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<Abstract>

Integral formulas and vanishing theorems on a

Riemannian Foliation

In this thesis, we study infinitesimal automorphisms of a compact Rie-

mannian manifold with non-minimal foliations. In particular, we establish

the integral formulas for infinitesimal automorphisms and prove vanishing

theorems of transversal Killing field, transversal affine Killing field, transver-

sal projective Killing field and transversal conformal Killing field under some

transversal Ricci curvature conditions and mean curvature conditions.



1 Introduction

Let (M, gM ,F) be a closed, oriented, connected Riemannian manifold of di-

mension p + q with a transversally oriented foliation F of codimension q and a

bundle-like metric gM with respect to F . Let L be the tangent bundle of F and

Q = TM/L the normal bundle of F . A vector field Y on M is called an infinitesi-

mal automorphism of F if the flow generated by Y preserves the foliation, that is,

maps leaves into leaves. In other words, for any Z ∈ ΓL, [Y, Z] ∈ ΓL. There has

been extensive studies of geometric infinitesimal automorphisms of a minimal

Riemannian foliation by many differential geometers([6,7,8,10,11,15]). For the

point foliation, such infinitesimal automorphisms of a Riemannian manifold. In

this paper, we extend well-known results concerning infinitesimal automorphisms

on a Riemannian manifold to a foliated version. Among geometric infinitesimal

automorphisms, transversal Killing, affine, projective, conformal fields have been

the objets of main interest. Many results about those infinitesimal automor-

phisms on a minimal foliation have obtained([6,7,10,11,15]). In this paper, we

extend many results on a minimal foliation to the general case, that is, the case

where the foliation is non-minimal. This paper is organized as the followings. In

Chapter 2, we review the known facts on the foliated Riemannian manifold. In

Chapter 3, we study the basic Laplacian. In Chapter 4, we have integral formulas

about infinitesimal automorphism. In Chapter 5, we have vanishing theorems of

infinitesimal automorphisms on a Riemannian foliation.
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2 Riemannian foliation

Let M be a smooth manifold of dimension p+ q.

Definition 2.1 A codimension q foliation F on M is given by an open cover

U = (Ui)i∈I and for each i, a diffeomorphism ϕi : Rp+q → Ui such that, on

Ui ∩ Uj 6= ∅, the coordinate change ϕ−1
j ◦ ϕi : ϕ−1

i (Ui ∩ Uj) → ϕ−1
j (Ui ∩ Uj) has

the form

ϕ−1
j ◦ ϕi(x, y) = (ϕij(x, y), γij(y)). (2.1)

From Definition 2.1, the manifold M is decomposed into connected submanifolds

of dimension p. Each of these submanifolds is called a leaf of F . Coordinate

patches (Ui, ϕi) are said to be distinguished for the foliation F . The tangent

bundle L of F is the subbundle of TM , consisting of all vectors tangent to the

leaves of F . The normal bundle Q of F on M is the quotient bundle Q = TM/L.

Equivalently, Q appears in the exact sequence of vector bundles

0 → L→ TM
π→ Q→ 0. (2.2)

If (x1, . . . , xp; y1, . . . , yq) are local coordinates in a distinguished chart U , then

the bundle Q|U is framed by the vector fields π ∂
∂y1
, . . . , π ∂

∂yq
. For a vector field

Y ∈ ΓTM , we denote also Y = πY ∈ ΓQ.

Definition 2.2 A vector field Y on U is projectable, if Y =
∑

i ai
∂

∂xi
+

∑
α bα

∂
∂yα

with ∂bα

∂xi
= 0 for all α = 1, . . . , q and i = 1, . . . , p.

Definition 2.2 means that the functions bα = bα(y) are independent of x. Then

Y =
∑

α bα
∂̄

∂yα
with bα independent of x. This property is preserved under the
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change of distinguished charts. Note that every projectable vector field preserves

the leaves in sense of [Y, Z] ∈ ΓL for any Z ∈ ΓL.

Let V (F) be the space of all projectable vector fields on M , i.e.,

V (F) = {Y ∈ TM |[Y, Z] ∈ ΓL, ∀Z ∈ ΓL}. (2.3)

An element of V (F) is called an infinitesimal automorphism of F . Now we put

V̄ (F) = {Ȳ = π(Y ) ∈ ΓQ|Y ∈ V (F)}. (2.4)

The transversal geometry of a foliation is the geometry infinitesimally modeled

by Q, while the tangential geometry is infinitesimally modeled by L. A key fact

of the transversal geometry is the existence of the Bott connection in Q defined

by
◦
∇Xs = π([X, Ys]), ∀X ∈ ΓL, (2.5)

where Ys ∈ TM is any vector field projecting to s under π : TM → Q. It is a

partial connection along L. The right hand side in (2.5) is independent of the

choice of Ys. Namely, the difference of two such choices is a vector field X ′ ∈ ΓL

and [X,X ′] ∈ ΓL, which implies π([X,X ′]) = 0.

Definition 2.3 A Riemannian metric gQ on the normal bundle Q of a foliation

F is holonomy invariant if

θ(X)gQ = 0, ∀X ∈ ΓL, (2.6)

where θ(X) is the transversal Lie derivative, which is defined by θ(X)s =

π[X, Ys].

Here θ(X)gQ is defined by

(θ(X)gQ)(s, t) = XgQ(s, t)− gQ(θ(X)s, t)− gQ(s, θ(X)t) ∀s, t ∈ ΓQ.
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Definition 2.4 A Riemannian foliation is a foliation F with a holonomy invari-

ant transversal metric gQ. A metric gM is a bundle-like if the induced metric gQ

on Q is holonomy invariant.

