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〈Abstract〉

LINEAR PRESERVERS OF TERM RANK

OF FUZZY MATRIX PRODUCT

In this thesis, we construct the sets of fuzzy matrix pairs. These sets are naturally occurred

at the extreme cases for the (zero) term rank inequalities relative to the product of fuzzy matri-

ces. These sets were constructed with the fuzzy matrix pairs which are related with the term

ranks of the products and the zero term ranks of the products of two fuzzy matrices.

That is, we construct the following 5 sets;

T1(F) = {(X,Y ) ∈Mm,n(F)2|t(XY ) = min{r(X), c(Y )}};

T2(F) = {(X, Y ) ∈Mm,n(F)2|t(XY ) = t(X) + t(Y )− n};

T3(F) = {(X,Y, Z) ∈Mm,n(F)3|t(XY Z) + t(Y ) = ρ(XY ) + ρ(Y Z)};

Z1(F) = {(X, Y ) ∈Mm,n(F)2|z(XY ) = 0};

Z2(F) = {(X, Y ) ∈Mm,n(F)2|z(XY ) = z(X) + z(Y )};

For these 5 sets of fuzzy matrix pairs, we consider the linear operators that preserve them.

We characterize those linear operators asT (X) = PXQ or T (X) = PXtQ with appropriate

invertible fuzzy matricesP andQ. We also prove that these linear operators preserve above 5

sets.



1 Introduction and Preliminaries

One of the most active and continuing subjects in matrix theory during the last century,

is the study of those linear operators on matrices that leave certain properties or relations of

subsets invariant. Such questions are usually called ”Linear Preserver Problems”. The earliest

papers in our reference list are Frobenius(1897) and Kantor(1897). Since much effort has been

devoted to this type of problem, there have been several excellent survey papers. For survey

of these types of problems, we refer to the article of Song([11]) and the papers in [10]. The

specified frame of problems is of interest both for matrices with entries from a field and for

matrices with entries from an arbitrary semiring such as Boolean algebra, nonnegative integers,

and fuzzy sets. It is necessary to note that there are several rank functions over a semiring that

are analogues of the classical function of the matrix rank over a field. Detailed research and

self-contained information about rank functions over semirings can be found in [1, 11].

There are some results on the inequalities for the rank function of matrices([1, 2, 3, 4]).

Beasley and Guterman ([1]) investigated the rank inequalities of matrices over semirings. And

they characterized the equality cases for some rank inequalities in [2]. The investigation of

linear preserver problems of extreme cases of the rank inequalities of matrices over fields

was obtained in [4]. The structure of matrix varieties which arise as extremal cases in the

inequalities is far from being understood over fields, as well as semirings. A usual way to

generate elements of such a variety is to find a matrix pairs which belongs to it and to act on

this set by various linear operators that preserve this variety. Song and his colleagues ([3])

characterized the linear operators that preserve the extreme cases of column rank inequalities

over semirings.

There are some results on the linear operators that preserve term rank([7, 8]) and zero-term

rank([5]). But in these papers, the authors studied the term rank and zero-term rank function

themselves.

In this thesis, we characterize linear operators that preserve the sets of matrix pairs which

satisfy extreme cases for the term rank inequalities and zero-term rank inequalities for the
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product of matrices over fuzzy semirings.

Definition 1.1. ([3]) A semiringS consists of a setS and two binary operations, addition and

multiplication, such that:

• S is an Abelian monoid under addition (identity denoted by 0);

• S is a semigroup under multiplication (identity, if any, denoted by 1);

• multiplication is distributive over addition on both sides;

• s0 = 0s = 0 for all s ∈ S.

Definition 1.2. ([3]) A semiring is calledantinegativeif the zero element is the only element

with an additive inverse.

Definition 1.3. ([5]) The Boolean semiring consists of the setB = {0, 1} equipped with two

binary operations, addition and multiplication. The operations are defined as usual except that

1 + 1 = 1.

