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Abstract 

Inflammatory bone diseases are characterized by the presence of pro-inflammatory 

cytokines that regulate bone turnover. The receptor activator of NF-κB ligand (RANKL) is a 

soluble osteoblast-derived protein that induces bone resorption through osteoclast 

differentiation and activation. Sargachromanol G is isolated from Sargassum siliquastrum 

and has cytotoxicity, antioxidant, and antiviral activities. The active components and 

underlying mechanisms of its anti-osteoclastogenic activity remain largely unknown. In the 

present study, we investigated the anti-osteoclastogenic effects of sargachromanol G isolated 

from S. siliquastrum on the expression of IL-1β-induced osteoclastogenic factors (RANKL, 

IL-6, PGE2 and COX-2) in human osteoblast MG-63 cells, as well as LPS or RANKL-

induced pro-inflammatory factors and osteoclastogenic factors (nitric oxide (NO), cytokines 

(TNF-α, IL-1β and IL-6), TRAP, CTR, TRAF6, Cath-K, and MMP-9) in murine macrophage 

RAW 264.7 cells. We also examined the role of nuclear factor-κB (NF-κB) and mitogen 

activated protein kinase (MAPK) signaling induced by IL-1β in MG-63 and LPS or RANKL 

in RAW 264.7 cells. Sargachromanol G dose-dependently inhibited the production of 

osteoclastogenic factors in MG-63 and RAW 264.7 cells. Sargachromanol G also inhibited 

phosphorylation of NF-κB (IκB-α, p65 and p50) and MAPK (ERK1/2, JNK and p38). These 

results suggest that the anti-osteoclastogenic activity of sargachromanol G isolated from S. 

siliquastrum may result from modulation of osteoclastogenic factors and cytokines via 

suppression of phospholrylated MAPK and NF-κB activation. 
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1. Introduction 

 

Bones are constantly remodeled through the synthesis of bone matrix by osteoblasts and 

the resorption of bone by osteoclasts (Theill et al., 2002, Boyle et al., 2003, Karsenty et al., 

2002). Perturbations in inflammatory cytokines, growth factors, and hormones cause an 

imbalance between osteoclast and osteoblast activities and can result in skeletal 

abnormalities such as osteoporosis and osteopetrosis (Theill et al., 2002, Boyle et al., 2003, 

Karsenty et al., 2002). Osteoporosis is a devastating disease characterized by lower bone 

density, frequently found in older people (especially women) (Theill et al., 2002, Boyle et al., 

2003, Karsenty et al., 2002), immobilized patients, or even astronauts as a result of 

experiencing zero gravity (Boyle et al., 2003, Wronski et al., 1983), and ultimately results in 

bone fractures. In contrast, osteopetrosis or abnormally increased bone density occurs mainly 

as a result of rare hereditary disorders. 

Inflammatory conditions such as osteoporosis and periodontal or osteoarthritic disease 

are associated with local loss of bone tissue, mainly due to activation of osteoclastic bone 

resorption. Based on the bone resorptive effects of cytokines such as interleukin-1 (IL-1), IL-

6, IL-11, IL-17, tumor necrosis factor-α (TNF-α), TNF-β, leukemia inhibitory factor (LIF), 

and oncostatin M (OSM), and the inhibitory effect on bone resorption by cytokines such as 

IL-4, IL-10, IL-12, IL-13, IL-18, and interferon-γ (Horowitz and Lorenzo, 2002), 

inflammation-induced bone resorption may be mediated by stimulatory and inhibitory 

cytokines (Firestein, 2003, Walsh and Gravalles, 2004). Inflammatory cytokines are 

typically found in elevated concentrations in diseased tissue adjacent to sites of bone 

resorption, potentially contributing to osteoclastogenesis. 

Inflammatory cytokines are typically found in elevated concentrations in diseased tissue 

adjacent to sites of bone resorption. These cytokines play an important role in activating 
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osteoblast-osteoclast interactions that culminate in net bone resorption. Osteoblasts regulate 

osteoclast activity via cell-cell contact whereby osteoblast cell-surface receptor activator of 

NF-κB ligand (RANKL) engages osteoclast precursor cell or mature cell receptors, receptor 

activator of NF-κB (RANK). The interaction of RANKL with RANK is the key terminal 

factor in inducing osteoclast precursor cell differentiation, as well as inducing activation of 

mature osteoclasts (Udagawa et al., 2000, Khosla, 2001). However, osteoblasts also secrete 

osteoprotegerin (OPG), a bone-protective soluble decoy receptor for RANKL (Udagawa et 

al., 2000, Khosla, 2001). Compelling evidence indicates that the ratio of RANKL/OPG 

production by osteoblasts is a crucial determinant of osteoclast differentiation and activation 

(Udagawa et al., 2000, Aubin and Bonnelye, 2000). In essence, at sites of strong osteoblast-

derived OPG secretion, bone resorption will diminish (Hofbauer et al., 2000, Teitelbaum, 

2000) 

Factors that control osteoclasts include RANK, its ligand RANKL (Anderson et al., 1997, 

Wong et al., 1997, Yasuda et al., 1998) and OPG (Yasuda et al., 1998, Tsuda et al., 1997, 

Simonet et al., 1997). RANKL binding to RANK drives osteoclast development from 

haematopoietic progenitor cells and activates mature osteoclasts. OPG negatively regulates 

RANKL binding to RANK and therefore inhibits bone turnover by osteoclasts. 

Parathyroid hormone (PTH), prostaglandin E2 (PGE2), dexamethason, lipopolysaccharide 

(LPS), 1, 25 dihydroxyvitamin D3, and inflammatory cytokines such as IL-1 and TNF-α can 

stimulate RANKL expression. In contrast, estrogen or transforming growth factor-β (TGF-β) 

attenuate RANKL expression. OPG and RANKL expression are often oppositely regulated 

by these factors (Thrill et al., 2002, Suda et al., 2003, Walsh and Choi, 2003). RANKL 

expression is also upregulated in malignant tumor cells and involved in bone destruction in 

cancer (Wittrant et al., 2004). 

Recently, it has been shown that expression of a TNF-related cytokine, RANKL, is a 
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crucial factor in bone resorption (Teitelbaum, 2003, Boyle et al., 2003). RANKL is mainly 

expressed as a transmembrane protein on osteoblasts in the periosteum and on stromal cells 

in bone marrow, but also as a soluble cytokine. The activation of RANK on osteoclast 

progenitor cells by RANKL leads to stimulate of TNF receptor–associated factors (TRAFs) 

and then activates several downstream signaling molecules, including NF-κB, MAP kinases 

(MAPKs), activating protein 1 (AP-1), nuclear factor of activated T cells 2 (NFAT-2), and 

phosphatidylinositol 3-kinase, resulting in differentiation of the osteoclast progenitor cells to 

cells that finally fuse to multinucleated, bone-resorbing osteoclasts (Teitelbaum, 2003, Boyle 

et al., 2003, Lerner, 2004). 

RANKL activates nuclear factor-kappa B (NF-κB) and mitogen-activated protein kinase 

(MAPK) (Lee et al., 1997, Matsumoto et al., 2000, Zhang et al., 2001), and agents that 

suppress RANKL signaling can suppress osteoclastogenesis-induced bone loss. The 

inflammatory cytokines IL-1β and TNF-α or lipopolysaccharide (LPS) are strong inducers of 

NF-κB and mitogen activated protein kinase (MAPK) signal transduction cascades in 

osteoblasts or monocyte/macrophage cell lines. RANK signaling activates NF-κB and c-Jun 

N-terminal kinase (JNK), which correlated with TRAF6 interactions (Hsu et al., 1999, 

Galibert et al., 1998). In addition, mice with a disrupted TRAF6 gene show an osteopetrotic 

phenotype due to a defect in bone resorption (Lomaga et al., 1999, Naito et al., 1999). 

Therefore, JNK might play an important role in osteoclast differentiation (Figure 1). 

TNF-receptor-associated factor (TRAF) proteins associate with the cytoplasmic domain 

of RANK and relay RANK stimulation to NF-κB. TRAF6 is required for osteoclast 

formation and osteoclast activation (Lomaga et al., 1999). NF-κB activation is also important 

for RANK–RANKL signaling and osteoclastogenesis. In mice, IKKβ is required for 

RANKL-induced osteoclastogenesis both in vitro and in vivo, whereas IKKα appears to be 

required only in vitro but not in vivo (Ruocco et al., 2005).



 4 

Osteoclastogenesis

NFκB
p50 p65

MAPK

Nucleus

ATF2 AP-1

IL-1β LPS RANKL

RANKTLR4IL-1βR

OPG

P

p38
P

JNK
P

ERK1/2
P

IKK
αβγ

IκBα

NFκB
p50 p65 p p

IκBα

NFκB
p50 p65

p p
NFκB

p50 p65

IκBα
Degradation

NF-κB signaling pathway

MAPK signaling pathwayTRAF6
SrcNIK

TRAP
Cath-K

CTR
MMP-9

Pro-inflammatory cytokines and mediators
TNF-α, IL-1β, IL-6, iNOS, COX-2

NO
PGE2

MAPKKATF-2

RANKL
OPG

Intracellular

Extracellular

Lyn

Osteoclastogenesis

NFκB
p50 p65

MAPK

Nucleus

ATF2 AP-1

IL-1β LPS RANKL

RANKTLR4IL-1βR

OPG

P

p38
P

JNK
P

ERK1/2
P

IKK
αβγ

IκBα

NFκB
p50 p65

IκBα

NFκB
p50 p65 p p

IκBα

NFκB
p50 p65

p p

IκBα

NFκB
p50 p65

p p
NFκB

p50 p65

p p
NFκB

p50 p65

p p
NFκB

p50 p65

IκBα
Degradation

NF-κB signaling pathway

MAPK signaling pathwayTRAF6
SrcNIK

TRAP
Cath-K

CTR
MMP-9

Pro-inflammatory cytokines and mediators
TNF-α, IL-1β, IL-6, iNOS, COX-2

NO
PGE2

MAPKKATF-2

RANKL
OPG

Intracellular

Extracellular

Lyn

 

 

Figure 1. Intracellular signaling pathway of osteoclastogenesis 
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Mitogen-activated protein (MAP) kinases are proline-directed serine/threonine kinases 

that are important in cell growth, differentiation, and apoptosis (Nishida and Gotoh, 1993, 

Avruch et al., 1994, Davis, 1994, Iwasaki et al., 1996). They become activated by 

phosphorylation on threonine and tyrosine in response to external stimuli. Three major 

subfamilies of MAP kinase have been identified in mammalian cells: p38-MAPKs (p38-

MAPKα, β, γ and δ), c-Jun N-terminal kinases (JNK1, 2 and 3), extracellular signal-

regulated kinases (ERK1 and ERK2), and the big MAPKs ERK5, ERK7 and ERK8 (Wada 

and Penninger, 2004, Chang and Karin, 2001), all of which play important roles in 

osteoclastogenesis. Many of these kinases are activated downstream of RANK and can 

mediate the final cellular response. p38-MAPKs, JNKs (also called SAPKs: stress activated 

protein kinases), and their direct upstream kinase, MKKs, are involved in osteoclastogenesis 

in vitro (David et al., 2002, Yamamoto et al., 2002). AP-1 transcription factors under the 

control of JNKs are also involved in RANK-regulated osteoclastogenesis. The AP-1 family 

members c-Jun, JunB, c-Fos, and Fra but not JunD are essential for efficient 

osteoclastogenesis (David et al., 2002, Kenner et al., 2004, Wagner, 2002). Src family 

kinases (SFKs), including c-Src and Lyn, are nonreceptor tyrosine kinases that influence 

growth, differentiation, cytoskeletal organization, and survival (Lowell and Soriano, 1996). 