The study of a Riemannian foliation was initiated by Reinhart in 1959([14]). A

simple example of a Riemannian foliation is given by a nonsingular Killing vector

field X on (M, gM), because θ(X)gM = 0.

Definition 2.5 An adapted connection in Q is a connection restricting along L

to the partial Bott connection
◦
∇.

To show that such connections exist, consider a Riemannian metric gM on

M . Then TM splits orthogonally as TM = L ⊕ L⊥. This means that there

is a bundle map σ : Q → L⊥ splitting the exact sequence (2.2), i.e., satisfying

π ◦ σ = identity. This metric gM on TM is then a direct sum

gM = gL ⊕ gL⊥ .

With gQ = σ∗gL⊥ , the splitting map σ : (Q, gQ) → (L⊥, gL⊥) is a metric iso-

morphism. Let ∇M be the Levi-Civita connection associated to the Riemannian

metric gM . Then the adapted connection ∇ in Q is given by([5,15])

∇Xs =


◦
∇Xs = π([X, Ys]) ∀X ∈ ΓL,

π(∇M
X Ys) ∀X ∈ ΓL⊥,

(2.7)

where s ∈ ΓQ and Ys ∈ ΓL⊥ corresponding to s under the canonical isomorphism

Q ∼= L⊥. For any connection ∇ in Q, there is a torsion T∇ defined by

T∇(Y, Z) = ∇Y π(Z)−∇Zπ(Y )− π([Y, Z]) (2.8)

for any Y, Z ∈ ΓTM . Then we have the following proposition ([15]).
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Proposition 2.6 For any metric gM on M and the adapted connection ∇ in Q

defined by (2.7) the torsion is free, i.e., T∇ = 0.

Proof. For any vector fields X ∈ ΓL, Y ∈ ΓTM , we have

T∇(X, Y ) = ∇Xπ(Y )− π([X, Y ]) = 0.

For any vector fields Z,Z ′ ∈ ΓL⊥, we have

T∇(Z,Z ′) = π(∇M
Z Z

′)− π(∇M
Z′Z)− π([Z,Z ′]) = π(T∇M (Z,Z ′)) = 0,

where T∇M is the (vanishing) torsion of ∇M . Finally the bilinearity and skew

symmetry of T∇ imply the desired result. 2

The curvature R∇ of ∇ is defined by

R∇(X,Y ) = ∇X∇Y −∇Y∇X −∇[X,Y ] ∀X, Y ∈ TM. (2.9)

From the adapted connection ∇ in Q defined by (2.7), its curvature R∇ coincides

with
◦
R for X, Y ∈ ΓL, hence R∇(X, Y ) = 0 for X,Y ∈ ΓL. And we have the

following proposition ([4,5,15]).

Proposition 2.7 Let (M, gM ,F) be a (p+ q)-dimensional Riemannian manifold

with a foliation F of codimension q and bundle-like metric gM with respect to

F . Let ∇ be the connection defined by (2.7) in Q with curvature R∇. Then for

X ∈ ΓL the following holds:

i(X)R∇ = θ(X)R∇ = 0. (2.10)

By Proposition 2.7, we can define the (transversal) Ricci curvature ρ∇ : ΓQ→ ΓQ

and the (transversal) scalar curvature σ∇ of F by

ρ∇(s) =
∑

a

R∇(s, Ea)Ea, σ∇ =
∑

a

gQ(ρ∇(Ea), Ea), (2.11)
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where {Ea}a=1,··· ,q is a local orthonormal basic frame of Q.

Definition 2.8 The foliation F is said to be (transversally) Einsteinian if the

model space N is Einsteinian, that is,

ρ∇ =
1

q
σ∇ · id (2.12)

with constant transversal scalar curvature σ∇.

Definition 2.9 The mean curvature vector κ] of F is defined by

κ] = π
( p∑

i=1

∇M
Ei
Ei

)
, (2.13)

where {Ei} is a local orthonormal basis of L. The foliation F is said to be minimal

if κ] = 0.

For the later use, we recall the divergence theorem on a foliated Riemannian

manifold ([19]).

Theorem 2.10 Let (M, gM ,F) be a closed, oriented, connected Riemannian man-

ifold with a transversally orientable foliation F and a bundle-like metric gM with

respect to F . Then ∫
M

div∇(X) =

∫
M

gQ(X, κ]) (2.14)

for all X ∈ ΓQ, where div∇(X) denotes the transversal divergence of X with

respect to the connection ∇ defined by (2.7).
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Proof. Let {Ei} and {Ea} be orthonormal basis of L and Q, respectively. Then

for any X ∈ ΓQ,

div(X) =
∑

i

gM(∇M
Ei
X,Ei) +

∑
a

gM(∇M
Ea
X,Ea)

=
∑

i

−gM(X, π(∇M
Ei
Ei)) +

∑
a

gM(π(∇M
Ea
X), Ea)

= −gQ(X, κ]) +
∑

a

gQ(∇EaX,Ea)

= −gQ(X, κ]) + div∇(X).

By Green’s Theorem on an ordinary manifold M , we have

0 =

∫
M

div(X) =

∫
M

div∇(X)−
∫

M

gQ(X, κ]). 2

Corollary 2.11 If F is minimal, then we have that for any X ∈ ΓQ,∫
M

div∇(X) = 0. (2.15)
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3 The basic Laplacian

Let (M, gM ,F) be a compact Riemannian manifold with a foliation F of codi-

mension q and a bundle-like metric gM .