Definition 1.4. ([1]) A semiring is calledchain if the setS is totally ordered with universal

lower and upper bounds and the operations are defined bya + b = max{a, b} anda · b =

min{a, b}.

It is straightforward to see that any chain semiring is commutative and antinegative.

Throughout we assume thatm ≤ n. The matrixIn is then × n identity matrix,Jm,n is

them × n matrix of all ones,Om,n is them × n zero matrix. We omit the subscripts when

the order is obvious from the context and we writeI, J , andO, respectively. The matrixEi,j ,

called acell, denotes the matrix with exactly one nonzero entry, that being a one in the(i, j)

entry. LetRi denote the matrix whoseith row is all ones and is zero elsewhere, andCj denote

the matrix whosejth column is all ones and is zero elsewhere. We let|A| denote the number

of nonzero entries in the matrixA.

Let Mm,n(S) denote the set ofm×n matrices with entries from the semiring S. Ifm = n,

we use the notationMn(S) insteed ofMm,n(S).
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Definition 1.5. ([12]) LetR be the field of reals, letF={α ∈ R | 0 ≤ α ≤ 1} denote a subset

of reals. Definea + b = max{a, b} anda · b = min{a, b} for all a,b in F . Then(F , +, ·) is

called afuzzysemiring.

LetMm,n(F) denote the set of allm× n matrices with entries in afuzzysemiringF . We

call a matrix inMm,n(F) as afuzzymatrix.

Definition 1.6. ([4]) A line of a matrixA is a row or a column of the matrixA.

Definition 1.7. ([7]) A matrix A ∈ Mm,n(F) hasterm rankk (t(A) = k) if the least number

of lines needed to include all nonzero elements ofA is equal tok. Let us denote byc(A) the

least number of columns needed to include all nonzero elements ofA and byr(A) the least

number of rows needed to include all nonzero elements ofA.

Definition 1.8. ([5]) A matrix A ∈ Mm,n(F) haszero-term rankk (z(A) = k) if the least

number of lines needed to include all zero elements ofA is equal tok.

Example 1.9. Let

A =




1
2

2
3

3
4

2
3 0 4

5

1
2

3
4

2
3




, B =




1
2 0 0

2
3

3
4 0

0 0 0




Thent(A) = 3, z(A) = 1, t(B) = 2 andz(B) = 3 for A, B ∈ M3(F).

Definition 1.10. ([10]) A matrix A ∈ Mm,n(F) hasfactor rankk (rank(A) = k) if there

exist matricesB ∈ Mm,k(F) andC ∈ Mk,n(F) such thatA = BC andk is the smallest

positive integer such that such a factorization exists. By definition the only matrix with factor

rank equal to 0 is the zero matrix,O.

If S is a subsemiring of a certain field then there is a usual rank functionρ(A) for any

matrix A ∈ Mm,n(S). It is easy to see that these functions are not equal in general but the

inequalityrank(A) ≥ ρ(A) always holds.

Example 1.11.ConsiderZ+, the set of nonnegative integers. The semiringZ+ is embedded
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in the real fieldR. Then the matrix

A =




0 1 2

2 1 0

3 3 3




has different values as, whererank(A)=3 andρ(A)=2.

Definition 1.12. ([2]) Let F be a fuzzy semiring. An operatorT : Mm,n(F) →Mm,n(F) is

calledlinear if T (X + Y ) = T (X) + T (Y ) andT (αX) = αT (X) for all X, Y ∈Mm,n(F),

α ∈ F .

Definition 1.13. ([3]) We say an operator,T , preservesa setP if X ∈ P implies thatT (X) ∈
P, or, if (X, Y ) ∈ P implies that(T (X), T (Y )) ∈ P whenP is a set of ordered pairs.

Definition 1.14. ([7]) The matrixX ◦ Y denotes theHadamardor Schur product, i.e., the

(i, j) entry ofX ◦ Y is xi,jyi,j .