SFKs and ERK are also activated by RANK. SFKs and inhibition of MEKs (ERK kinases) 

by PD98059 or U0126 does not, however, attenuate osteoclast differentiation (Matsumoto et 

al., 2000), but rather increases osteoclastogenesis (Hotokezaka et al., 2002). Stimulation of 

p38 activates the microphthalmia/microphthalmia transcription factor to regulate genes 

encoding tartrate-resistant acid phosphatase (TRAP) and cathepsin K, indicating the 

importance of p38 signaling cascades (Boyle et al., 2003). 

There are various species of marine algae in Jeju Island, Korea. Useful secondary 

metabolites are obtained from marine algae. So, study of the marine algae is very valuable. 
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We aimed to screen marine algae products for their ability to suppress osteoclastogenesis 

factors. We found that Sargassum siliquastrum had inhibitory effects on osteoclastogenesis 

factors. S. siliquastrum wae studied of activities such as cytotoxicity, antioxidant and 

antiviral. Sargachromanol G was isolated from the brown alga S. siliquastrum collected from 

Jeju Island, Korea. In this study, we examined the effect of sagachromanol G on IL-1β and 

RANKL-induced osteoclastogenesis related factors, the role of MAPK and NF-κB activation 

on RANKL expression in osteoblast (MG-63) cells. Also, we examined the effect of 

sagachromanol G on LPS and RANKL-induced osteoclastogenesis factors, the role of 

MAPK and NF-κB activation on osteoclastogenesis related factors in RAW 264.7 cells. 
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2. Material and Methods 

 

2-1. Chemicals and reagents 

Dulbecco’s modified Eagle’s medium (DMEM) and fetal bovine serum (FBS) were 

obtained from Invitrogen-Gibco (Grand Island, NY). PGE2 and IL-6 ELISA kits were 

purchased from R&D systems, Inc. (St. Louis, MO) and BD biosciences (San Diego, CA). 

COX-2 and iNOS antibodies were purchased from BD Biosciences (San Diego, CA, USA) 

and Calbiochem (San Diego, CA, USA). NF-κB (anti-p50, anti-p65 and anti-IκBα), MAPKs 

(anti-ERK1/2, anti-JNK and anti-p38) and osteoclastogenic factors (TRAP, MMP-9, TRAF6, 

anti-SFK, anti-Lyn, anti-MEK and anti-ATF2) mouse or rabbit antibodies were purchased 

from Cell Signaling Technology (Beverly, MA, USA) and Santa Cruz Biotechnology (Santa 

Cruz, CA, USA), respectively. PD98059 (a specific inhibitor of ERK1/2), SB203580 (a 

specific inhibitor of p38), SP600125 (a specific inhibitor of JNK), PDTC (a specific inhibitor 

of NF-κB), and all other reagents were purchased from Sigma-Aldrich Chemical Co. (St 

Louis, MO, USA). 

 

2-2. Isolation of sagachromanol G 

The marine alga Sargassum siliquastrum was collected along the coast of Jeju Island, 

Korea, between October 2005 and March 2006. The samples were washed three times with 

tap water to remove the salt, epiphytes, and sand attached to the surface, then carefully 

rinsed with fresh water, and maintained in a medical refrigerator at -20 °C. Frozen samples 

were lyophilized and homogenized with a grinder prior to extraction. The powdered S. 

siliquastrum (400 g) was extracted three times with 80% aqueous methanol (MeOH) and 

filtered. The filtrate was then evaporated under vacuum to obtain the 80% MeOH extract, 

which was dissolved in water, and then partitioned with dichloromethane (CH2Cl2) The 
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CH2Cl2 fraction (9 g) was fractionated by silica column chromatography with stepwise 

elution of CH2Cl2–MeOH mixture (100:1–1:1) to afford separated active fractions. A 

combined active fraction from the silica gel chromatography was fractionated by a Sephadex 

LH-20 column with 80% aqueous MeOH, and was finally purified with reversed-phase 

HPLC to give the compound (Scheme 1). 

 

 

Sargassum siliquastrum (400 g)

Silica coulumn chromatography

CM 100:1 to CM 1:1, MeOH

Sephadex LH20 80% MeOH

80% MeOH Ext. (60 g)

1) Extraction with 80% MeOH 3 times
2) Stirring for 24hr at room temperature 
3) Vacuum filtration 

SS1 SS2 SS3 SS4 SS5 SS6

SS3-1 SS3-2 SS3-3 SS3-4 SS3-5

Sargachromanol G (18 mg)

Preparative HPLC

NMR analysis

Hex. fr. CH2Cl2 fr. EtOAc BuOH H2O

(9 g)

Sargassum siliquastrum (400 g)

Silica coulumn chromatography

CM 100:1 to CM 1:1, MeOH

Sephadex LH20 80% MeOH

80% MeOH Ext. (60 g)

1) Extraction with 80% MeOH 3 times
2) Stirring for 24hr at room temperature 
3) Vacuum filtration 

SS1 SS2 SS3 SS4 SS5 SS6

SS3-1 SS3-2 SS3-3 SS3-4 SS3-5

Sargachromanol G (18 mg)

Preparative HPLC

NMR analysis

Hex. fr. CH2Cl2 fr. EtOAc BuOH H2O

(9 g)

 

Scheme 1. Isolation procedure of compounds from Sargassum siliquastrum 
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2-3. Cell culture 

The human osteoblast cell line, MG-63, and the murine macrophage cell line, RAW 

264.7, were purchased from the American Type Culture Collection (ATCC, Rockville, MD, 

USA) and maintained in Dulbecco’s Modified Eagle’s Medium (DMEM; GIBCO Inc.), 

supplemented with 10% fetal bovine serum (FBS), penicillin (100 units/mL), and 

streptomycin (100 μg/mL). These cells were maintained at subconfluence in a 95% air, 5% 

CO2 humidified atmosphere at 37 °C and were subcultured every 3-4 days. Cells were 

counted with a hemocytometer and the number of viable cells was determined through 

trypan blue dye exclusion. 

 

2-4. Cell viability 

Cell viability was measured by Lactate dehydrogenase (LDH) and 3-(4,5-

dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide (MTT) assays. LDH leakage 

measures membrane integrity as a function of the amount of cytoplasmic LDH released from 

the cytosol into the medium. LDH activity was determined following the production of 

NADH during the conversion of lactate to pyruvate. Briefly, culture medium was centrifuged 

at 12,000 rpm for 3 min at room temperature to remove cells. The cell-free culture medium 

(50 μL) was collected and then incubated with 50 μL of the reaction mixture from the 

cytotoxicity detection kit for 30 min at room temperature in the dark. 50 μL of HCl (1N) was 

added to each well to stop the enzymatic reaction. The optical density was then measured 

with an ELISA plate reader at 490 nm. The percent cytotoxicity was determined relative to 

the control group (Fernandez et al., 2006). 

Cell viability was measured by a conventional MTT assay. Cells were seeded on 96-well 

plates and cultured for 24 h, followed by 24 h in medium with horse placenta, MTT solution 

(10 mg/mL in phosphate buffered-saline, pH 7.4) was added at 50 μL per well (0.5 mg⁄mL 
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final concentration), and plates were incubated for 4 h at 37 °C to completely dissolve the 

formazan crystals. The incubation was stopped by addition of 15% sodium dodesyl sulfate 

into each well for solubilization of formazans, and the optical density (OD) at 570 nm 

(OD570-630) was measured with a microplate reader. 

 

2-5. Measurement of PGE2 production 

MG-63 cells (1.5×105 cells/mL) and RAW 264.7 cells (1.5×105 cells/mL) were 

stimulated with IL-1β (10 ng/mL) and LPS (1 μg/mL) for 24 h, respectively. PGE2 levels in 

the culture supernatant were determined using an ELISA kit (R&D Systems, Minneapolis, 

MN, USA), according to the manufacturer’s instructions. The assay is based on competition 

between unlabelled PGE2 and a fixed quantity of peroxidase-labeled PGE2 for a limited 

number of binding sites on a PGE2-specific antibody. The optical density of the solution was 

then measured with a microplate reader at 450 nm. All experiments were performed in 

triplicate. 

 

2-6. Measurement of cytokines (TNF-α, IL-1β and IL-6) production 

Cytokine production was determined using a sandwich ELISA. Sargachromanol G was 

diluted with EtOH (less than 0.1%) in DMEM before treatment. MG-63 cells (1.0×105 

cells/mL) were incubated for 18 h in 24-well plates, followed by IL-1β (10 ng/mL) and 

Sargachromanol G for 24 h. RAW 264.7 cells (2.0×105 cells/mL) were incubated for 18 h 

followed by LPS (1 μg/mL) and sargachromanol G for 24 h. Media levels of TNF-α, IL-1β, 

and IL-6 assays were performed using mouse ELISA kits (R & D Systems Inc, MN, USA) 

and measured at 450 nm. All experiments were performed in triplicate. 
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2-7. Measurement of NO production 

RAW 264.7 cells (1.5×105 cells/mL) were pre-incubated for 18 h and then treated with 

LPS (1 μg/mL) and sargachromanol G for 24 h. Nitrite in culture supernatants was measured 

by mixing 100 μL of Griess reagent (1% sulfanilamide and 0.1% N-[1-naphthyl]-

ethylenediamine dihydrochloride in 5% phosphoric acid) to 100 μL medium. The 

concentration of NO2- was calculated by comparison with a standard curve prepared using 

NaNO2. All measurements were performed in triplicate. 

 

2-8. Immunoblotting analysis 

The cells were lysed in lysis buffer [50 mM Tris-HCl (pH 7.5), 150 mM NaCl, 1% 

Nonident P-40, 2 mM EDTA, 1 mM EGTA, 1 mM NaVO3, 10 mM NaF, 1 mM 

dithiothreitol, 1 mM phenylmethylsulfonyl fluoride, 25 g/mL leupeptin] and kept on ice for 

30 minutes. The cell lysates were centrifuged at 12,000 × g at 4 °C for 15 minutes and 

supernatants were stored at -70 °C until use. Protein concentrations were measured using the 

Bradford method. Aliquots of the lysates (30-40 μg of protein) were separated on an 8-12% 

SDS-polyacrylamide gel and transferred onto a polyvinylidene fluoride (PVDF) membrane 

(BIO-RAD, HC, USA) with a glycine transfer buffer [192 mM glycine, 25 mM Tris-HCl 

(pH 8.8), 20% MeOH (v/v)]. After blocking nonspecific sites with 5% nonfat dried milk, the 

membrane was incubated with primary antibody (1:1000) at 4 °C overnight. The membrane 

was further incubated for 60 minutes with horseradish peroxidase conjugated goat anti-

mouse IgG secondary antibody (1:5000, Amersham Pharmacia Biotech, Little Chalfont, UK). 