Definition 3.1 Let F be an arbitrary foliation on a manifold M . A differential

form ω ∈ Ωr(M) is basic if

i(X)ω = 0, θ(X)ω = 0, ∀X ∈ ΓL. (3.1)

In a distinguished chart (x1, . . . , xp; y1, . . . , yq) of F , a basic 1-form w is ex-

pressed by

ω =
∑

a1<···<ar

ωa1···ardya1 ∧ · · · ∧ dyar ,

where the functions ωa1···ar are independent of x, i.e. ∂
∂xi
ωa1···ar = 0. Let Ωr

B(F)

be the set of all basic r-forms on M . The foliation F is said to be isoparametric

if κ ∈ Ω1
B(F), where κ is a gQ-dual 1-form κ]. Then we have the well known

theorem([9,15]).

Theorem 3.2 Let F be an isoparametric Riemannian foliation on M . Then the

mean curvature form κ is closed, i.e., dκ = 0.

We now define the star operator ∗̄ : Ωr
B(F) → Ωq−r

B (F) naturally associated

to gQ. The relationships between ∗̄ and ∗ are characterized by

∗̄φ = (−1)p(q−r) ∗ (φ ∧ χF), (3.2)

∗φ = ∗̄φ ∧ χF (3.3)

for φ ∈ Ωr
B(F), where χF is the characteristic form of F and ∗ is the Hodge

star operator([15]). Then the inner product < , >B on Ωr
B(F) is defined by
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< φ, ψ >B= φ∧ ∗̄ψ ∧ χF for any φ, ψ ∈ Ωr
B and the global inner product is given

by

� φ, ψ �B=

∫
M

< φ, ψ >B . (3.4)

With respect to this scalar product, the adjoint δB : Ωr
B(F) → Ωr−1

B (F) of dB is

given by

δBφ = (−1)q(r+1)+1∗̄(dB − κ∧)∗̄φ. (3.5)

Then the basic Laplacian is given by

∆B = dBδB + δBdB. (3.6)

Lemma 3.3 ([1,2]) On the Riemannian foliation F , we have

dBφ =
∑

a

Ea ∧∇Eaφ, δBφ =
∑

a

−i(Ea)∇Eaφ+ i(κ])φ, (3.7)

when {Ea} is a local orthonormal basic frame on Q and {Ea} its gQ-dual 1-form.

Definition 3.4 For any vector field Y ∈ V (F), we define an operator AY : ΓQ→

ΓQ as

AY s = θ(Y )s−∇Y s. (3.8)

Remark. Let Ys ∈ ΓTM with π(Ys) = s. Then it is trivial that

AY s = −∇Ysπ(Y ). (3.9)

So AY depends only on s = π(Y ) and is a linear operator. Moreover, AY extends

in an obvious way to tensors of any type on Q (see [6] for details). Namely, we

can define the following.
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Definition 3.5 For any basic 1-form φ ∈ Ω1
B(F), the operator AY is given by

(AY φ)(X) = −φ(AYX) ∀X ∈ ΓQ. (3.10)

Now, we introduce the operator ∇∗
tr∇tr : Ω∗

B(F) → Ω∗
B(F) as

∇∗
tr∇trφ = −

∑
a

∇2
Ea,Ea

φ+∇κ]φ, (3.11)

where ∇2
X,Y = ∇X∇Y −∇∇M

X Y for any X, Y ∈ TM . Then we have the following.

Proposition 3.6 ([2]) On the Riemannian foliation F on a compact manifold

M , the operator ∇∗
tr∇tr satisfies

� ∇∗
tr∇trφ1, φ2 �B=� ∇φ1,∇φ2 �B (3.12)

for all φ1, φ2 ∈ Ω∗
B(F), where < ∇φ1,∇φ2 >B=

∑
a < ∇Eaφ1,∇Eaφ2 >B.

By the straight calculation, we have the following theorem.

Theorem 3.7 On the Riemannian foliation F , we have

∆Bφ = ∇∗
tr∇trφ+ Aκ]φ+ F (φ) (3.13)

for φ ∈ Ωr
B(F), where F (φ) =

∑
a,bE

a ∧ i(Eb)R
∇(Eb, Ea)φ. In particular, if φ is

a basic 1-form, then F (φ)] = ρ∇(φ]).

Proof. Fix x ∈M and let {Ea} be an orthonormal basis for Q with (∇Ea)x = 0.

Then from (3.7) we have

dBδBφ =
∑
a,b

(Ea ∧∇Ea)(−i(Eb)∇Eb
φ+ i(κ])φ)

= −
∑
a,b

Ea ∧∇Ea{i(Eb)∇Eb
φ}+

∑
a

Ea ∧∇Eai(κ
])φ

= −
∑
a,b

Ea ∧ i(Eb)∇Ea∇Eb
φ+ dBi(κ

])φ
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and

δBdBφ =
∑
a,b

−i(Eb)∇Eb
{Ea ∧∇Eaφ}+ i(κ])dBφ

=
∑
a,b

−(i(Eb)E
a)∇Eb

∇Eaφ+ i(κ])dBφ

+
∑
a,b

Ea ∧ i(Eb)∇Eb
∇Eaφ

=
∑

a

−∇Ea∇Eaφ+
∑
a,b

Ea ∧ i(Eb)∇Eb
∇Eaφ+ i(κ])dBφ.

Summing up the above two equations, we have

∆Bφ = dBδBφ+ δBdBφ

= dBi(κ
])φ+ i(κ])dBφ−

∑
a

∇Ea∇Eaφ

+
∑
a,b

Ea ∧ i(Eb)R
∇(Eb, Ea)φ

= θ(κ])φ−
∑

a

∇Ea∇Eaφ+
∑
a,b

Ea ∧ i(Eb)R
∇(Eb, Ea)φ

= −
∑

a

∇Ea∇Eaφ+ F (φ) + Aκ]φ+∇κ]φ

= −
∑

a

∇2
Ea,Ea

φ+∇κ]φ+ F (φ) + Aκ]φ

= ∇∗
tr∇trφ+ F (φ) + Aκ]φ.