Definition 1.15. ([7]) An operatorT is called a(P, Q, B)-operatorif there exist permutation

matricesP andQ, and a matrixB with no zero entries, such thatT (X) = P (X ◦B)Q for all

X ∈ Mm,n(F), or, if m = n, T (X) = P (X ◦ B)tQ for all X ∈ Mm,n(F). The operator

T (X) = P (X · B)Q is called nontransposing(P, Q,B)-operator. A(P, Q, B)-operator is

called a(P,Q)-operatorif B = J , the matrix of all ones.

It was shown in [2, 4, 9] that linear preserves for extremal cases of classical matrix inequal-

ities over fields are types of(P, Q)-operators whereP andQ are arbitrary invertible matrices.

On the other side, linear preservers for various rank functions over semirings have been the

object of much study during the last years, see for example [6, 7, 8, 10], in particular term rank

and zero term rank were investigated in the last few years, see for example [5].

Definition 1.16. ([5]) We say that the matrixA dominatesthe matrixB if and only if bi,j 6= 0

implies thatai,j 6= 0, and we writeA ≥ B or B ≤ A.

Definition 1.17. If A andB are matrices andA ≥ B we letA\B denote the matrixC where

ci,j =





0 if bi,j 6= 0

ai,j otherwise
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The behaviour of the functionρ with respect to matrix multiplication and addition is given

by the following inequalities:

Sylvester’s laws:

ρ(A) + ρ(B)− n ≤ ρ(AB) ≤ min{ρ(A), ρ(B)},

and theFrobenius inequality:

ρ(AB) + ρ(BC) ≤ ρ(ABC) + ρ(B),

whereA, B, C are conformal matrices with coefficients from a field.

5



2 Term Rank Inequality Of Fuzzy Matrix Product

We obtain various inequalities for term rank of matrix product over fuzzy semirings. We

also show that these inequalities are exact and best possible.

We denote byA
⊕

B the block-diagonal matrix of the form



A O

O B


 .

Note that in this sense the operation
⊕

is not commutative.

Over a fuzzy semiring the Sylvester lower bound holds:

Proposition 2.1. ([1]) Let F be a fuzzy semiring. Then for anyA ∈Mm,n(F), B ∈Mn,k(F)

the following inequality holds:

t(AB) ≥





0 if t(A) + t(B) ≤ n,

t(A) + t(B)− n if t(A) + t(B) > n.

This bound is exact and best possible.

Proof. Let A ∈ Mm,n(F), B ∈ Mn,k(F) be arbitray matrices,t(A) = tA, t(B) = tB. Then

A and B have generalized diagonals withtA andtB nonzero elements, respectively. Denote

them byDA andDB, respectively. ThenAB ≥ DADB since F is antinegative. Since the prod-

uct of two generalized diagonal matrices, which havetA andtB nonzero entries, respectively,

has at leasttA + tB − n nonzero entries, the inequality follows.

In order to show that this bound is exact and the best possible for each pair(r, s), 0 ≤ r,

s ≤ n let us takeAr = Ir
⊕

On−r, Bs = On−s
⊕

Is in the casem = n. It is routine to

generalize this example for the casem 6= n.

Example 2.2. Let A, B ∈ Mn(F). The inequalityt(AB) ≤ min(t(A), t(B)) does not hold.

It is enough to takeA = C1, B = R1. Then

t(AB) = t(Jn) = n > 1.
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However the following inequality is true.

Proposition 2.3. ([1]) Let F be a fuzzy semiring. Then for anyA ∈Mm,n(F), B ∈Mn,k(F)

the inequalityt(AB) ≤ min(tr(A), tc(B)) holds. This is exact and the best possible bound.

Proof. This inequality is a direct consequence of the definition of the term rank and antineg-

ativity. The exactness follows from Example 2.2. In order to prove that this bound is the

best possible, for each pair(r, s), 0 ≤ r ≤ m, 0 ≤ s ≤ k, consider the family of matrices

Ar = E1,1 + . . . + Er,1 andBs = E1,1 + . . . + E1,s.