The proteins were detected using an enhanced chemiluminescence (ECL) Western blotting 

detection kit (Amersharm Pharmacia Biotech., NY, USA). 
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2-9. RT-PCR analysis 

Total RNA from cells was prepared by adding TRIzol Reagent (Gibco BRL), according 

to the manufacturer’s protocol and stored at -70 °C until use. Semiquantitative RT reactions 

were performed with MuLV reverse transcriptase. Total RNAs (1 μg) were incubated with 

oligo-dT15 at 70 °C for 5 minutes and mixed with 5х first strand buffer, 10 mM dNTP, and 

0.1 M DTT at 37 °C for 5 minutes, and for 60 minutes after the addition of MuLV reverse 

transcriptase (2 U). The reactions were terminated at 70 °C for 10 minutes and RNA was 

depleted by adding RNase H. The PCR mixture [2 μL cDNA, 4 μM 5’ and 3’ primers, 10x 

buffer (10 mM Tris-HCl, pH 8.3, 50 mM KCl, 0.1 % Triton X-100), 250 μM dNTP, 25 mM 

MgCl2, and 1 unit Taq polymerase (Promega, USA)] was run with a 30 second denaturation 

time at 94 °C, an annealing time of 60 seconds at 55 to 62 °C, an extension time of 60 

seconds at 72 °C, and final extension of 7 minutes at 72 °C at the end of 30 cycles. Primers 

(Bioneer, Seoul, Korea) are shown in Table 1. 

 

Table 1. Sequences of primers and product lengths of the genes in RT-PCR analysis 

603
5'-GGAGGAAGAGGATGCGGCAGT-3' R

5'-GTGGGCCGCCCTAGGCACCAG-3' F
β-Actin

490
5'-ATCTCTCTGTACCCTCTGCA-3' R

5'-CCTCTCTTGGTGTCCATACA-3' F
Cath-K

317
5'-TTATTGAATAGCAGTGACAG-3' R

5'-AAATCACTCTTTAAGACCAG-3' F
TRAP

Fragment 
size(bp)

Primer sequencesGene

272
5'-GCCTTCACAGCCTTCAGGTAC-3' R

5'-ACCGACGAGCAACGCCTACGC-3' F
CTR

5'-GTGGTATAGTGGGACACATAGTGG-3' R

5'-CTGTCCAGACCAAGGGTACAGCCT-3' F
MMP-9 383

603
5'-GGAGGAAGAGGATGCGGCAGT-3' R

5'-GTGGGCCGCCCTAGGCACCAG-3' F
β-Actin 603

5'-GGAGGAAGAGGATGCGGCAGT-3' R

5'-GTGGGCCGCCCTAGGCACCAG-3' F

5'-GGAGGAAGAGGATGCGGCAGT-3' R

5'-GTGGGCCGCCCTAGGCACCAG-3' F
β-Actin

490
5'-ATCTCTCTGTACCCTCTGCA-3' R

5'-CCTCTCTTGGTGTCCATACA-3' F
Cath-K 490

5'-ATCTCTCTGTACCCTCTGCA-3' R

5'-CCTCTCTTGGTGTCCATACA-3' F

5'-ATCTCTCTGTACCCTCTGCA-3' R

5'-CCTCTCTTGGTGTCCATACA-3' F
Cath-K

317
5'-TTATTGAATAGCAGTGACAG-3' R

5'-AAATCACTCTTTAAGACCAG-3' F
TRAP 317

5'-TTATTGAATAGCAGTGACAG-3' R

5'-AAATCACTCTTTAAGACCAG-3' F

5'-TTATTGAATAGCAGTGACAG-3' R

5'-AAATCACTCTTTAAGACCAG-3' F
TRAP

Fragment 
size(bp)

Primer sequencesGene

272
5'-GCCTTCACAGCCTTCAGGTAC-3' R

5'-ACCGACGAGCAACGCCTACGC-3' F
CTR 272

5'-GCCTTCACAGCCTTCAGGTAC-3' R

5'-ACCGACGAGCAACGCCTACGC-3' F

5'-GCCTTCACAGCCTTCAGGTAC-3' R

5'-ACCGACGAGCAACGCCTACGC-3' F
CTR

5'-GTGGTATAGTGGGACACATAGTGG-3' R

5'-CTGTCCAGACCAAGGGTACAGCCT-3' F
MMP-9 383

5'-GTGGTATAGTGGGACACATAGTGG-3' R

5'-CTGTCCAGACCAAGGGTACAGCCT-3' F

5'-GTGGTATAGTGGGACACATAGTGG-3' R

5'-CTGTCCAGACCAAGGGTACAGCCT-3' F
MMP-9 383
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2-10. Tartrate-resistant acid phosphatase (TRAP) staining and assay 

RAW 264.7 cells were plated at 2.0 × 104 cells/well using a 48-well tissue culture plate in 

the presence of RANKL (100 ng/mL) for 96 h. Cells were fixed in 3.7% formalin for 10 min. 

Fixed cells were washed with PBS twice and permeabilized with 0.1% Triton X-100 for 1 

min. Cells were stained for TRAP activity using a kit (Sigma-Aldrich Chemical Co., St 

Louis, MO, USA) according to the manufacturer's instructions. After incubation at 37 °C in a 

humid and light-protected incubator for 1 h, cells were washed with distilled water three 

times. TRAP-positive cells appeared dark red, and TRAP-positive cells containing three or 

more nuclei were determinded as osteoclasts. RAW 264.7 cells (1.0×105 cells/mL) were 

incubated for 18 h in 48-well plates with the same conditions. RANKL (100 ng/mL) and the 

sargachromanol G were then added to the cultured cells for 72 h incubation. The medium 

was used for TRAP activity using TRAP assay kit. TRAP assay was then measured by using 

an ELISA plate reader at 450 nm. 

 

2-11. Statistical analyses 

Student’s t-test and one-way ANOVA were used for statistical analysis. Data are 

expressed as means ± standard deviation (SD) of at least three independent experiments 

performed in triplicate. P-values of 0.005 or less were considered statistically significant.  
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3. Results 

3-1. Results 

Isolation of sargachromanol G and effect of sagachromanol G in IL-1β-stimulated 

osteoblast 

3-1-1. Sargachromanol G isolated from Sargassum siliquastrum 

In screening marine algae products for suppression of osteoclastogenic factors, we found 

that Sargassum siliquastrum inhibited osteoclastogeneic and inflammatory factors, especially 

the CH2Cl2 fraction. We fractionated the CH2Cl2 fraction with silica gel and Sephadex LH-

20 open column chromatography and purified the active compounds by reversed-phase 

HPLC. Sargachromanol G showed an HREIMS [M]+ ion peak at m/z 426.2774 for a 

molecular formula of C27H38O4 (calcd 426.2770). The 13C NMR data for this compound were 

very similar to sargachromanol lineage, with the replacement of an oxymethine with a 67 

carbonyl carbon at δC 201.3 as the most significant difference. Combined analyses of 2D 

NMR data located the carbonyl and remaining hydroxyl group at C-12 and C-13, 

respectively (Figures 3, 4) (Table 2). An 18 mg of sargachromanol G was yielded from S. 

siliquastrum dried powder (400 g) and the purity was confirmed by NMR and HPLC as 

99.9%. 

 

Sargachromanol G : colorless gum; [α]20D – 79.2° (c 0.12, MeOH); IR (NaCl) vmax 

3400-3300, 2970, 2930, 1665, 1470, 1220 cm-1; UV (MeOH): λmax nm (log ε) 230 (3.80) nm; 

1H and 13C NMR, see Table 2; HREIMS m/z 426.2774 [M]+ (calcl for C27H38O4, 426.2770). 
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Figure 2. Proton and Carbon NMR spectrum of sargachromanol G 
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Table 2. 
1
H and 

13
C NMR assignments for sargachromanol G 

2.05 (3H, s)15.27'

126.56'

6.39 (1H, d, J=2.8)115.45'

149.24'

6.30 (1H, d, J=2.8)112.43'

121.12'

145.11'

1.25 (3H, S)23.320

1.59 (3H, S)14.619

1.80 (3H, S)10.718

1.82 (3H, S)17.317

1.71 (3H, S)24.916

137.915

5.00 (1H, dh, J=9.6, 1.5)123.414

6.55 (1H, d, J=9.6)69.813

201.312

134.411

6.55 (1H, J=7.3)144.510

2.34 (2H, m)27.19

2.00 (2H, t, J=7.8)37.98

133.77

5.14 (1H, J=7.3)125.66

2.12 (2H, m)22.15

1.48 (1H, m)

1.63 (1H, m)39.14

753

1.72 (1H, m)

1.79 (1H, m)31.62

2.65 (2H, J=7.2)22.21

1H (mult. J=Hz)13CPosition

2.05 (3H, s)15.27'

126.56'

6.39 (1H, d, J=2.8)115.45'

149.24'

6.30 (1H, d, J=2.8)112.43'

121.12'

145.11'

1.25 (3H, S)23.320

1.59 (3H, S)14.619

1.80 (3H, S)10.718

1.82 (3H, S)17.317

1.71 (3H, S)24.916

137.915

5.00 (1H, dh, J=9.6, 1.5)123.414

6.55 (1H, d, J=9.6)69.813

201.312

134.411

6.55 (1H, J=7.3)144.510

2.34 (2H, m)27.19

2.00 (2H, t, J=7.8)37.98

133.77

5.14 (1H, J=7.3)125.66

2.12 (2H, m)22.15

1.48 (1H, m)

1.63 (1H, m)39.14

753

1.72 (1H, m)

1.79 (1H, m)31.62

2.65 (2H, J=7.2)22.21

1H (mult. J=Hz)13CPosition

 

* 400 MHz for 1H and 100 MHz for 13C 



 17 

 

 

 
 

 

 

Figure 3. The Structure of sargachromanol G isolated from Sargassum siliquastrum 
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3-1-2. Effects of solvent fractions and sargachromanol G from S. siliquastrum on the 

cell viability in MG-63 cells 

MG-63 cells were treated with various concentrations of solvent fractions and 

sargachromanol G isolated from S. siliquastrum for 24 h and cell viability was assessed 

using an LDH and MTT assay. Solvent fractions (50 μg/mL) and Sargachromanol G (40 

μM) exhibited no cytotoxic effect on cells in comparison to control cells that received no 

treatment. The highest concentration of solvent fractions and sargachromanol G that did not 

cause more than 20% loss in cell viability were 50 μg/mL and 40 μM, respectively. 