The proof is completed. On the other hand, let φ be a basic 1-form and φ] its

gQ-dual vector field. Then

gQ(F (φ), Ec) =
∑
a,b

gQ(Ea ∧ i(Eb)R
∇(Eb, Ea)φ,E

c)

=
∑

b

i(Eb)R
∇(Eb, Ec)φ =

∑
b

gQ(R∇(Eb, Ec)φ
], Eb)

=
∑

b

gQ(R∇(φ], Eb)Eb, Ec) = gQ(ρ∇(φ]), Ec).

11



This yields that for any basic 1-form φ, F (φ)] = ρ∇(φ]). 2

From (3.10) and Theorem 3.7, we have the following corollary.

Corollary 3.8 On the Riemannian foliation, we have that for any X ∈ ΓQ

∆BX = ∇∗
tr∇trX + ρ∇(X)− At

κ]X. (3.14)

Lemma 3.9 Let F be a Riemannian foliation. For any vector fields Y, Z ∈ V (F)

and s ∈ ΓQ, we have

(θ(Y )∇)(Z, s) = R∇(Y, Z)s− (∇ZAY )s. (3.15)

where (θ(Y )∇)(Z, s) = θ(Y )∇Zs−∇θ(Y )Zs−∇Zθ(Y )s and

(∇ZAY )s = −∇Z∇Y π(Y ) +∇∇Zsπ(Y ).

Proof. By a direct calculation, we have that for any Y, Z ∈ V (F)

(θ(Y )∇)(Z, s)− [∇Y ,∇Z ]s = (θ(Y )−∇Y )∇Zs−∇Z(θ(Y )−∇Y )s−∇[Y,Z]s. 2
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4 Integral formulas

Let (M , gM , F ) be a closed, oriented, connected Riemannian manifold with a

foliation F of codimension q and a bundle-like metric gM . Let {Ea} be a local

orthonormal basic frame of Q such that (∇Ea)x = 0 at x ∈M .

Proposition 4.1 For any basic function f on M , it holds that∫
M

∆Bf = 0. (4.1)

Proof. From (3.6) and Lemma 3.3, we have

∆Bf = δBdBf = −
∑

a

i(Ea)∇EadBf + i(κ])dBf = −div∇(dBf) + i(κ])dBf.

By integrating the above equation and using the divergence theorem (2.14), we

have ∫
M

∆Bf =−
∫

M

div(dBf) +

∫
M

gQ(κ], dBf)

=−
∫

M

gQ(κ], dBf) +

∫
M

gQ(κ], dBf)

=0. 2

Note that, the direct calculation gives

1

2
∆Bf

2 = (∆Bf)f − |∇trf |2, (4.2)

which yields ∫
M

{(∆Bf)f − |∇trf |2} = 0. (4.3)

Hence we have the following proposition.

Proposition 4.2 On the Riemannian foliation F on M , if a basic function f

satisfies ∆Bf ≥ 0 (or∆Bf ≤ 0), then f is constant on M .

13



Proof. By Proposition 4.1, if ∆Bf ≥ 0, then ∆Bf = 0. So f is constant from

(4.3). 2

Proposition 4.3 For any basic function f and a constant λ on M , if ∆Bf = λf ,

then λ is positive.

Proof. From (4.3), if ∆Bf = λf , then∫
M

[(λf)f − |∇trf |2] = 0

which implies λ > 0. 2

Lemma 4.4 For any vector X ∈ V̄ (F), it holds that

TrAXAX = −1

2
|dBξ|2 + |∇X|2

=
1

2
|θ(X)gQ|2 − |∇X|2,

where ξ is gQ-dual 1-form of X.

Proof. For any basic 1-form φ, it is well-known that

(dBφ)(Y, Z) = Y φ(Z)− Zφ(Y )− φ([Y, Z]), ∀X, Y ∈ ΓQ.

Since [Ea, Eb] = 0 at x ∈M , we have that at x ∈M

|dBξ|2 =
∑
a,b

{(dBξ)(Ea, Eb)}2

=
∑
a,b

{Eaξ(Eb)− Ebξ(Ea)}2 =
∑
a,b

{gQ(∇EaX,Eb)− gQ(∇Eb
X,Ea)}2

=2|∇X|2 − 2
∑
a,b

gQ(∇EaX,Eb)gQ(∇Eb
X,Ea). (4.4)

14



On the other hand, from (3.9) it is trivial that

TrAXAX =
∑
a,b

gQ(∇EaX,Eb)gQ(∇Eb
X,Ea). (4.5)

Hence the first equation in Lemma 4.4 is proved from (4.4) and (4.5). Next, it is

well-known that

TrAXAX =− TrAt
XAX +

1

2
Tr(AX + At

X)2

=− |∇trX|2 +
1

2
Tr(AX + At

X)2. (4.6)

Moreover, from (3.9) we have

|θ(X)gQ|2 =
∑
a,b

{gQ(∇EaX,Eb) + gQ(∇Eb
X,Ea)}2

=
∑
a,b

gQ((AX + At
X)Ea, Eb)

2 = Tr(AX + At
X)2. (4.7)

From (4.6) and (4.7), the second equation is proved. 2

Proposition 4.5 On the Riemannian foliation F on M , any vector field X ∈

V̄ (F) satisfies

−div∇(AXX)− div∇(div∇(X)X)

= gQ(ρ∇(X), X) +
1

2
|θ(X)gQ|2 − |∇trX|2 − (δTX)2

= gQ(ρ∇(X), X)− 1

2
|dBξ|2 + |∇trX|2 − (δTX)2.