Example 2.4. For an arbitrary fuzzy semiring, the triple(C1, R1, 0) is a counterexample to

the term rank version of the Frobenius inequality, sincet(C1R1)+ t(R10) = n > t(C1R10)+

t(R1) = 1. However ifF = {0, 1} is a subsemiring ofR+ the following obvious version is

true :

ρ(AB) + ρ(BC) ≤ t(ABC) + t(B).
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3 Zero-Term Rank Inequality Of Fuzzy Matrix Product

We obtain inequalities for the zero-term rank product over fuzzy semirings. We also show

that these inequalities are exact and best possible.

Proposition 3.1. ([1]) Let F be a fuzzy semiring. ForA ∈ Mm,n(F), B ∈ Mn,k one has

that

0 ≤ z(AB) ≤ min{z(A) + z(B), k, m}.

These bounds are exact and the best possible forn > 2.

Proof. The lower bound follows from the definition of the zero-term rank function. In order

to show that this bound is exact and the best possible let us consider the family of matrices:

for each pair(r, s), 0 ≤ r ≤ min{m, n}, 0 ≤ s ≤ min{k, n}, we takeAr = J\(Σr
i=1Ei,i),

Bs = J\(Σs
i=1Ei,i+1) if s < min{k, n} andBs = J\(Σs−1

i=1Ei,i+1 + Es,1) if s = min{k, n}.
Thenz(Ar) = r, z(Bs) = s by definition and ifn > 2 thenArBs does not have zero elements

by antinegativity. Thusz(ArBs) = 0.

The upper bound follows directly from the definition of zero-term rank and from the an-

tinegativity ofF .

In order to show that this bound is exact and the best possible let us consider the family

of matrices: for each pair(r, s), 0 ≤ r ≤ min{m,n}, 0 ≤ s ≤ min{k, n}, we takeAr =

J\(Σr
i=1Ri) andBs = J\(Σs

i=1Ci).

Example 3.2. The triple(C1, I, R1) is a counterexample to the zero-term rank version of the

Frobenius inequality, since

z(C1) + z(R1) = 2n− 2 > z(C1R1) + z(I) = n

for n > 2.
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4 Basic Results For Linear Operator Of Fuzzy Matrices

In this section, we obtain some basic results for our main theorems in the section 5 and 6.

For a surjective linear operator, we have the followings.

Lemma 4.1. LetF be a fuzzy semiring,T : Mm,n(F) → Mm,n(F) be an operator which

maps lines to lines and is defined byT (Ei,j) = Eσ(i,j), whereσ is a permutation on the set

{(i, j) | i = 1, 2, · · · ,m; j = 1, 2, · · · , n}. ThenT is a (P, Q)-operator.

Proof. Since no combination ofu rows andv columns can dominateJ whereu+v = m unless

v = 0 (or if m = n, if u = 0) we have that either the image of each row is a row and the image

of each column is a column, orm = n and the image of each row is a column and the image of

each column is a row. Thus, there are permutation matricesP andQ such thatT (Ri) ≤ PRiQ

andT (Cj) ≤ PCjQ or, if m = n, T (Ri) ≤ P (Ri)tQ andT (Cj) ≤ P (Cj)tQ. Since each cell

lies in the intersection of a row and a column andT maps nonzero cells to nonzero (weighted)

cells, it follows thatT (Ei,j) = PEi,jQ, or, if m = n, T (Ei,j) = PEj,iQ = P (Ei,j)tQ.

ThenT is a(P, Q)-operator.

Lemma 4.2. LetT : Mm,n(F) →Mm,n(F) be a(P, Q)− operator. ThenT preserves all

term rank and zero term rank.

Proof. Let π be a permutation correspondingP , µ be a permutation correspondingQ.

Let t(A) = r with A ∈ Mm,n(F ). Then there are r lines such that those r lines cover all

nonzero entries ofA, sayr1, r2, · · · , rs, c1, c2, · · · , ct with s + t = r, covers all nonzero

entries ofA. ThenPAQ is covered byrπ(1), rπ(2), · · · , rπ(s) andcµ(1), cµ(2), · · · , cµ(t) with

s + t = r.