Therefore, 40 μM sargachromanol G was chosen for further studies (Figure 4-5-2). 
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Figure 4. Effects of 80% MeOH extract and solvent fractions of S. siliquastrum on the 

cell viability in MG-63 cells. An MTT assay was performed after incubation of MG-63 cells 

with the 80% MeOH extract and solvent fractions of S. siliquastrum (50 μg/mL) for 24 h at 

37 °C in a 5% CO2 atmosphere. 
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Figure 4-1. Effect of sargachromanol G on the cell viability in MG-63 cells. An MTT 

assay was performed after incubation of MG-63 cells with sagachromanol G (10, 20 and 40 

μM) isolated from S. siliquastrum for 24 h at 37 °C in a 5% CO2 atmosphere. 
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3-1-3. Effects of solvent fractions and sargachromanol G on PGE2 production in IL-1β-

stimulated MG-63 cells 

PGE2 is an inflammatory mediator produced from the conversion of arachidonic acid by 

cyclooxygenase (COX). COX-2 is induced by cytokines and other activators, such as IL-1β, 

to release PGE2 at inflammatory sites. IL-1β (10 ng/mL) treatment of MG-63 cells for 24 h 

increased PGE2 levels in the medium, and both the CH2Cl2 fraction of S. siliquastrum and 

sargachromanol G dose-dependently blocked this effect (Figure 5-5-2). The MAPK and NF-

κB inhibitors PD98059, SB203580, SP600125, and PDTC also reduced PGE2 levels. 
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Figure 5. Effects of 80% MeOH extract and solvent fractions of S. siliquastrum on 

PGE2 production and cytotoxicity in IL-1β-stimulated MG-63 cells. Cells (1.5 × 105 

cells/mL) were stimulated with IL-1β (10 ng/mL) for 24 h in the presence of 80% EtOH 

extract and solvent fractions of S. siliquastrum (50 μg/mL). Supernatants were collected and 

the PGE2 concentration in the supernatants was determined by ELISA. Cytotoxicity was 

determined using the LDH method. Values are the mean ± SEM of triplicate experiments. *, 

P<0.05; **, P<0.01 
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Figure 5-1. Inhibitory effect of CH2Cl2 fraction of S. siliquastrum on PGE2 production 

in IL-1β-stimulated MG-63 cells. Cells (1.5 × 105 cells/mL) were stimulated with IL-1β (10 

ng/mL) for 24 h in the presence of CH2Cl2 fraction of S. siliquastrum (12.5, 25 and 50 

μg/mL). Supernatants were collected, and the PGE2 concentration in the supernatants was 

determined by ELISA. Values are the mean ± SEM of triplicate experiments. *, P<0.05; **, 

P<0.01 
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Figure 5-2. Effects of sargachromanol G on PGE2 production and cytotoxicity in IL-1β-

stimulated MG-63 cells. Cells (1.5 × 105 cells/mL) were stimulated with IL-1β (10 ng/mL) 

for 24 h in the presence of sargachromanol G (10, 20 and 40 μM), PD: PD98059 (20 μM), 

SB: SB203580 (20 μM), SP: SP600125 (10 μM) and PDTC (10 μM). Supernatants were 

collected, and the PGE2 concentration in the supernatants was determined by ELISA. 

Cytotoxicity was determined using the LDH method. Values are the mean ± SEM of 

triplicate experiments. *, P<0.05; **, P<0.01 
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3-1-4. Effects of solvent fractions and sargachromanol G on IL-6 production in IL-1β-

stimulated MG-63 cells 

IL-1β and PGE2 stimulate IL-6 production in osteoblasts. IL-1β (10 ng/mL) for 24 h 

increased IL-6 production in MG-63 cells, but both the CH2Cl2 fraction of S. siliquastrum 

and sargachromanol G dose-dependently this IL-6 production (Figure 6-6-2). MAPK and 

NF-κB inhibitors PD98059, SB203580, SP600125, and PDTC also reduced IL-6 levels. 
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Figure 6. Inhibitory effects of 80% MeOH extract and solvent fractions of S. 

siliquastrum on IL-6 production in IL-1β-stimulated MG-63 cells. Cells (1.5 × 105 

cells/mL) were stimulated with IL-1β (10 ng/mL) for 24 h in the presence of 80% MeOH 

extract and solvent fractions of S. siliquastrum (50 μg/mL). Supernatants were collected, and 

the IL-6 concentration in the supernatants was determined by ELISA. Values are the mean ± 

SEM of triplicate experiments. *, P<0.05; **, P<0.01 
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Figure 6-1. Inhibitory effect of CH2Cl2 fraction of S. siliquastrum on IL-6 production in 

IL-1β-stimulated MG-63 cells. Cells (1.5 × 105 cells/mL) were stimulated with IL-1β (10 

ng/mL) for 24 h in the presence of CH2Cl2 fraction of S. siliquastrum (50 μg/mL). 

Supernatants were collected, and the IL-6 concentration in the supernatants was determined 

by ELISA. Values are the mean ± SEM of triplicate experiments. *, P<0.05; **, P<0.01 
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Figure 6-2. Inhibitory effect of sargachromanol G on IL-6 production in IL-1β-

stimulated MG-63 cells. Cells (1.5 × 105cells/mL) were stimulated with IL-1β (10 ng/mL) 

for 24 h in the presence of sargachromanol G (10, 20 and 40 μM), PD: PD98059 (20 μM), 

SB: SB203580 (20 μM), SP: SP600125 (10 μM) and PDTC (10 μM). Supernatants were 

collected, and the IL-6 concentration in the supernatants was determined by ELISA. Values 

are the mean ± SEM of triplicate experiments. *, P<0.05; **, P<0.01 
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3-1-5. Effects of sargachromanol G on protein levels of COX-2, RANKL and OPG in 

IL-1β-stimulated MG-63 cells 

RANKL binding to RANK drives osteoclast development from haematopoietic 

progenitor cells and activates mature osteoclasts. OPG negatively regulates RANKL binding 

to RANK and therefore inhibits bone turnover by osteoclasts. RANKL activates NF-κB, JNK, 

p38, and p44/p42 mitogen-activated protein kinase (Lomaga et al., 1999, Naito et al., 1999, 

Rucoco et al., 2005) to suppress osteoclastogenesis-induced bone loss. We therefore tested 

whether sargachromanol G affected COX-2 levels using immunoblotting. Sargachromanol G 

dose-dependently reduced COX-2 levels (Figure 7). RANKL deficiency and OPG over-

expression increase bone mass due to decreased osteoclast formation and activation, whereas 

OPG deficiency induces osteoporosis due to enhanced osteoclast formation. Sargachromanol 

G reduced RANKL and increased OPG protein levels (Figure 7). 
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Figure 7. Effects of sargachromanol G isolated from S. siliquastrum on the protein 

levels of COX-2, RANKL and OPG in IL-1β-stimulated MG-63 cells. MG-63 cells (1.0 × 

106 cells/mL) were pre-incubated for 18 h, and the cells were stimulated with IL-1β (10 

ng/mL) in the presence of sargachromanol G (10, 20 and 40 μM) for 72 h. Protein level was 

determined using immunoblotting method. 
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3-1-6. Effect of sargachromanol G on NF-κB signaling pathway in IL-1β-stimulated 

MG-63 cells 

It has been demonstrated that IL-1β activates NF-κB, a transcription factor that leads to 

the induction of the expression of many immediate early genes. To clarify the inhibitory 

mechanism of action of sargachromanol G for IL-1β-induced NF-κB, the translocation of 

p65 and p50 as well as IκB-α degradation were examined. As a control, we applied PDTC, a 

specific NF-κB inhibitor. As shown in Figure (Figure 9-10), treatment with IL-1β increased 

p65 and p50. In the presence of sargachromanol G and PDTC, nuclear translocation of p65 

and p50 was inhibited in a dose-dependent manner in MG-63 cells. Moreover, 

sargachromanol G inhibited the IL-1β-induced degradation of IκB-α (Figure 8). These 

results indicate that sargachromanol G may inhibit the IL-1β-induced activation of NF-κB 

via an inhibition of IκB-α degradation as well as a translocation of p65 and p50 into the 

nucleus, resulting in the inhibition of IL-1β-induced osteoclastogenic factors production. 
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Figure 8. Inhibitory effect of sargachromanol G on IκB-α protein level in IL-1β-

stimulated MG-63 cells. A : MG-63 cells (1.0 × 106 cells/mL) were cultured for 18 h, pre-

treated with sargachromanol G (40 μM) for 0-24 h, and then stimulated with IL-1β (10 

ng/mL) for 5 min. B : MG-63 cells (1.0 × 106 cells/mL) were cultured for 18 h, pre-

incubated with sargachromanol G (10, 20 and 40 μM) and PDTC (10 μM) at indicated 

concentrations for 24 h, and then stimulated with IL-1β (10 ng/mL) for 5 min. The levels of 

p-IκB-α (phosphorylated-IκB-α) and pan-IκB-α were determined using immunoblots. 
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Figure 9. Inhibitory effect of sargachromanol G on p65 protein level in IL-1β-

stimulated MG-63 cells. A : MG-63 cells (1.0 × 106 cells/mL) were cultured for 18 h, pre-

treated with sargachromanol G (40 μM) for 0-24 h, and then stimulated with IL-1β (10 

ng/mL) for 5 min. B : MG-63 cells (1.0 × 106 cells/mL) were cultured for 18 h, pre-

incubated with sargachromanol G (10, 20 and 40 μM) and PDTC (10 μM) at indicated 

concentrations for 24 h, and then stimulated with IL-1β (10 ng/mL) for 5 min. The levels of 

p-p65 (phosphorylated-p65) and pan-p65 were determined using immunoblotting method. 
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Figure 10. Inhibitory effect of sargachromanol G on p50 protein level in IL-1β-

stimulated MG-63 cells. A : MG-63 cells (1.0 × 106 cells/mL) were cultured for 18 h, pre-

treated with sargachromanol G (40 μM) for 0-24 h, and then stimulated with IL-1β (10 

ng/mL) for 5 min. B : MG-63 cells (1.0 × 106 cells/mL) were cultured for 18 h, pre-

incubated with sargachromanol G (10, 20 and 40 μM) and PDTC (10 μM) at indicated 

concentrations for 24 h, and then stimulated with IL-1β (10 ng/mL) for 5 min. The levels of 

p-p50 (phosphorylated-p50) and pan-p50 were determined using immunoblotting method. 
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3-1-7. Effects of sargachromanol G on MAPKs signaling pathway in IL-1β-stimulated 

MG-63 cells 

MAP kinase is known to be important in the expression of osteoclastogenic factors. 

MAPK regulate cell growth and differentiation, as well as responses to cytokines and 

stresses, and contribute to the expression of osteoclastogenic factors. We next tested whether 

sargachromanol G affected IL-1β-induced phosphorylation of ERK, JNK and p38 in MG-63 

cells using immunoblotting. Indeed, sargachromanol G (10, 20 and 40 μM) inhibited ERK, 

JNK and p38 MAP kinase activation, but did not change total protein levels (Figure 11-13). 

