideal.

<u>Proposition 2-17</u>) If S is a semigroup with a, then Sa \cup $\{a\}$ is the smallest left ideal and also Sa \cup $\{a\}$ is called the principal ideal generated by a.

<u>Proof</u>) If x belongs to $S(Sa \cup \{a\})$, then x = st for some s $\in S$, $t \in Sa \cup \{a\}$. Thus $t = \alpha a$ or t = a for some $\alpha \in S$. If t $= \alpha a$, then $x = s\alpha a = (s\alpha)a \in Sa$.

If t = a, then $x = sa \in Sa$. Hence S is a subset of $Sa \cup \{a\}$.

Furthermore, if T is the left ideal containing a, then sa belongs to T for any $s \in S$. Therefore $Sa \cup \{a\}$ is a subset of T.

3. The properties of a group as a semigroup

<u>Proposition 3-1</u>) Let S be a semigroup. Then S is a group if and only if the complement of every ideal (both left and right) is also an ideal.

<u>Proof</u>) Suppose that A be an ideal of group S and $x \in S/A$. We shall show that $tx \in S/A$ and $xt \in S/A$ for any $t \in S$.

Now, if $tx \in A$, then $t^{-1}(tx) = x \in A$. This is a contradiction, implying that $tx \in S/A$. And $xt \in S/A$ by the same method.

Conversely, assume that A and S/A are ideals of S. Let $t \in S$ and $a \in A$. Then $ta \in A$ and $ta \in S/A$, since S/A is an idal of S. Thus S has no any proper ideal. Hence S = Sa = aS for any $a \in S$, since Sa is a left ideal and aS is a right ideal. There exist e and e' in S such that ae = a and e'a = a for any $a \in S$.

Thus e = e'e = e' and ae = ea = a, i.e. e is the unique identity in S. Since e belongs to S and aS = Sa = S for any $a \in S$, there exist a_1, a_2 in S such that $e = aa_1$ and $e = a_2a$ for any $a \in S$.

Thus $a_2 e = a_2 a a_1 = e a_1$. Hence $a_1 = a_2 = a^{-1}$ is the unique inverse of a_1 .

<u>Proposition 3-2</u>) Let S be a semigroup. Then S is a group if and only if the difference A-B of two ideals is an ideal.

<u>Proof</u>) Suppose that S is a group and A, B are ideals. Let $s \in S$ and $\alpha \in A - B$. Then $s\alpha$ belongs to A, since if $s\alpha$ belongs to B, $\bar{s}^1 s\alpha = \alpha$ belongs to B. This is contradiction. Hence $s\alpha \notin B$. By similar method, $\alpha s \in A - B$. Therefore A-B is an ideal in S.

Conversely, consider A which is any ideal of S. Then S-A is an ideal. Let $s \in S - A$ and $a \in A$. Then sa $\in A$ and $sa \in S - A$. Hence S has no proper ideal. We can hold the proof by proposition 3-1). <u>Definition 3-3</u>) $I_B(S)$ is the set of all ideals of semigroup S.

 $I_L(S)$ is the set of all left ideals of S. $I_R(S)$ is the set of all right ideals of S. $P_L(S)$ is the set of all left ideals such that $sa \in A$ imply $a \in A$ for any $s \in S$. $P_R(S)$ is the set of all right ideals such that $as \in A$ implies $a \in A$ for any $s \in S$. $P_B(S)$ is the set of all both ideals such that $sa \in A$ implies $a \in A$ and as $\in A$ imply $a \in A$ for any $s \in S$.

Proposition 2-4) Let S be a semigroup.

(1) If S is a group then
$$I_L(S) = P_L(S)$$
 and $I_R(S) = P_R(S)$.

(2) S is a group if and only if $I_B(S) = P_B(S)$.

<u>Proof</u>(1) Evidently, $I_L(S) \supseteq P_L(S)$. Let A be a left ideal and $ta \in A$. Then $(t^{-1})ta = a \in A$. Thus $A \in P_L(S)$ imply $I_L(S)$ $= P_L(S)$. By similar method, $I_R(S) = P_R(S)$. (2) Suppose that S is a group. Then $P(S) \subseteq I(S)$. Let $A \in I_B(S)$, at $\in A$ and $ta \in A$. Then $(at)t^1 = a \in A$ and $(t^1)ta = a \in A$. Hence $I_B(S) = P_B(S)$.