Thust(PAQ) = r and hencet(T (A)) = r. ThereforeT preserves term rank r, and hence

T preserves all term rank.

Similarly T preserves all zero term rank.
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Theorem 4.3.LetF be a fuzzy semiring andT : Mm,n(F) →Mm,n(F) be a linear operator.

Then the following are equivalent:

1. T is bijective.

2. T is surjective.

3. There exists a permutationσ on {(i, j) | i = 1, 2, · · · ,m; j = 1, 2, · · · , n} such that

T (Ei,j) = Eσ(i,j).

Proof. That 1) implies 2) and 3) implies 1) is straightforward. We now show that 2) implies

3).

We assume thatT is surjective. Then, for any pair(i, j), there exists someX such that

T (X) = Ei,j . ClearlyX 6= O by the linearity ofT . Thus there is a pair of indexes(r, s) such

thatX = xr,sEr,s + X ′ where(r, s) entry ofX ′ is zero and the following two conditions are

satisfied:xr,s 6= 0 andT (Er,s) 6= O. Indeed, if in the contrary for all pairs(r, s) eitherxr,s = 0

or T (Er,s) = O thenT (X) = 0 which contradicts with the assumptionT (X) = Ei,j 6= 0.

Hence

T (xr,sEr,s) ≤ T (xr,sEr,s) + T (X \ (xr,sEr,s)) = T (X) = Ei,j

. That is,xr,sT (Er,s) = T (xr,sEr,s) ≤ Ei,j . ThusT (xr,sEr,s) = αEi,j for a certainα ∈ F .

That is, there is some permutaionσ on {(i, j) | i = 1, 2, · · · , m; j = 1, 2, · · · , n} such that

for some scalarsbi,j , T (Ei,j) = bi,jEσ(i,j). We now only need show that thebi,j are all

units. SinceT is surjective andT (Er,s) 6≤ Eσ(i,j) for (r, s) 6= (i, j),there is someα such

thatT (αEi,j) = Eσ(i,j). But then, sinceT is linear,T (αEi,j) = αT (Ei,j) = αbi,jEσ(i,j) =

Eσ(i,j). That is,αbi,j = 1, or bi,j is a unit. But 1 is the only unit over fuzzy semiring. Thus

bi,j = 1 andT (Ei,j) = Eσ(i,j).

10



5 Term Rank Preservers Of Fuzzy Matrix Product

In this section, we obtain characterizations of the linear operators that preserve the set

of matrix pairs which arise as the extremal cases in the inequalities of term rank of matrix

products.

Below, we use the following notations in order to denote sets of matrices that arise as the

extremal cases in the inequalities of term rank of matrix products listed in section 2 .

T1(F) = {(X,Y ) ∈ Mn(F)2|t(XY ) = min{r(X), c(Y )}},
T2(F) = {(X,Y ) ∈ Mn(F)2|t(XY ) = t(X) + t(Y )− n},
T3(F) = {(X,Y, Z) ∈ Mn(F)3|t(XY Z) + t(Y ) = ρ(XY ) + ρ(Y Z)}.

5.1 Linear Preservers ofT1(F)

Consider the set of matrix pairs:

T1(F) = {(X,Y ) ∈ Mn(F)2|t(XY ) = min{r(X), c(Y )}}.
This set contains(I, I) and hence it is not empty.

We characterize the linear operators that preserve setT1(F).

Theorem 5.1. LetF be a fuzzy semiring,T : Mn(F) →Mn(F) be a surjective linear map.

ThenT preserves the setT1(F) if and only ifT is a(P, P t)-operator, whereP is a permutation

matrix.

Proof. By Theorem 4.3 we have thatT (Ei,j) = Eσ(i,j) for all i, j, 1 ≤ i ≤ m, 1 ≤ j ≤ n, σ

is a permutation on the set of pairs(i, j).