Proof. By a direct calculation with (3.9), it holds that for any X ∈ V̄ (F)

div∇(AXX) =− gQ(∇Ea∇XX,Ea),

div∇(div∇(X)X) =Xdiv∇(X) + (div∇(X))2.
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Since Xdiv∇(X) = XgQ(∇EaX,Ea) = gQ(∇X∇Ea , Ea), we have

div∇(div∇(X)X) + div∇(AXX)

= gQ(∇X∇EaX −∇Ea∇XX,Ea) + (div∇(X))2

= gQ(R∇(X,Ea)X +∇[X,Ea]X,Ea) + (div∇(X))2

= −gQ(ρ∇(X), X) + gQ(∇[X,Ea]X,Ea) + (div∇(X))2

= −gQ(ρ∇(X), X)− gQ(AX [X,Ea], Ea) + (div∇(X))2

= −gQ(ρ∇(X), X)− gQ(AXAXEa, Ea) + (div∇(X))2.

From Lemma 4.4, the proof is completed. 2

Corollary 4.6 On the Riemannian foliation F on M , any vector field X ∈ V̄ (F)

satisfies ∫
M

{gQ(ρ∇(X), X) +
1

2
|θ(X)gQ|2 − |∇trX|2 − (δTX)2} (4.8)

+

∫
M

{div∇(AXX) + div∇(div∇(X)X)} = 0

or ∫
M

{gQ(ρ∇(X), X)− 1

2
|dBξ|2 + |∇trX|2 − (δTX)2} (4.9)

+

∫
M

{div∇(AXX) + div∇(div∇(X)X)} = 0.

Lemma 4.7 On the Riemannian foliation F on M , any vector field X ∈ V̄ (F)

satisfies ∫
M

gQ(∆BX,X) =

∫
M

|∇trX|2 +

∫
M

gQ((ρ∇ − At
κ])(X), X).

Proof. It is trivial from (3.14). 2

From (4.8) and (4.9), we have the following corollary.
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Corollary 4.8 On the Riemannian foliation F on M , if �BX = ∆BX−2ρ∇(X)

for any X ∈ V̄ (F), then∫
M

{gQ(�BX,X)− 1

2
|θ(X)gQ|2 + (δTX)2} (4.10)

+

∫
M

{gQ(Aκ]X,X)− div∇(AXX)− div∇(div∇(X)X)} = 0,

or ∫
M

{gQ(∆BX,X)− 1

2
|dBξ|2 − (δTX)2} (4.11)

+

∫
M

{gQ(Aκ]X,X) + div∇(AXX) + div∇(div∇(X)X)} = 0.

Lemma 4.9 On the Riemannian foliation F on M , any vector field X ∈ V̄ (F)

satisfies

|θ(X)gQ +
2

q
(δTX)|2 = |θ(X)gQ|2 −

4

q
(δTX)2 ∀X ∈ V̄ (F).

Proof. A direct calculation gives

|θ(X)gQ +
2

q
(δTX)|2 =|θ(X)gQ|2 +

4

q
(δTX)2 +

4

q
(δTX)

∑
a

(θ(X)gQ)(Ea, Ea)

=|θ(X)gQ|2 +
4

q
(δTX)2 − 8

q
(δTX)2

=|θ(X)gQ|2 −
4

q
(δTX)2. 2

From Corollary 4.8 and Lemma 4.9, we have the following.

Corollary 4.10 On the Riemannian foliation F on M , any vector field X ∈

V̄ (F) satisfies∫
M

{gQ(�BX,X)− 1

2
|θ(X)gQ +

2

q
(δTX)|2 +

q − 2

q
(δTX)2}

+

∫
M

{gQ(Aκ]X,X)− div∇(AXX)− div∇(div∇(X)X)} = 0. (4.12)
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Lemma 4.11 On the Riemannian foliation F on M , any vector field X ∈ V̄ (F)

satisfies ∫
M

{gQ(Aκ]X,X) + div∇(AXX)} = −
∫

M

XgQ(κ], X), (4.13)∫
M

div∇(div∇(X)X) = −
∫

M

(δTX)gQ(X, κ]). (4.14)

Proof. The second equation is followed from the divergence theorem. From (3.4)

and divergence theorem, the first equation is proved. 2

Now we denote V K⊥(F) by

V K⊥(F) = {X ∈ V̄ (F)|gQ(X, κ]) = 0}. (4.15)

Then we have the following theorem.

Theorem 4.12 Let (M, gM ,F) be a closed Riemannian manifold with a foliation

F and a bundle-like metric gM . For any vector field X ∈ V K⊥(F) we have∫
M

{gQ(�BX,X)− 1

2
|θ(X)gQ +

2

q
(δTX)|2 + 2gQ(Aκ]X,X) +

q − 2

q
(δTX)2} = 0.

(4.16)

Proof. From Corollary 4.10 and Lemma 4.11, it is trivial. 2
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5 Vanishing theorems for infinitesimal automor-

phisms

Let (M, gM ,F) be a closed, oriented, connected Riemannian manifold of di-

mension p + q with a transversally oriented foliation F of codimension q and a

bundle-like metric gM with respect to F .

5.1 Transversal Killing fields

Definition 5.1 A vector fieldX ∈ V̄ (F) is a transversal Killing field if it satisfies

θ(X)gQ = 0, (5.1)

equivalently,

gQ(∇YX,Z) + gQ(∇ZX,Y ) = 0, ∀Y, Z ∈ ΓQ. (5.2)

From (5.2), we have the following proposition.