IL-1β-induced MAPK expression was significantly suppressed by the MAPK inhibitors 

PD98059, SB203580, and SP600125. Thus, sargachromanol G may inhibit NF-κB activity 

by reducing the phosphorylation of ERK, JNK and p38. 
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Figure 11. Inhibitory effect of sargachromanol G on ERK protein level in IL-1β-

stimulated MG-63 cells. A : MG-63 cells (1.0 × 106 cells/mL) were cultured for 18 h, pre-

treated with sargachromanol G (40 μM) for 0-24 h, and then stimulated with IL-1β (10 

ng/mL) for 10 min. B : MG-63 cells (1.0 × 106 cells/mL) were cultured for 18 h, pre-

incubated with sargachromanol G (10, 20 and 40 μM) and PD : PD98059 (40 μM) at 

indicated concentrations for 24 h, and then stimulated with IL-1β (10 ng/mL) for 10 min. 

The levels of p-ERK (phosphorylated-ERK) and pan-ERK were determined using 

immunoblotting method. 
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Figure 12. Inhibitory effect of sargachromanol G on JNK protein level in IL-1β-

stimulated MG-63 cells. A : MG-63 cells (1.0 × 106 cells/mL) were cultured for 18 h, pre-

treated with sargachromanol G (40 μM) for 0-24 h, and then stimulated with IL-1β (10 

ng/mL) for 20 min. B : MG-63 cells (1.0 × 106 cells/mL) were cultured for 18 h, pre-

incubated with sargachromanol G (10, 20 and 40 μM) and SP : SP600125 (10 μM) at 

indicated concentrations for 24 h, and then stimulated with IL-1β (10 ng/mL) for 20 min. 

The levels of p-JNK (phosphorylated-JNK) and pan-JNK were determined using 

immunoblotting method. 
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Figure 13. Inhibitory effect of sargachromanol G on p38 protein level in IL-1β-

stimulated MG-63 cells. A : MG-63 cells (1.0 × 106 cells/mL) were cultured for 18 h, pre-

treated with sargachromanol G (40 μM) for 0-24 h, and then stimulated with IL-1β (10 

ng/mL) for 10 min. B : MG-63 cells (1.0 × 106 cells/mL) were cultured for 18 h, pre-

incubated with sargachromanol G (10, 20 and 40 μM) and SB : SB203580 (20 μM) at 

indicated concentrations for 24 h, and then stimulated with IL-1β (10 ng/mL) for 10 min. 

The levels of p-p38 (phosphorylated-p38) and pan-p38 were determined using 

immunoblotting method. 
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3-2. Results 

Effect of sargachromanol G in LPS-stimulated macrophage 

3-2-1. Effects of solvent fractions and sargachromanol G from S. siliquastrum on the 

cell viability in RAW 264.7 cells 

RAW 264.7 cells were treated with various concentrations of solvent fractions and 

sargachromanol G isolated from S. siliquastrum for 24 h, and cell viability was assessed 

using an LDH and MTT assay. Solvent fractions (50 μg/mL) and Sargachromanol G (40 

μM) exhibited no cytotoxic effect on cells in comparison to control cells that received no 

treatment. The highest concentration of solvent fractions and sargachromanol G that did not 

cause more than 20% loss in cell viability was 50 μg/mL and 40 μM, respectively. Therefore, 

40 uM sargachromanol G was chosen for further studies (Figure 14, 14-1, 15-15-2). 
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Figure 14. Effects of 80% MeOH extract and solvent fractions of S. siliquastrum on the 

cell viability in RAW 264.7 cells. An MTT assay was performed after incubation of RAW 

264.7 cells with the 80% MeOH extract and solvent fractions of S. siliquastrum (50 μg/mL) 

for 24 h at 37 °C in a 5% CO2 atmosphere. 
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Figure 14-1. Effect of sargachromanol G on the cell viability in RAW 264.7 cells. An 

MTT assay was performed after incubation of RAW 264.7 cells with sagachromanol G (10, 

20 and 40 μM) isolated from S. siliquastrum for 24 h at 37 °C in a 5% CO2 atmosphere. 
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3-2-2. Effects of solvent fractions and sargachromanol G from S. siliquastrum on NO 

production and cytotoxicity in LPS-stimulated RAW 264.7 cells 

LPS-induced production of NO from macrophages occurs in the inflammatory response. 

Nitrite levels, as measured with Greiss reagent, are used as a measure of NO production due 

to the short half-life of NO. The solvent fractions and sargachromanol G dose-dependently 

inhibited LPS (1 μg/mL)-induced increases in NO in RAW 264.7 cells (Figure 15-15-2), 

SB203580 and PDTC reduced LPS-induced NO production, but PD98059 and SP600125 did 

not. 
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Figure 15. Effects of 80% MeOH extract and solvent fractions of S. siliquastrum on 

nitric oxide production and cytotoxicity in LPS-stimulated RAW 264.7 cells. The 

production of nitric oxide was assayed in the culture medium of cells stimulated with LPS (1 

μg/mL) for 24 h in the presence of 80% MeOH extract and solvent fractions of S. 

siliquastrum (50 μg/mL). Cytotoxicity was determined using the LDH method. Values are 

the mean ± SEM of triplicate experiments. *, P<0.05; **, P<0.01 
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Figure 15-1. Effects of CH2Cl2 fraction of S. siliquastrum on nitric oxide production and 

cytotoxicity in LPS-stimulated RAW 264.7 cells. The production of nitric oxide was 

assayed in the culture medium of cells stimulated with LPS (1 μg/mL) for 24 h in the 

presence of CH2Cl2 fraction of S. siliquastrum (12.5, 25 and 50 μg/mL). Cytotoxicity was 

determined using the LDH method. Values are the mean ± SEM of triplicate experiments. *, 

P<0.05; **, P<0.01 
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Figure 15-2. Effects of sargachromanol G on nitric oxide production and cytotoxicity of 

sargachromanol in LPS-stimulated RAW 264.7 cells. The production of nitric oxide was 

assayed in the culture medium of cells stimulated with LPS (1 μg/mL) for 24 h in the 

presence of sargachromanol G (10, 20 and 40 μM), PD: PD98059 (20 μM), SB: SB203580 

(20 μM), SP: SP600125 (10 μM) and PDTC (10 μM). Cytotoxicity was determined using the 

LDH method. Values are the mean ± SEM of triplicate experiments. *, P<0.05; **, P<0.01 
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3-2-3. Effects of solvent fractions and sargachromanol G from S. siliquastrum on PGE2 

production in LPS-stimulated RAW 264.7 cells 

LPS was used to stimulate the release of PGE2 from macrophage cells. PGE2 is an 

inflammatory mediator produced from the conversion of arachidonic acid by cyclooxygenase. 

In a variety of inflammatory cells, including macrophages, COX-2 is induced by cytokines 

and other activators, such as LPS, resulting in the release of a large amount of PGE2 at 

inflammatory sites. LPS can stimulate PGE2 release from RAW 264.7 macrophages. LPS (1 

μg/mL) treatment for 24 h increased PGE2 levels in the culture medium. Solvent fractions 

and sargachromanol G dose-dependently suppressed this LPS-induced PGE2 production 

(Figure 16-16-2). SB203580, SP600125, and PDTC significantly reduced LPS-induced 

PGE2 production, but PD98059 did not. 
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Figure 16. Inhibitory effects of 80% MeOH extract and solvent fractions of S. 

siliquastrum on PGE2 production in LPS-stimulated RAW 264.7 cells. Cells (1.5 × 105 

cells/mL) were stimulated with LPS (1 μg/mL) for 24 h in the presence of 80% MeOH 

extract and solvent fractions of S. siliquastrum (50 μg/mL). Supernatants were collected and 

the PGE2 concentration in the supernatants was determined by ELISA. Values are the mean 

± SEM of triplicate experiments. *, P<0.05; **, P<0.01 
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Figure 16-1. Inhibitory effect of CH2Cl2 fraction of S. siliquastrum on PGE2 production 

in LPS-stimulated RAW 264.7 cells. Cells (1.5 × 105 cells/mL) were stimulated with LPS 

(1 μg/mL) for 24 h in the presence of CH2Cl2 fraction of S. siliquastrum (12.5, 25 and 50 

μg/mL). Supernatants were collected, and the PGE2 concentration in the supernatants was 

determined by ELISA. Values are the mean ± SEM of triplicate experiments. *, P<0.05; **, 

P<0.01 
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Figure 16-2. Inhibitory effect of sargachromanol G on PGE2 production in LPS-

stimulated RAW 264.7 cells. Cells (1.5 × 105 cells/mL) were stimulated with LPS (1 

μg/mL) for 24 h in the presence of sargachromanol G (10, 20 and 40 μM), PD: PD98059 (20 

μM), SB: SB203580 (20 μM), SP: SP600125 (10 μM) and PDTC (10 μM). Supernatants 

were collected, and the PGE2 concentration in the supernatants was determined by ELISA. 

Values are the mean ± SEM of triplicate experiments. *, P<0.05; **, P<0.01 
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3-2-4. Effects of sargachromanol G on protein levels of iNOS and COX-2 in LPS-

stimulated RAW 264.7 cells 

Decreased NO and PGE2 production may result from lower iNOS and COX-2 enzymatic 

activity or decreased expression. We therefore tested the effects of sargachromanol G on 

iNOS and COX-2 levels after LPS induction. Sargachromanol G (10, 20 and 40 μM) dose-

dependently inhibited the LPS-induced increases in iNOS and COX-2 levels (Figure 17). 
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Figure 17. Effects of sargachromanol G on protein levels of iNOS and COX-2 in LPS-

stimulated RAW 264.7 cells. RAW 264.7 cells (1.0 × 106 cells/mL) were pre-incubated for 

18 h, and the cells were stimulated with LPS (1 μg/mL) in the presence of sargachromanol G 

(10, 20 and 40 μM) for 24 h. The levels of iNOS and COX-2 were determined using 

immunoblotting method. 
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3-2-5. Effects of sargachromanol G on pro-inflammatory cytokines production in LPS-

stimulated RAW 264.7 cells 

Osteoclasts induced by TNF-α form resorption pits on dentine slices only in the presence 

of IL-1β. TNF-α together with IL-1 may regulate bone resorption during inflammatory 

diseases (Kobayashi et al., 2000). IL-1, a pleiotropic cytokine, induces the expression of 

multiple proinflammatory molecules (Dinarello et al., 1994) and hematopoietic cytokines 

such as leukaemia inhibitory factor (LIF) and IL-6. LPS (1 μg/mL) stimulation of RAW 

264.7 cells for 24 h increased TNF-α, IL-1β, and IL-6 levels in supernatants, as measured by 

ELISA (Figure 18-18-2). Sargachromanol G treatment for 24 h dose-dependently inhibited 

TNF-α, IL-1β, and IL-6 production, as did SB203580 and SP600125, but PD98059 and 

PDTC did not. 
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Figure 18. Inhibitory effect of sargachromanol G on TNF-α production in LPS-

stimulated RAW 264.7 cells. Cells (1.5 × 105 cells/mL) were stimulated with LPS (1 

μg/mL) in the presence of sargachromanol G (10, 20 and 40 μM), PD: PD98059 (20 μM), 

SB: SB203580 (20 μM), SP: SP600125 (10 μM) and PDTC (10 μM) for 24 h. Supernatants 

were collected, and the TNF-α concentration in the supernatants was determined by ELISA. 