For all k one has that(Ei,j , Ej,k) ∈ T1(F) since

t(Ei,jEj,k) = t(Ei,k) = 1 = min{1, 1} = min{r(Ei,j), c(Ej,k)}. Thust(T (Ei,j)T (Ej,k)) =

min{r(T (Ei,j)), c(T (Ej,k))} = 1 sinceT transforms cell to cells. ButT (Ei,j)T (Ej,k) =

Eσ(i,j)Eσ(j,k) so thatEσ(i,j) is in the same row asEσ(j,1) for everyk. That is,T maps rows

to rows, similarlyT maps columns to columns. That is,T (X) = PXQ for some permutation

matricesP andQ. Therefore,T (Ei,j) = Eσ(i)τ(j) whereσ is the permutation correspond-

ing to P and τ is the permutation corresponding toQt. But (E1,i, Ei,1) ∈ T1(F) implies

11



(T (E1,i), T (Ei,1)) ∈ T1(F) by assumtion. Thus,(Eσ(1)τ(i), Eσ(i)τ(1)) ∈ T1(F), and hence

σ ≡ τ , that is,Q = P t.

Conversely,(P, Q)-operators preserve term rank by Lemma 4.2.Hence(P, P t)-operators

preserve the term rank, c(A) and r(A), since fuzzy semiringF is antinegative. Therefore

(P, P t-operators preserveT1(F).

5.2 Linear Preservers ofT2(F)

Consider the set of matrix pairs:

T2(F) = {(X,Y ) ∈ Mn(F)2|t(XY ) = t(X) + t(Y )− n}.
This set contains(I, I) and hence it is not empty.

We characterize the linear operators that preserve setT2(F).

Lemma 5.2. LetF be an abitrary fuzzy semiring and the linear transformationT : Mn(F) →
Mn(F) preserves the setT2(F). ThenT preserve the set of matrices with term-rankn.

Proof. Let A = 0 and letB be any matrix of term rankn.

Then,t(A) = 0, t(AB) = 0.

Hence,t(AB) = t(A)+t(B)−n. It follows thatt(T (A)T (B)) = t(T (A))+t(T (B))−n,

sinceT preserversT2(F) .

That is,0 = 0 + t(T (B))− n.

It follows thatt(T (B)) = n . That is,T preserves term-rankn.

Lemma 5.3.SupposeF is a fuzzy semiring,T is surjective linear transformationT : Mn(F) →
Mn(F). TransformationT preserves the set of matrices with term rank n if and only ifT is a

(P, Q)− operator, whereP andQ are permutation matrices of order n.

Proof. By Theorem 4.3 we have thatT (Ei,j) = Eσ(i,j) for all i, j, 1 ≤ i ≤ m, 1 ≤ j ≤ n, σ

is a permutation on the set of pairs(i, j).
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Let us show thatT−1 maps lines to lines. Assume that the preimage of a row is not

dominated by any line. Then there are two cells in one line such that their preimages are not in

one line. Let us consider the cellsEi,k andEi,l such thatT−1(Ei,k + Ei,l) ≤ Er,s + Ep,q, p 6=
r, q 6= s andT−1(Ei,k + Ei,l) is not dominated by each of the cellsEr,s, Ep,q.

By extendingEr,s + Ep,q to a permutation matrix by addingn− 2 cells, we find a matrix

A such thatt(A) = n .

SinceT preservers term rankn by assumption one has thatt(T (A)) = n.

On the other hand,T (A) is dominated byn − 1 lines by the choice ofEr,s and Ep,q

and condition that the image of a cell is a cell, a contradiction witht(T (A)) = n. Thus the

preimage of every row is a row or a column.

Similarly, the preimage of every column is a column or a row.

Moreover, sinceσ is bijective on the set of pairs(i, j) and each row intersects each column

and does not intersect rows,T maps rows to rows and columns to columns, or , it is also

possibleT maps all rows to columns and all columns to rows. Thus there are permutation

matricesP andQ such thatT (Ei,j) = PEi,jQ,or, T (Ei,j) = PEj,iQ = P (Ei,j)tQ, i.e, T is

a (P,Q)-operator whereP andQ are permutation matrices of order n.