Proposition 5.2 Let X ∈ V K⊥(F) be a transversal Killing field on M . Then

we have ∫
M

div∇(AXX) = −
∫

M

gQ(AXκ
], X) = −

∫
M

gQ(Aκ]X,X). (5.3)

Proof. Let X be a transversal Killing field with gQ(X, κ]) = 0. From (5.2), we

have

gQ(AXY, Z) + gQ(Y,AXZ) = 0, ∀Y, Z ∈ ΓQ. (5.4)

Hence the divergence theorem with (5.4) implies that∫
M

div∇(AXX) =

∫
M

gQ(AXX, κ
]) = −

∫
M

gQ(X,AXκ
]). (5.5)

On the other hand, the second equality follows from Lemma 4.11. 2
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Theorem 5.3 Let (M, gM ,F) be a compact Riemannian manifold with a folia-

tion F and a bundle-like metric gM . Any infinitesimal automorphism X ∈ V̄ (F)

is a transversal Killing field if and only if

(1) �BX + At
κ]X + AXκ

] = 0,

(2) δTX = −div∇X = 0,

(3)

∫
M

gQ((AX + At
X)X, κ]) = 0.

Proof. Let X ∈ V̄ (F) be a transversal Killing field. Then it holds that

gQ(∇EaX,Eb) + gQ(∇Eb
X,Ea) = 0. (5.6)

Hence (2) is trivial from (5.6). For the proof of (1), we have from (5.6)

gQ(ρ∇(X), Eb) =gQ(
∑

a

R(X,Ea)Ea, Eb) = gQ(R(Ea, Eb)X,Ea)

=gQ(∇Ea∇Eb
X,Ea)− gQ(∇Eb

∇EaX,Ea)

=EagQ(∇Eb
X,Ea)− EbgQ(∇EaX,Ea)

=− gQ(∇Ea∇EaX,Eb).

Hence

ρ∇(X) = −∇Ea∇EaX.

From (3.10) and (3.13), (1) is proved. Next (4.10) together with the properties

(1)and (2) gives (3). Conversely, if X ∈ V̄ (F) satisfies (1), (2) and (3), then

θ(X)gQ = 0 in (4.10). So X is a transversal Killing field. 2

Corollary 5.4 Let F be a minimal foliation on M . Then any infinitesimal au-

tomorphism X is a transversal Killing field if and only if

�BX = 0 and δTX = 0.
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Proposition 5.5 Let X ∈ V K⊥(F) be a transversal Killing field on M . If

X = dBf for some basic function f , then X = 0.

Proof. Since X is a transversal Killing field with gQ(X, κ]) = 0, we have δBX =

δTX. Hence

∆Bf = δBdBf = δBX = δTX = 0.

From Proposition 4.2, f is constant, which implies X = 0. 2

Theorem 5.6 Let X ∈ V K⊥(F) be a transversal Killing field on M , Then if ρ∇(X)− AXκ
] ≤ 0, then ∇trX = 0, i.e ∇X = 0

ifρ∇(X)− AXκ
] ≤ 0 and < 0 at some point, then X = 0.

Proof. Let X be the transversal Killing field with gQ(X, κ]) = 0. Since δTX = 0,

Corollary 4.6 yields∫
M

[gQ(ρ∇(X)− AXκ
], X)− |∇trX|2] = 0.

Therefore the proof is completed. 2

Corollary 5.7 ([6]) Let F be a minimal foliation and X a transversal Killing

field on M . If the transversal Ricci curvature is non-positive, then X is parallel.

If the transversal Ricci curvature is quasi-negative, then X is trivial.

5.2 Transversal affine Killing fields

Definition 5.8 A vector field X ∈ V̄ (F) is a transversal affine Killing field if it

satisfies

θ(X)∇ = 0, That is, R∇(X,Ea)Eb +∇Ea∇Eb
X = 0, (5.7)
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where

(θ(X)∇)(Y, Z) = θ(X)∇YZ −∇θ(X)YZ −∇Y θ(X)Z, ∀Y, Z ∈ ΓQ.

Theorem 5.9 On the Riemannian foliation F , if X ∈ V̄ (F) is a transversal

affine Killing field, then

�BX + At
κ]X + AXκ

] = 0 and dBδTX = 0. (5.8)

Proof. From (5.7), ρ∇(X)+∇Ea∇Ea = 0, which means the first equation. Next,

(5.7) implies that

0 = gQ(∇Ea∇Eb
X,Eb) = EagQ(∇Eb

X,Eb) = Eadiv∇(X).

Therefore the second equation is proved. 2

Theorem 5.10 If any transversal affine Killing field X ∈ V K⊥(F) satisfies∫
M

gQ((AX + At
X)X, κ]) = 0, (5.9)

then X is a transversal Killing field.

Proof. Since gQ(X, κ]) = 0, δBX = δTX. Hence

0 =

∫
M

gQ(dBδTX,X) =

∫
M

|δTX|2,

which yields δTX = 0. By Theorems 5.3 and 5.9, the proof is completed. 2

Theorem 5.11 On the Riemannian foliation F on M , any transversal affine

Killing field X ∈ V K⊥(F) satisfies∫
M

{2gQ(ρ∇(X), X)− gQ(AXκ
] + Aκ]X,X)− |δTX|2 −

1

2
|dBξ|2} = 0. (5.10)
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Proof. Since gQ(X, κ]) = 0, we have

gQ(AXX, κ
]) = −gQ(Aκ]X,X).

Hence (5.10) is proved from (4.11) and (5.8). 2

If κ] of F is a transversal Killing field, then

gQ(AXκ
] + Aκ]X,X) = gQ(AXκ

], X), (5.11)

because gQ(Aκ]X,X) = 0. Hence we have the following theorem.