Conversely, assume that $I_B(S) = P_B(S)$. Let A be an ideal. We shall that G/A is also an ideal. Let $a \in G/A$ and $t \in S$. Then $at \in G/A$ and $ta \in G/A$, since if $ta \in A$ and $at \in A$ then $a \in A$. Hence G/A is also an ideal.

<u>Proposition 3-5</u>) Let S be a monid and let $M_1(S)$ be the set of all ideals of S which contain an identity. Then $M_1(S)$ is a monoid with a zero and $M_1(S) = \{S\}$.

<u>Proof</u>) Since (AB)C = A(BC) for $A, B, C \in M_1(S)$, $S(AB) = (S A) B \subseteq AB$ and $(AB)S = A(BS) \subseteq AB$. Since $1 \in A$ and $1 \in B$, $1 \in AB$. Thus $AB \in M_1(S)$. Let $A \in M_1(S)$. Then $SA \subseteq A$ and $AS \subseteq A$. Since S has an identity, $A \subseteq SA$ and $A \subseteq AS$. Thus SA = AS = A, i.e. S is an identity in $M_1(S)$. Hence $M_1(S)$ is a monoid Let $A \in M_1(S)$. Then A has an identity. Thus AS = SA = S, i.e. S is a zero element. Therefore $M_1(S) = \{S\}$.

4. Main Theorem

Definition 4-1) If S is a semigroup and $e \in S$ with $ee = e^2 = e$, then c is called an *idempotent*.

<u>Definition 4-2</u>) An equivalence relation L (R) on a semigroup S is defined by the rule that aLb (aRb) if and only if aand b generate the same principal left (right) ideal that is $S^{1}a = S^{1}b$ ($aS^{1} = bS^{1}$).

<u>Definition 4-3</u> A semigroup S is called right simple (left simple) if $R = S \times S$ ($L = S \times S$)

<u>Definition 4-4</u>) A semigroup is called *right cancellative* (*left cancellative*) if ac = bc implies a = b (if ca = cb implies a = b) for all $a, b, c \in S$.

Definition 4-5) A semigroup that is right simple and left cancellative is called a *right group*.

Lemma 4-6) A semigroup S is right simple and left simple if and only if it is a group.

<u>Proof</u>) Suppose that a semigroup S is a group.

-9-

For any $a, b \in S$ we can consider $b = ba^{-1}a, a = ab^{-1}b$. Thus $S^{1}b = S^{1}ba^{-1}a \subseteq S^{1}a$ and $S^{1}a = S^{1}ab^{-1}b \subseteq S^{1}b$, i.e. $(a, b) \in L$.

Hence $S \times S = L$.

By similar method, $S \times S = R$.

Conversely, assume that a semigroup S is right simple and left simple. Then $aS^1 = bS^1$ and $S^1a = S^1b$ for any $a, b \in S$. If aS^1 is a singleton set then the proof is trivial.

Now, we can consider $\alpha \in aS^1$ with $\alpha \neq a$, i.e. $\alpha \in aS$. Since $bS^1 = \alpha S^1 \subseteq aSS^1 \subseteq aS$ and $b \in bS \subseteq aS$, there exists x in S such that b = ax.

By similar method, there exists y in S such that b = ya. Hence S is a group by proposition 2-12).

Lemma 4-7) The set E of idempotents of right group S is non - empty.

<u>Proof</u>) Suppose that E is the set of idempotents of right group S. Since S is right simple, there exists x in S such that ax = a for any $a \in S$ by Lemma 4-6).

Here $ax = (ax)x = ax^2$, i.e. $x = x^2$. Thus $x \in E$. Hence E is non-empty. <u>Lemma 4-8</u>) The set E of idempotents of right group S is a right zero subsemigroup of S.

-10 -

<u>Proof</u>) Suppose that E is the set of idempotents of right group S. Since $e^2 f = ef$ for any $e, f \in E$, and S is left cancellative. Hence ef = f.