Therefore, we have thatT is a(P, Q)-operator.

Conversely, letT be a(P, Q)-operator.ThenT preserves all term rank by Lemma4.2 and

henceT preserve the set of matrices with term rankn.

Theorem 5.4. Let F be a fuzzy semiring,T : Mn(F) → Mn(F) be a linear surjective map.

Then T preserves the setT2(F) if and only if T is a nontransposing(P, P t) − operators ,

where P is a permutation matrix.

Proof. (⇐) Let T be a nontransposing(P, P t)-operators, onMn(F). By Lemma4.2,(P, Q)-

operators preserve all term ranks. Thust(T (X) + t(T (Y ))− n = t(X) + t(Y )− n.

And t(T (X)T (Y )) = t(PXP tPY P t) = t(PXY P t) = t(XY ).If (X,Y ) ∈ T2(F),

Thent(XY ) = t(X) + t(Y ) + n. By above,t(T (X)T (Y )) = t(T (X)) + t(T (Y ))− n.

Therefore,(T (X), T (Y )) ∈ T2(F).

13



HenceT preservesT2(F) .

(⇒) Assume that linear preservers of the setT2(F). ThenT preserves the set of term rank

n matrices by Lemma5.2 . Thus by applying Lemma 5.3 we obtain thatT is a(P,Q)-operator.

That is,T (X) = PXQ or T (X) = PXtQ . But T1(X) = Xt does not preserve the

setT2(F). Indeed, the pair(X = Ei,j , Y = I − Ej,j) ∈ T2(F) sincet(XY ) = t(0) = 0 =

1+(n−1)−n = t(Ei,j)+t(I−Ej,j)−n. However,(Xt = Ej,i, Y
t = I−Ej,j) 6∈ T2(F) since

t(XtY t) = t(Ej,i) = 1 6= 0 = t(Xt)+t(Y t)−n. ThusT (X) = PXtQ does not preserve the

setT2(F). Therefore,T (X) = PXQ is a nontransposing(P, Q)-operator. Finally it remains

to prove thatQP = I, the identity matrix.

We have that a(P, Q)-operator preserves the setT2(F) by Lemma 4.2. . . . . . . . . . . . . . . (1)

Thus t(XY ) = t(T (X)T (Y )) = t(PXQPY Q) = t(XQPY ) for all pairs (X, Y ) ∈
T2(F). The matrixQP is permutation matrix as a product of two permutation matrices.

Assume thatQP = I andQP transformsi’th column intoj’th column. . . . . . . . . . . . . . (2)

Let X = Ei,i, Y = In − Ei,i. Thent(X) = 1, t(Y ) = n − 1, t(XY ) = t(0) = 0 and

t(X) + t(Y )− n = 1 + (n− 1)− n = 0. i.e.,(X, Y ) ∈ T2(F).

On the other side,XQP = Ei,iQP = Ei,j from (2). ThenXQPY = Ei,j(In − Ei,i) =

Ei,j − 0 = Ei,j .

Now, t(T (X)T (Y )) = t(PXQPY Q) = t(XQPY ) = 1 , andt(T (X))+ t(T (Y ))−n =

t(PXQ)+ t(PY Q)−n = t(X)+ t(Y )−n = 1+(n−1)−n = 0. Hence,t(T (X)T (Y )) 6=
t(T (X)) + t(T (Y )) − n. Thus,(T (X), T (Y )) 6∈ T2(F). This contradicts the fact that(1).

This contradiction comes from(2). ThusQP = I andPQ = I. i.e., Q = P t. ThusT is a

(P, P t)-operator.

5.3 Linear Preservers ofT3(F)

Consider the set of matrix pairs:

T3(F) = {(X,Y, Z) ∈ Mn(F)3|t(XY Z) + t(Y ) = ρ(XY ) + ρ(Y Z)}.
This set contains(I, I, I) and hence it is not empty.
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We characterize the linear operators that preserve setT3(F).