Theorem 5.12 Let (M, gM ,F) be a closed, oriented, connected Riemannian man-

ifold with a foliation F and a bundle-like metric gM such that κ] is a transver-

sal Killing field. If any transversal affine Killing field X ∈ V K⊥(F) satisfies

ρ∇(X) − AXκ
] ≤ 0 on M , then dBξ = δTX = 0, which implies ∇X = 0. If any

transversal affine Killing field X ∈ V K⊥(F) satisfies ρ∇(X)−AXκ
] ≤ 0 and < 0

at some point, then X = 0.

Proof. It is trivial from (3.14) and Theorem 5.11. 2

Corollary 5.13 ([6]) Under the same assumption as in Theorem 5.12 except for

F is minimal,if ρ∇ ≤ 0, then every transversal affine Killing field is a transversal

Killing field.

Remark. If ρ∇ ≤ 0, then every transversal affine Killing field is parallel. If

ρ∇ ≤ 0 and < 0 at some point, then every transversal affine Killing field is

trivial.
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5.3 Transversal projective Killing fields

Definition 5.14 A vector field X ∈ V̄ (F) is a transversal projective Killing field

if it satisfies

(θ(X)∇)(Y, Z) = α(Y )Z + α(Z)Y, Y, Z ∈ ΓQ, (5.12)

where α is a basic 1-form on M .

Proposition 5.15 Let X ∈ V̄ (F) be a transversal projective Killing field on M .

Then it holds

�BX + At
κ]X + AXκ

] = −2α]. (5.13)

Proof. From (5.7), it is well-known that∑
a

(θ(X)∇)(Ea, Ea) = ρ∇(X)−∇∗
tr∇trX − AXκ

]. (5.14)

From (5.12), we have
∑

a(θ(X)∇)(Ea, Ea) = 2α(Ea)Ea = 2
∑

a α
]. So we have

ρ∇(X)−∇∗
tr∇trX − AXκ

] = 2α], (5.15)

which prove (5.13) by virtue of (3.14). 2

Lemma 5.16 Let X ∈ V̄ (F) be a transversal projective Killing field on M . Then

it holds

dB(δTX) = −(q + 1)α. (5.16)

Proof. From Lemma 3.3, we have

dB(δTX) =
∑
a,b

Ea ∧∇Ea [−i(Eb)∇Eb
X] = −

∑
a,b

Ea ∧∇EagQ(∇Eb
X,Eb)

= −
∑
a,b

gQ(∇Ea∇Eb
X,Eb)Ea. (5.17)
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From (5.7) and (5.12), we have

R∇(X,Ea)Eb +∇Ea∇Eb
X = α(Ea)Eb + α(Eb)Ea. (5.18)

From (5.17) and (5.18), it follows (5.16). 2

From (5.13) and (5.16), we have the following proposition.

Proposition 5.17 Let X ∈ V̄ (F) be a transversal projective Killing field on M .

Then it holds

�BX + At
κ]X + AXκ

] =
2

q + 1
dBδTX. (5.19)

From (4.11) and (5.19), we have

0 =

∫
M

{2gQ(ρ∇(X), X)− 1

2
|dBξ|2 − (δTX)2 +

2

q + 1
gQ(dBδTX,X)

+ gQ(AXX, κ
])− gQ(AXκ

], X) + div∇(div∇(X)X)}. (5.20)

Hence we have the following theorem.

Theorem 5.18 On the Riemannian foliation F on M , any transversal projective

Killing field X ∈ V K⊥(F) satisfies∫
M

{2gQ(ρ∇(X), X)− gQ(AXκ
] + Aκ]X,X)− q − 1

q + 1
|δTX|2 −

1

2
|dBξ|2} = 0.

(5.21)

Proof. Since gQ(X, κ]) = 0, we have

δTX = δBX, gQ(AXX, κ
]) = −gQ(Aκ]X,X).

Hence (5.21) is proved from (5.20). 2

If κ] of F is a transversal Killing field, then we have the following theorem.
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Theorem 5.19 Let (M, gM ,F) be a closed, oriented, connected Riemannian man-

ifold with a foliation F and a bundle-like metric gM such that κ] is a transversal

Killing field. If any transversal projective Killing field X ∈ V K⊥(F) satisfies

ρ∇(X) − AXκ
] ≤ 0 on M , then dBξ = δTX = 0, which implies ∇X = 0. If any

transversal projective Killing field X ∈ V K⊥(F) satisfies ρ∇(X)−AXκ
] ≤ 0 and

< 0 at some point, then X = 0.

Proof. It is trivial from (3.14), (5.11) and Theorem 5.18. 2

Corollary 5.20 ([6]) Let (M, gM ,F) be a closed, oriented, connected Rieman-

nian manifold with a minimal foliation F and a bundle like metric gM . If ρ∇ ≤ 0,

then every transversal projective Killing field is a transversal Killing field.

Remark. If ρ∇ ≤ 0, then every transversal projective Killing field is parallel. If

ρ∇ ≤ 0 and < 0 at some point, then every transversal projective Killing field is

trivial.

5.4 Transversal conformal Killing fields

Definition 5.21 A vector field X ∈ V̄ (F) is a transversal conformal Killing field

if it satisfies

θ(X)gQ = 2fgQ, (5.22)

where f > 0 is a basic function. In fact, f = −1
q
δTX.

Proposition 5.22 On the Riemannian foliation F , any transversal conformal

Killing field X ∈ V̄ (F) with θ(X)gQ = 2fgQ satisfies

(θ(X)∇)(Y, Z) = (dBf)(Y )Z + (dBf)(Z)Y − gQ(Y, Z)dBf, ∀ Y, Z ∈ ΓQ.