Lemma 4-9) If $e \in E$ then Se is a subgroup of S.

<u>Proof</u>) Since (Se)(Se) \subset SSSe \subset Se and a = xe for some $x \in$ S and $a \in$ Se, ae = xee = xe = a.

Thus e is the identity of S and e is the right identity in Se. Since S is right simple and S has an identity e, aS = bS for any a, $b \in S$. Thus aS = eS = S and there exists x in S such that ax= e for any $a \in S$. Hence a(xe) = axe = ee = e, i.e. xe is the right inverse of a. AFGING SOEAR

Lemma 4-10) The direct product of two right simple semigroups is right simple.

<u>Proof</u>) Let S, T be right simple semigroups. Then there exist x in S and y in T such that ax = c, by = d for every a, $c \in S$ and b, $d \in T$. Thus (a,b)(x,y) = (ax,by) = (c,d), i.e.(a, b) $b)S \times T = S \times T$ for any $a \in S, b \in T$. Hence S $\times T$ is right simple.

<u>Lemma 4-11</u>) The direct product of two left cancellative semigroups is left cancellative.

<u>Proof</u>) Let S, T be left cancellative semigroups and let $(c_1,$

-11-

 $(c_2)(a_1, b_1) = (c_1, c_2)(a_2, b_2)$ for $(a_1, b_1), (a_2, b_2), (c_1, c_2) \in S \times T$.

· - __

Then $(c_1a_1, c_2b_1) = (c_1a_2, c_2b_2)$ and $c_1a_1 = c_1a_2$, $c_2b_1 = c_2b_2$. Thus $a_1 = a_2$, $b_1 = b_2$. Hence $(a_1, b_1) = (a_2, b_2)$.

Lemma 4-12) A right zero semigroup E is a right group.

<u>Proof</u>) Since xy = y for any $x, y \in E$. Thus xE = E for any $x \in E$, i.e. E is right simple, and if ca = cb for $a, b, c \in E$ then a = b. Hence E is left cancellative.

<u>Theorem 4-13</u>) A semigroup S is a right group if and only if it is isomorphic to a direct product of a group G and a right zero semigroup E.

<u>Proof</u>) Let G be a group and let E be a right zero semigroup. Then $G \times E$ is a right group by Lemma 4 - 10, 4 - 11, 4 - 12).

Conversely, suppose that a semigroup S is a right group. Consider a fixed element f of E, $G = S_f$ and a function $\emptyset : G \times E \rightarrow S$ defined by $(a, e) \emptyset = ae$.

For any $a, b \in G$ and $e, g \in E$,

 $\{(a,e)(b,g)\} \varnothing = (ab,eg) \varnothing = abeg = abg$ and

 $(a, e) \oslash (b, g) \oslash = (ae)(bg) = a(eb)g = abg$. Thus

 $(a, e) \varnothing (b, g) \varnothing = \{(a, e)(b, g)\} \varnothing$. Hence \varnothing is a homormorphism.

And if $(a, e) \emptyset = (b, g) \emptyset$ then ae = bg. Since f is an identity

of $G = S_f$, a = af = aef = bgf = bf = b, ae = bg = ag and e = g. This implies that \emptyset is injective. We last determine that \emptyset is surjective. If $a \in S$, then there exists e in S such that ae = a. Thus aee = ae implies $e^2 = e$, i.e. $e \in E$. Hence $af \in S_f = G$ and $(af, e)\emptyset = afe = ae = a$, and theorem 4-13) is established.

References

- [1]Dutta, T.K. Relative ideals in groups. Kyungbook Math. J. 22, 1982.
- [2] Howie, J.M. An introduction to semigroup theory. Academic press, 1976.
- [3] Hungerford, T.W. Algebra. Holt Rinehart and winstone Inc., 1974.
- [4] Suzuki. Group theory 1. Springer, 1982.

<國文抄錄>

半群에서 右群에 관한 硏究

李鐘字

济州大学校教育大学院 数学教育専攻 (指導教授 玄 進 五)

본 論文에서는 半群으로서의 群의 여러가지 성질을

다루었으며 최종적으로 右群과, 群과 右零半群의 直積

은 서로 동형입을 보였다.