Values are the mean ± SEM of triplicate experiments. *, P<0.05; **, P<0.01 
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Figure 18-1. Inhibitory effect of sargachromanol G on IL-1β production in LPS-

stimulated RAW 264.7 cells. Cells (1.5 × 105 cells/mL) were stimulated with LPS (1 

μg/mL) in the presence of sargachromanol G (10, 20 and 40 μM), PD: PD98059 (20 μM), 

SB: SB203580 (20 μM), SP: SP600125 (10 μM) and PDTC (10 μM) for 24 h. Supernatants 

were collected, and the IL-1β concentration in the supernatants was determined by ELISA. 

Values are the mean ± SEM of triplicate experiments. *, P<0.05; **, P<0.01 
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Figure 18-2. Inhibitory effect of sargachromanol G on IL-6 production in LPS-

stimulated RAW 264.7 cells. Cells (1.5 × 105 cells/mL) were stimulated with LPS (1 

μg/mL) in the presence of sargachromanol G (10, 20 and 40 μM), PD: PD98059 (20 μM), 

SB: SB203580 (20 μM), SP: SP600125 (10 μM) and PDTC (10 μM) for 24 h. Supernatants 

were collected, and the IL-6 concentration in the supernatants was determined by ELISA. 

Values are the mean ± SEM of triplicate experiments. *, P<0.05; **, P<0.01 



 56 

3-2-6. Effect of sargachromanol G on NF-κB signaling pathway in LPS-stimulated 

RAW 264.7 cells 

LPS also activated NF-κB in RAW 264.7 cells via phosphorylatin of p65 and p50 (Figure 

20-20-1). Sargachromanol G (10, 20 and 40 μM) and PDTC (10 μM) dose-dependently 

inhibited this translocation, and also inhibited phophorylation and degradation of IκB-α 

(Figure 19, 19-1). This inhibition of translocation and IκB-α degradation may mediate the 

effects on LPS-induced NO and PGE2 production as well as iNOS and COX-2 expression. 
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Figure 19. Effects of inhibitors on the IκB-α protein level in LPS-stimulated RAW 

264.7 cells. RAW 264.7 cells (1.0 × 105 cells/mL) were pre-incubated for 18 h, and the cells 

were pre-incubated with PD: PD98059 (40 μM), SB: SB203580 (20 μM), SP: SP600125 (10 

μM) and PDTC (10 μM) at indicated concentrations for 24 h and then stimulated with LPS 

(1 μg/mL) for 10 min. The levels of p-IκB-α (phosphorylated-IκB-α) and pan-IκB-α were 

determined using immunoblotting method. 
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Figure 19-1. Inhibitory effect of sargachromanol G on IκB-α protein level in LPS-

stimulated RAW 264.7 cells. RAW 264.7 cells (1.0 × 106 cells/mL) were cultured for 18 h, 

pre-treated with sargachromanol G (10, 20 and 40 μM) at indicated concentrations for 24 h, 

and then stimulated with LPS (1 μg/mL) for 10 min. The levels of p-IκB-α (phosphorylated-

IκB-α) and pan-IκB-α were determined using immunoblots. 
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Figure 20. . Effects of inhibitors on the p65 protein level in LPS-stimulated RAW 264.7 

cells. RAW 264.7 cells (1.0 × 106 cells/mL) were pre-incubated for 18 h, and the cells were 

pre-incubated with PD: PD98059 (40 μM), SB: SB203580 (20 μM), SP: SP600125 (10 μM) 

and PDTC (10 μM) at indicated concentrations for 24 h and then stimulated with LPS (1 

μg/mL) for 10 min. The levels of p-p65 (phosphorylated-p65) and pan-p65 were determined 

using immunoblotting method. 
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Figure 20-1. Inhibitory effect of sargachromanol G on p65 protein level in LPS-

stimulated RAW 264.7 cells. RAW 264.7 cells (1.0 × 106 cells/mL) were cultured for 18 h, 

pre-treated with sargachromanol G (10, 20 and 40 μM) at indicated concentrations for 24 h, 

and then stimulated with LPS (1 μg/mL) for 10 min. The levels of p-p65 (phosphorylated-

p65) and pan-p65 were determined using immunoblots. 
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Figure 21. Effects of inhibitors on the p50 protein level in LPS-stimulated RAW 264.7 

cells. RAW 264.7 cells (1.0 × 106 cells/mL) were pre-incubated for 18 h, and the cells were 

pre-incubated with PD: PD98059 (40 μM), SB: SB203580 (20 μM), SP: SP600125 (10 μM) 

and PDTC (10 μM) at indicated concentrations for 24 h and then stimulated with LPS (1 

μg/mL) for 10 min. The levels of p-p50 (phosphorylated-p50) and pan-p50 were determined 

using immunoblotting method. 
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Figure 21-1. Inhibitory effect of sargachromanol G on p50 protein level in LPS-

stimulated RAW 264.7 cells. RAW 264.7 cells (1.0 × 106 cells/mL) were cultured for 18 h, 

pre-treated with sargachromanol G (10, 20 and 40 μM) at indicated concentrations for 24 h, 

and then stimulated with IL-1β (10 ng/mL) for 10 min. The levels of p-p50 (phosphorylated-

p50) and pan-p50 were determined using immunoblots. 

 



 63 

3-2-7. Effects of sargachromanol G on MAPKs signaling pathway in LPS-stimulated 

RAW 264.7 cells 

MAPKs also regulate iNOS and COX-2 expression. We therefore examined the effect of 

sargachromanol G on LPS-induced phosphorylation of ERK, JNK and p38 in RAW 264.7 

cells using immunoblotting. LPS stimulated phosphorylation of ERK, JNK and p38, and 

sargachromanol G blocked this activation (Figure 22-24-1) but did not change 

phosphorylation of MAPK. PD98059, SP200615, and SB203580 significantly suppressed 

LPS-induced phophorylation of MAPK. 
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Figure 22. Effects of inhibitors on the ERK protein level in LPS-stimulated RAW 264.7 

cells. RAW 264.7 cells (1.0 × 106 cells/mL) were pre-incubated for 18 h, and the cells were 

pre-incubated with PD: PD98059 (40 μM), SB: SB203580 (20 μM), SP: SP600125 (10 μM) 

and PDTC (10 μM) at indicated concentrations for 24 h and then stimulated with LPS (1 

μg/mL) for 20 min. The levels of p-pERK (phosphorylated-ERK) and pan-ERK were 

determined using immunoblotting method. 
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Figure 22-1. Inhibitory effect of sargachromanol G on ERK protein level in LPS-

stimulated RAW 264.7 cells. RAW 264.7 cells (1.0 × 106 cells/mL) were cultured for 18 h, 

pre-treated with sargachromanol G (10, 20 and 40 μM) at indicated concentrations for 24 h, 

and then stimulated with IL-1β (10 ng/mL) for 20 min. The levels of p-ERK 

(phosphorylated-ERK) and pan-ERK were determined using immunoblots. 
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Figure 23. Effects of inhibitors on the JNK protein level in LPS-stimulated RAW 264.7 

cells. RAW 264.7 cells (1.0 × 106 cells/mL) were pre-incubated for 18 h, and the cells were 

pre-incubated with PD: PD98059 (40 μM), SB: SB203580 (20 μM), SP: SP600125 (10 μM) 

and PDTC (10 μM) at indicated concentrations for 24 h and then stimulated with LPS (1 

μg/mL) for 30 min. The levels of p-pJNK (phosphorylated-JNK) and pan-JNK were 

determined using immunoblotting method. 
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Figure 23-1. Inhibitory effect of sargachromanol G on JNK protein level in LPS-

stimulated RAW 264.7 cells. RAW 264.7 cells (1.0 × 106 cells/mL) were cultured for 18 h, 

pre-treated with sargachromanol G (10, 20 and 40 μM) at indicated concentrations for 24 h, 

and then stimulated with IL-1β (10 ng/mL) for 30 min. The levels of p-JNK 

(phosphorylated-JNK) and pan-JNK were determined using immunoblots. 
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Figure 24. Effects of inhibitors on the p38 protein level in LPS-stimulated RAW 264.7 

cells. RAW 264.7 cells (1.0 × 106 cells/mL) were pre-incubated for 18 h, and the cells were 

pre-incubated with PD: PD98059 (40 μM), SB: SB203580 (20 μM), SP: SP600125 (10 μM) 

and PDTC (10 μM) at indicated concentrations for 24 h and then stimulated with LPS (1 

μg/mL) for 30 min. The levels of p-p38 (phosphorylated-p38) and pan-p38 were determined 

using immunoblotting method. 
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Figure 24-1. Inhibitory effect of sargachromanol G on p38 protein level in LPS-

stimulated RAW 264.7 cells. RAW 264.7 cells (1.0 × 106 cells/mL) were cultured for 18 h, 

pre-treated with sargachromanol G (10, 20 and 40 μM) at indicated concentrations for 24 h, 

and then stimulated with IL-1β (10 ng/mL) for 30 min. The levels of p-p38 (phosphorylated-

p38) and pan-p38 were determined using immunoblots. 
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3-3. Results 

Effect of sargachromanol G in RANKL- stimulated preosteoclast 

3-3-1. Effects of sargachromanol G on osteoclastogenic factors in RANKL-stimulated 

RAW 264.7 cells 

TRAF6 proteins associate with the cytoplasmic domain of RANK and relay RANK 

stimulation to NF-κB, and TRAF6 is required for osteoclast formation and osteoclast 

activation (Lomaga et al., 1999). NF-κB activation is also important for RANK–RANKL 

signaling and osteoclastogenesis. RAW 264.7 cells were incubated in the presence or 

absence of RANKL and sargachromanol G for 72 h, and changes in the expression of 

osteoclastoenic factors were assessed by RT-PCR and Western blotting. Differentiated RAW 

264.7 cells express high levels of osteoclastogenic factors like TRAF6, TRAP, Cath-K, 

MMP-9, and CTR (Rahman et al., 2003), whereas sargachromanol G alone had no effect 

(data not shown). However, sargachromanol G reduced mRNA levels of these 

osteoclastogenic factors (TRAP, Cath-K, MMP-9 and CTR) after RANKL treatment, and 

reduced protein levels of osteoclastogenic factors (TRAF6, TRAP, and MMP-9) (Figure 25, 

26). 
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Figure 25. Effects of sargachromanol G on mRNA expression of osteoclastogenic 

factors in RANKL- stimulated RAW 264.7 cells. RAW 264.7 cells (1.0 × 105 cells/mL) 

were pre-incubated for 18 h, and the cells were stimulated with RANKL (100 ng/mL) in the 

presence of sargachromanol G (10, 20 and 40 μM) for 72 h. mRNA expressions of 

osteoclastogenic factors were determined using RT-PCR. 
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Figure 26. Effects of sargachromanol G on the protein levels of osteoclastogenic factors 

in RANKL-stimulated RAW 264.7 cells. RAW 264.7 cells (1.0 × 105 cells/mL) were pre-

incubated for 18 h, and the cells were stimulated with RANKL (100 ng/mL) in the presence 

of sargachromanol G (10, 20 and 40 μM) for 72 h. Protein levels of osteoclastogenic factors 

was determined using immunoblotting method. 
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3-3-2. Effect of sargachromanol G on osteoclast differentiation from RANKL-

stimulated RAW 264.7 cells 

During bone resorption, mononuclear perfusion osteoclasts fuse to form mature 

multinucleated osteoclasts. To determine the effects of sargachromanol G on osteoclast 

formation from macrophage, we used murine macrophage cell line RAW 264.7 cells. RAW 