(5.23)
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Proof. Lemma 3.9 implies that for any Z,W ∈ ΓQ,

∇Y (θ(X)gQ)(Z,W ) +∇Z(θ(X)gQ)(Y,W )−∇W (θ(X)gQ)(Y, Z)

=gQ(∇Y∇ZX,W ) + gQ(∇Y∇WX,Z) + gQ(∇Z∇YX,W ) + gQ(∇Z∇WX, Y )

− gQ(∇W∇YX,Z)− gQ(∇W∇ZX, Y )

=gQ(R∇(Y,W )X,Z) + gQ(R∇(Z,W )X, Y ) + gQ(R∇(Y, Z)X,W ) + 2gQ(∇Z∇YX,W )

=− 2gQ(R∇(Z,X)Y,W ) + 2gQ(∇Z∇YX,W )

=2gQ((θ(X)∇)(Y, Z),W ).

On the other hand, since X ∈ V̄ (F) is a transversal conformal Killing field, (5.22)

implies

∇Y (θ(X)gQ)(Z,W ) +∇Z(θ(X)gQ)(Y,W )−∇W (θ(X)gQ)(Y, Z)

=Y (f)gQ(Z,W ) + Z(f)gQ(Y,W )−W (f)gQ(Y, Z)

=gQ(Y (f)Z,W ) + gQ(Z(f)Y,W )− gQ(dBf,W )gQ(Y, Z)

From the above two equations, the proof is completed. 2

From (4.8), we have the following proposition.

Proposition 5.23 On a Riemannian foliation F , any transversal conformal Killing

field X ∈ V̄ (F) with θ(X)gQ = 2fgQ satisfies∫
M

{gQ(ρ∇(X), X)− q − 2

q
|δTX|2 − |∇trX|2 + div∇(AXX) + div∇(div∇(X)X)} = 0.

(5.24)

Theorem 5.24 Let (M, gM ,F) be a closed, oriented, connected Riemannian man-

ifold with a foliation F and a bundle-like metric gM . For any transversal confor-

mal Killing field X ∈ V K⊥(F), if holds

�BX + At
κ]X + AXκ

] = −q − 2

q
dBδTX. (5.25)
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conversely, if κ] is a the Killing field, any vector field X ∈ V K⊥(F) satisfies

(5.25) is a transversal conformal Killing field.

Proof. Let X ∈ V K⊥(F) be a transversal conformal Killing field. Then by

(5.23) and Lemma 3.9, we have

R∇(X, Y )Z −∇∇Y ZX +∇Y∇ZX = (dBf)(Y )Z + (dBf)(Z)Y − gQ(Y, Z)dBf.

From this equation, we have

ρ∇(X)−∇∗
tr∇trX − Aκ]

X = 2
∑

a

(dBf)(Ea)Ea − qdBf = −(q − 2)dBf.

�BX + At
κ]X + AXκ

] = −q − 2

q
dBδTX.

Conversely, since κ] is a transversal Killing field, gQ(Aκ]X,X) = 0. By Theorem

4.12, if X satisfies (5.25), then X is a transversal conformal Killing field. 2

From (4.11) and Theorem 5.24, we have

0 =

∫
M

{2gQ(ρ∇(X), X)− 1

2
|dBξ|2 − (δTX)2 − q − 2

q
gQ(dBδTX,X)

+ gQ(AXX, κ
])− gQ(AXκ

], X) + div∇(div∇(X)X)}. (5.26)

Hence we have the following theorem.

Theorem 5.25 On the Riemannian foliation F on M , any transversal conformal

Killing field X ∈ V K⊥(F) satisfies∫
M

{2gQ(ρ∇(X), X)− gQ(AXκ
] + Aκ]X,X)− 2q − 2

q
|δTX|2 −

1

2
|dBξ|2} = 0.

(5.27)
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Proof. Since gQ(X, κ]) = 0, we have

δTX = δBX, gQ(AXX, κ
]) = −gQ(Aκ]X,X).

Hence (5.27) is proved from (5.26). 2

If κ] of F is a transversal Killing field, then we have the following theorem by

(5.11)

Theorem 5.26 Let (M, gM ,F) be a closed, oriented, connected Riemannian man-

ifold with a foliation F and a bundle-like metric gM such that κ] is a transversal

Killing field. If any transversal conformal Killing field X ∈ V K⊥(F) satisfies

ρ∇(X) − AXκ
] ≤ 0 on M , then dBξ = δTX = 0, which implies ∇X = 0. If any

transversal conformal Killing field X ∈ V K⊥(F) satisfies ρ∇(X)−AXκ
] ≤ 0 and

< 0 at some point, then X = 0.

Proof. It is trivial from (3.14) and Theorem 5.25. 2

Corollary 5.27 ([6]) Let (M, gM ,F) be a closed, oriented, connected Rieman-

nian manifold with a minimal foliation F and a bundle like metric gM . If ρ∇ ≤ 0,

then every transversal conformal Killing field is a transversal Killing field.

Remark. If ρ∇ ≤ 0, then every transversal conformal Killing field is parallel. If

ρ∇ ≤ 0 and < 0 at some point, then every transversal conformal Killing field is

trivial.
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<국문 초록>

엽층이 극소부분이 아닌 컴팩트 리만 다양체들로 

구성되어 있을 때 무한소의 자기동형에 대한 연구

  본 논문에서는 엽층이 극소부분이 아닌 컴팩트 리만 다양체들로 

구성되어 있을 때 무한소의 자기동형에 대해 연구하 다.

 특히, 무한소의 자기동형에 필요한 적분 공식을 찾았고, 횡단적 

Ricci 곡률과 횡단적 Killing 장, 횡단적 의사 Killing 장, 횡단적 사

형 Killing 장과 횡단적 공형 Killing 장의 소멸정리를 증명하 다.
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