264.7 cells were incubated with sargachromanol G in the presence of RANKL and/or LPS, 

and allowed to grow and differentiate into osteoclasts. RANKL induced osteoclast formation 

in RAW 264.7 cells. Sargachromaol G inhibited the osteoclast formation induced by 

RANKL at concentrations of 10, 20 and 40 μM (Figure 27, 28). 
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Figure 27. Inhibitory effect of sargachromanol G on TRAP production in RANKL-

stimulated RAW 264.7 cells. Cells (1.0 × 105 cells/mL) were stimulated with RANKL (100 

ng/mL) for 72 h in the presence of sargachromanol G (10, 20 and 40 μM). Supernatants were 

collected, and the TRAP concentration in the supernatants was determined in 540 nm by 

ELISA reader. Values are the mean ± SEM of triplicate experiments. 
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Figure 28. Sargachromanol G inhibits osteoclastogenesis through TRAP in RAW 264.7 

cells. RAW 264.7 cells (2.0 × 104 cells/mL) were pre-incubated for 18 h, incubated for 96 h 

with sargachromanol G (10, 20, and 40 μM), RANKL (100 ng/mL), or LPS (0.5 μg/mL). 

Cells were stained for TRAP activity and TRAP-positive cells were identified with a 

microscope (×200). 
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3-3-3. Effect of sargachromanol G on NF-κB signaling pathway in RANKL-stimulated 

RAW 264.7 cells 

RANKL binding to RANK activates NF-κB and osteoclastogenesis. Treatment with 

RANKL in RAW 264.7 cells stimulated phophorylation of p65 and p50 as well as 

phophorylation and degradation of IκB-α (Figure 30, 31). Sargachromanol G and PDTC 

dose-dependently blocked this nuclear translocation, as well as the degradation of IκB-α 

(Figure 29), which could explain how sargachromanol G inhibits RANKL-induced 

production of osteoclastogenic factors. 
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Figure 29. Inhibitory effect of sargachromanol G on IκB-α protein level in RANKL-

stimulated RAW 264.7 cells. RAW 264.7 cells (1.0 × 106 cells/mL) were cultured for 18 h, 

pre-incubated with sargachromanol G (10, 20 and 40 μM) and PDTC (10 μM) at indicated 

concentrations for 24 h, and then stimulated with RANKL (100 ng/mL) for 10 min. The 

levels of p-IκB-α (phosphorylated-IκB-α) and pan-IκB-α were determined using 

immunoblots. 



 78 

P-p65

β-actin 42 kDa

Pan-p65

65 kDa

75 kDa

RANKL            - +            +           +           +           +

sample             - - PDTC       10         20         40

P-p65

β-actin 42 kDa

Pan-p65

65 kDa

75 kDa

RANKL            - +            +           +           +           +

sample             - - PDTC       10         20         40

 

Figure 30. Inhibitory effect of sargachromanol G on p65 protein level in RANKL-

stimulated RAW 264.7 cells. RAW 264.7 cells (1.0 × 106 cells/mL) were cultured for 18 h, 

pre-incubated with sargachromanol G (10, 20 and 40 μM) and PDTC (10 μM) at indicated 

concentrations for 24 h, and then stimulated with RANKL (100 ng/mL) for 10 min. The 

levels of p-p65 (phosphorylated-p65) and pan-p65 were determined using immunoblots. 
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Figure 31. Inhibitory effect of sargachromanol G on p50 protein level in RANKL-

stimulated RAW 264.7 cells. RAW 264.7 cells (1.0 × 106 cells/mL) were cultured for 18 h, 

pre-incubated with sargachromanol G (10, 20 and 40 μM) and PDTC (10 μM) at indicated 

concentrations for 24 h, and then stimulated with RANKL (100 ng/mL) for 10 min. The 

levels of p-p50 (phosphorylated-p50) and pan-p50 were determined using immunoblots. 
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3-3-4. Effects of sargachromanol G on MAPKs signaling pathway in RANKL-

stimulated RAW 264.7 cells 

RANKL is known to activate mitogen-activated protein kinase (MAPK). MAPKs play 

important roles in differentiation and osteoclastogensis of osteoclast. RANKL activates and 

phosphorylates MAPKs to induce NF-κB activation (Figure 32-34). Sargachromanol G 

markedly inhibited ERK, JNK and p38 MAP kinase activation, but did not change total 

protein levels, providing a mechanism whereby sargachromanol G can inhibit RANKL-

induced NF-κB binding. PD98059, SB203580, and SP600125 also blocked MAPK 

activation. 
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Figure 32. Inhibitory effect of sargachromanol G on ERK protein level in RANKL-

stimulated RAW 264.7 cells. RAW 264.7 cells (1.0 × 106 cells/mL) were cultured for 18 h, 

pre-incubated with sargachromanol G (10, 20 and 40 μM) and PD : PD98059 (40 μM) at 

indicated concentrations for 24 h, and then stimulated with RANKL (100 ng/mL) for 20 min. 

The levels of p-ERK (phosphorylated-ERK) and pan-ERK were determined using 

immunoblots. 
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Figure 33. Inhibitory effect of sargachromanol G on JNK protein level in RANKL-

stimulated RAW 264.7 cells. RAW 264.7 cells (1.0 × 106 cells/mL) were cultured for 18 h, 

pre-incubated with sargachromanol G (10, 20 and 40 μM) and SP : SP600125 (10 μM) at 

indicated concentrations for 24 h, and then stimulated with RANKL (100 ng/mL) for 20 min. 

The levels of p-JNK (phosphorylated-JNK) and pan-JNK were determined using 

immunoblots. 
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Figure 34. Inhibitory effect of sargachromanol G on p38 protein level in RANKL-

stimulated RAW 264.7 cells. RAW 264.7 cells (1.0 × 106 cells/mL) were cultured for 18 h, 

pre-incubated with sargachromanol G (10, 20 and 40 μM) and SB : SB203580 (20 μM) at 

indicated concentrations for 24 h, and then stimulated with RANKL (100 ng/mL) for 20 min. 

The levels of p-p38 (phosphorylated-p38) and pan-p38 were determined using immunoblots. 
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3-3-5. Effects of sargachromanol G on transcription factors related-osteoclastogenesis 

in RANKL-stimulated RAW 264.7 cells 

Src family kinases (SFKs) influence cell growth, differentiation, cytoskeletal organization, 

and survival (Lowell and Soriano, 1996). c-Src regulates osteoclast function and immune 

receptors in lymphocytes and macrophages. SFKs and MEK negatively regulate RANKL-

stimulated osteoclastogenesis and bone resorption. RANKL induces phosphorylation of 

MKK3/6 and ATF2 to osteoclast differentiation in macrophages and osteoclasts. We 

therefore tested the effects of sargachromanol G on the RANKL-induced phosphorylation of 

these osteoclastogenic factors (SFKs, MEK, MKK3/6 and ATF2) in RAW 264.7 cells. 

Sargachromanol G dose-dependently inhibited the RANKL-induced phosphorylation of 

SFKs, MEK, MKK3/6 and ATF2 (Figure 35). 
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Figure 35. Effects of sargachromanol G on transcription factors related-

osteoclastogenesis in RANKL-stimulated RAW 264.7 cells. RAW 264.7 cells (1.0 × 106 

cells/mL) were cultured for 18 h, pre-incubated with sargachromanol G (10, 20 and 40 μM) 

at indicated concentrations for 24 h, and then stimulated with RANKL (100 ng/mL) for 10-

30 min. The protein levels of were determined using immunoblotting method. 
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4. Discussion 

 

Sargachromanol G was isolated and purified from the brown alga Sargassum 

siliquastrum as novel anti-osteoclastogenic activity substances. We tested whether 

sargachromanol G could block osteoclastogenesis induced by interleukin-1β (IL-1β) in 

human osteoblast MG-63 cells as well as LPS and RANKL in murine macrophage RAW 

264.7 cells. We also examined the role of NF-κB and MAPK signaling in this induction.  

PGE2, downstream of COX-2, increases both osteoblast proliferation and osteoclast 

differentiation, confirming that disruption of COX-2 expression causes defective osteoblast 

secretion of RANKL and impaired osteoclast formation in response to hormones (Okada et 

al., 2000). The COX-2 pathway has also been implicated in osteoclast formation and bone 

destruction in bone metastases of mammary carcinoma cells (Ono et al., 2002). Previous 

work with PGE2 and the RANK/RANKL/OPG system used isolated cultures of either 

osteoclasts or osteoblasts (Okada et al., 2000, Li et al., 2002). IL-6 induced pro-

inflammatory cytokines to stimulate inflammatory bone resorption (Manolagas and Jilka 

1995). One such pro-inflammatory cytokine, IL-1β, is elevated in inflamed tissues adjacent 

to bone and induces IL-6 production by osteoblasts. IL-1β-stimulated IL-6 expression in 

human osteoblast (MG-63) cells, as previously reported (Joo et al., 2003). The presence of 

IL-6 in the immediate vicinity of bone surfaces leads to the recruitment of osteoclast 

precursor cells (derived from monocyte cell lineage) and differentiation of these precursor 

cells. Mature and multi-nucleated osteoclasts dissolve bone, so secretion of IL-6 and 

increasing osteoclast precursor cells allows osteoblasts to increase bone resorption (Webb et 

al., 2002). In addition, IL-6 significantly induces the expression of COX-2 mRNA (Yucel-

Lindberg et al., 1999). We showed that IL-6 induced COX-2 transcription and PGE2 

synthesis in osteoblasts. Osteoclast formation induced by IL-6 was accompanied by PGE2 
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production in co-cultures of bone marrow cells and osteoblastic cells, this was blocked 

completely by a selective COX-2 inhibitor. Osteoclast formation, induced by IL-1 and/or IL-

6, appears to depend on their ability to induce COX-2 gene transcription in osteoblasts (Tai 

et al., 1997). Here, sargachromanol G dose-dependently reduced the IL-1β-induced 

expression of PGE2, IL-6, and COX-2 in MG-63 cells (Figure 5-2, 6-2, 7). 

RANKL is a soluble, osteoblast-derived protein that induces bone resorption through 

osteoclast differentiation and activation (Teitelbaum et al., 2006). RANKL expression is 

induced in osteoblasts/mesenchymal cells by a bone resorption factor (Yasuda, et al., 1998). 

Osteoclast precursors respond to RANKL after adherence to osteoblast/mesenchymal cells, 

causing differentiation into osteoclasts (Anderson, et al., 1997, Lacey, et al., 1998, 

Nakagawa, et al., 1998). OPG is a decoy receptor that binds directly to RANKL to block 

binding to RANK; it inhibits the differentiation, survival, and bone resorption of osteoclasts 

(Simonet et al., 1997, Tsuda, et al., 1997, Yasuda, et al., 1998). RANKL and OPG both 

regulate bone resorption, and an imbalance between them leads to increased resorption 

(Yasuda, et al., 1998, Anderson, et al., 1997, Simonet et al., 1997, Mizuno, et al., 1998, 

Kong, et al., 1999). Sargachromanol G inhibited RANKL and increased OPG protein levels 

in IL-1β-stimulated MG-63 cells (Figure 7). 

IL-1β and TNF-α activate NF-κB. TRAF proteins relay RANK stimulation to NF-κB. 

Mice lacking both the NF-κB p50 and p52 proteins are osteopetrotic (Iotsova et al., 1997). 

The upstream subunits that mediate NF-κB activation, the catalytic subunits IκB kinase α 

(IKKα) and IKKβ and the non-catalytic subunit IKKγ (also called NEMO), are also 

important for RANK–RANKL signaling and osteoclastogenesis. Importantly, patients with 

X-linked osteopetrosis, lymphedema, anhidrotic ectodermal dysplasia, and 

immunodeficiency (OLEDA-ID syndrome) carry a X420W point mutation in IKKγ and have 

osteopetrosis (Doffinger et al., 2001). Thus, the NF-κB pathway is relevant for RANKL–
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RANK-regulated osteoclast development and osteoclast function in humans. 

Sargachromanol G and PDTC dose-dependently reduced phosphorylation of p65 and p50 in 

MG-63 cells (Figure 9, 10). Moreover, sargachromanol G inhibited the IL-1β-induced 

degradation of IκB-α, putatively providing a mechanism to explain how sargachromanol G 

may block the production of IL-1β-induced osteoclastogenic factors (Figure 8). 

IL-1β induces PGE2 and IL-6 secretion into MG-63 culture supernatants via MAPK 

activation, as measured by phosphorylation of MAPKs by its activators (MEK, MKK4 

(MAP Kinase Kinase 4) and MKK3/6) (Webb et al., 2002). MAPK inhibitors (PD98059, 

SB203580 and SP600125) inhibited the IL-1β-stimulated release of PGE2. p38 and JNK 

inhibitors blocked COX-2 and PGE2 increases, but ERK did not. These findings are 

consistent with a previous report, demonstrating that cotreatment of MG-63 cells with IL-1β 

enhances phosphorylation of p38 and JNK, but not ERK (Brechter and Lerner, 2007). 

Modulating MAP kinase-dependent IL-6 production by osteoblastic cells has therapeutic 

potential. For example, the p38 MAP kinase inhibitor, SB242235, improved joint integrity in 

rats with adjuvant-induced arthritis, as reflected by improvements in inflammation and bone 

mineral density and lower serum levels of IL-6 (Badger et al., 2000). Similarly, the induction 

of IL-6 production and bone resorption by IL-1β and TNF-α in osteoblasts and chondrocytes 

could be inhibited by pre-treatment with SB203580 (Kumar et al., 2001), indication a 

connection between p38 activity and cytokine responses. Sargachromanol G markedly 

inhibited ERK, p38, and JNK activation but did not change total protein levels, providing a 

mechanism for how sargachromanol G inhibits IL-1β-induced NF-κB binding (Figure 11-

13). 

LPS stimulates macrophages such as RAW 264.7 to produce pro-inflammatory mediators, 

including the potent vasodilator, NO, and the cytokines, TNF-α, IL-1, and IL-6 (Lapa et al., 

2000) to activate macrophages and contribute to acute and chronic inflammation (Mehra et 
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al., 2005; Kofler et al., 2005). We tested the effects of sargachromanol G on LPS-induced 

production of inflammatory mediators and cytokines in RAW 264.7 cells. 

NO regulates bone formation, resorption, remodeling, mechanotransduction, and repair in 

physiological or pathophysiological conditions, often through targeting osteoclast formation, 

activity, or survival (van't Hof and Ralston 2001, Blair et al., 2002). LPS induces osteoclast 

formation in mouse bone marrow cultures (Park et al., 2007) and stimulates osteoclast-

mediated bone resorption through COX-2 induction and PGE2 production in vivo (Sakuma et 

al., 2000). Binding of LPS to toll-like receptor 4 activates NF-κB and AP-1, which induce 

the production of pro-inflammatory cytokines such as IL-1, IL-6, IL-12, and TNF-α 

(Medzhitov et al., 2001, Aderem et al., 2000) that promote osteoclast differentiation and 

activation (Kong et al., 1999, Gravallese et al., 2000, Takayanagi et al., 2000). 

NO and PGE2 are important mediators of inflammation (Ahmad et al., 2002; Murakami 

et al., 2007). Inhibitors of iNOS and COX-2 may help prevent inflammatory diseases. 

Sargachromanol G dose-dependently inhibited LPS-induced NO and PGE2 production via 

down-regulation of iNOS and COX-2 expression (Figure 15-2, 16-2, 17). 

TNF-α, IL-1β, and IL-6 abnormalities are important in inflammatory lesions (Feldmann 

et al., 1991). TNF-α can stimulate the production or expression of IL-6, IL-1β, PGE2, 

collagenase, and adhesion molecules, and can cause septic shock, inflammation, and 

cytotoxicity (Kim and Moudgil, 2008; Feldmann, 2008; Sugita, 2009). IL-6 is secreted by T 

cells and macrophages to stimulate the immune response to trauma, especially burns or other 

tissue damage leading to inflammation (Ding et al., 2009; Kim et al., 2009). IL-1β is 

primarily released by macrophages and plays an important role in the pathophysiology of 

rheumatoid arthritis (Fogal and Hewett, 2008; Ren and Torres, 2009). Thus, inhibiting 

cytokine production or function is important in controlling inflammation. Sargachromanol G 

inhibited LPS-induced production of TNF-α, IL-1β, and IL-6, indicating that it has useful 
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anti-inflammatory activity (Figure 18-18-2). 

NF-κB activation regulates the production of iNOS, COX-2, and cytokines in 

macrophages in response to LPS (Ghosh and Hayden, 2008; Wong and Tergaonkar, 2009; 

Edwards et al., 2009). Sargachromanol G blocks NF-κB activation and these downstream 

pro-inflammatory mediators (Figure 19-1-21-1). 

LPS regulates iNOS and COX-2 expression through ERK, JNK, and p38, leading to NF-

κB activation in macrophages. MAPK activation mediates NF-κB-induced changes in iNOS 

and COX-2 (Malemud et al., 2008; Brown and Sacks, 2008; Ji et al., 2009). Sargachromanol 

G reduced LPS-stimulated phosphorylation of ERK, JNK and p38, indicating that this 

pathway may mediate changes in iNOS and COX-2 expression via NF-κB activation (Figure 

22-1-24-1). 

Sargachromanol G dose-dependently inhibited RANKL-induced osteoclast differentiation, 

particularly TRAP-positive formation, due to the large number of TRAP-positive cells in 

sargachromanol G-treated cultures (Figure 27, 28). TRAP, MMP-9, cathepsin K, and CTR 

are markers of osteoclast differentiation (Faccio et al., 2005), and sargachromanol G reduced 

levels of these markers, as TRAP positive cells are also positive for these genes (Figure 25, 

26). 

RANKL-induced osteoclast differentiation requires NF-κB, JNK, and p38 MAPKs (Ikeda 

et al., 2004, Takayanagi et al., 2002, Teitelbaum et al., 2000). NF-kB knockout mice and 

transgenic mice expressing dominant-negative c-Jun or dominant-negative JNK1 exhibited 

osteopetrosis (Ikeda et al., 2004, Iotsova et al., 1997), and SP600125 and SB203580 inhibit 

osteoclastogenesis (Ikeda et al., 2004, Takayanagi et al., 2002). Sargachromanol G inhibits 

LPS-induced inflammatory events in RAW 264.7 cells by negatively regulating 

inflammatory mediators and NF-κB activation. In contrast, NF-κB activation by the 

sargachromanol G was observed in MG-63 cells (Chung et al., 2005). These discrepancies 
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might be attributable to isomer and/or tissue specificity. Interestingly, sargachromanol G 

inhibited RANKL-induced NF-κB activation in RAW 264.7 cells (Figure 29-31). NF-κB is 

considered to be involved not only in the differentiation but also the maturation of 

osteoclasts (Kobayashi et al., 2001, Wada et al., 2006). Sargachromanol G also inhibited 

phosphorylation of ERK, JNK and p38 in RANKL-induced RAW 264.7 cells (Figure 32-34). 

TRAF6 binding is necessary for RANK-induced NF-κB activation and in vitro 

osteoclastogenesis (Darnay et al., 1998), and TRAF6-deficient mice develop severe 

osteopetrosis (Lomaga et al., 1999). IL-1, RANKL, and LPS, improved osteoclast survival 

but did not induce p38, MKK3/6, or ATF2 phosphorylation, nor did SB203580 change 

survival, indicating that the p38 MAPK signaling pathway is nonfunctional in osteoclasts. In 

contrast, LPS and RANKL activated ERK and JNK. 

c-Src is specifically recruited to the terminal 3 amino acids of the β3 subunit of the αvβ3 

integrin (Zou et al., 2007) and to Y559 of the macrophage-colony stimulating factor (M-

CSF) receptor (Faccio et al 2007), c-Fms, to modulate cytoskeletal changes. c-Src also binds 

activated RANK (Wong et al., 1999) to recruit TRAF6 and Grb2-associated binder 2 (Gab2), 

followed by phosphorylation of IκB-α and JNK (Wada et al., 2005), and ultimately NF-κB 

and AP-1 activation (Teitelbaum et al., 2003, Tanaka et al., 2005, David et al., 2002). 

Sargachromanol G inhibited phosphorylation of SFKs, MEK, Lyn, MKK3/6 and ATF2 

(Figure 35). 

In summary, sargachromanol G treatment of MG-63 cells blocked the induction of 

osteoclastogenic factors (PGE2, COX-2 and IL-6) following stimulation by IL-1β. 

Sargachromanol G suppressed the production of pro-inflammatory mediators (NO, iNOS, 

PGE2 and COX-2) and pro-inflammatory cytokines (TNF-α, IL-1β and IL-6) in LPS-

stimulated RAW 264.7 cells. Also, sargachromanol G was inhibited the induction of 

osteoclastogenic factors (TRAP, CTR, Cath-k and TRAF6) and osteoclastogenesis in 
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RANKL-stimulated preosteoclast. Sargachromanol G inhibits production of osteoclastogenic 

factors and cytokines through blocking NF-κB and the MAPK pathway (Figure 36). 

Sargachromanol G activity was mediated by the down-regulation of NF-κB and MAPKs. 

Sargachromanol G may therefore have therapeutic potential for osteoprotic diseases. 
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Figure 36. Effects of sagachromanol G on osteoclastogenic factors 
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