Theorem 5.5. Let F be a fuzzy semiring,T : Mn(F) → Mn(F) be a linear surjective map.

Then T preserves the setT3(F) if and only if T is a nontransposing(P, P t) − operators ,

where P is a permutation matrix.

Proof. By Theorom 4.3 we have thatT (Ei,j) = Eσ(i,j) for all i, j, 1 ≤ i, j ≤ n, whereσ is a

permutation on the set of pairs(i, j). Then(Ei,j , Ej,k, Ek,l) ∈ T3(F) for all l and for abitrary

fixed i, j, k sincet(Ei,jEj,kEk,l) + t(Ej,k) = 1 + 1 andρ(Ei,jEj,k) + ρ(Ej,kEk,l) = 1 + 1.

SinceT preserves the setT3(F), t(T (Ei,j)T (Ej,k)T (Ek,l))+t(T (Ej,k)) = ρ(T (Ei,j)T (Ej,k))+

ρ(T (Ej,k)T (Ek,l)).

By Theorem 4.3 it follows thatT (Ei,j) = Ep,q, T (Ej,k) = Er,s, T (Ek,l) = Eu,v. Since

t(Er,s) = 1 6= 0 it follows from the last equality that eitherr = q or s = u or both. Let us

assume that only one of the equalities hold for a certainl.

Without loss of generality, assume thats = u andr 6= q. Thus for arbitrarym, 1 ≤ m ≤ n

one has that(Ei,j , Ej,k, Ek,m) ∈ T3(F).

By Theorem 4.3, we haveT (Ei,j) = Ep,q, T (Ej,k) = Er,s, T (Ek,m) = Ew,z. Sincer 6= q

and(Ep,q, Er,s, Ew,z) ∈ T3(F), it follows thats = w, and henceT mapsk’th row into s’th

row. Thus in this case we obtain : rows are transformed to rows.

By the same arguments, columns are transformed to columns.

Assume thats 6= u andr = q. (Ea,j , Ej,k, Ek,l) ∈ T3(F). T (Ea,j) = Ex,y, T (Ej,k) =

Er,s, T (Ek,l) = Eu,v. And henceq = y = r.

It follows that there exists a permutationP andQ such thatT (X) = PXQ for all X ∈
Mn(F).

In order to show that the transposition transformation does not preserveT3 it suffices to

show an example that(E1,2, E2,3, C3) ∈ T3(F) and(E2,1, E3,2, R3) 6∈ T3(F).

In order to show thatQ = P t it suffices to show that(Ei,j , Ej,k, Ei,j) ∈ T3(F). In fact,

t(Ei,jEj,kEi,j) + t(Ej,k) = 0 + 1, ρ(Ei,jEj,k) + ρ(Ej,kEi,j) = 1 + 0.

Let σ is correspondingP andτ is correspondingQt.

By assumption,(T (Ei,j), T (Ej,k), T (Ei,j)) = (Eσ(i)τ(j), Eσ(j)τ(i), Eσ(i)τ(j)) ∈ T3(F).
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Thusσ ≡ τ . HenceQ = P t andT is a(P, P t)-operator.

Conversely, nontransposing(P, P t)-operator preserves term rank by Lemma 4.2. More-

over, nontransposing(P, P t)-operator preserves real rank since P is an invertible matrix over

real fieldR. Hence(P, P t)-operator preservesT3(F).
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6 Zero-Term Rank Preservers Of Fuzzy Matrix Product

In this section, we obtain characterizations of the linear operators that preserve the set of

matrix pairs which arise as the extremal cases in the inequalities of zero-term rank of matrix

products.

Below, we use the following notations in order to denote sets of matrices that arise as the

extremal cases in the inequalities of zero-term rank of matrix products listed in section 3 .

Z1(F) = {(X, Y ) ∈ Mn(F )2|z(XY ) = 0},
Z2(F) = {(X, Y ) ∈ Mn(F )2|z(XY ) = z(X) + z(Y )}.

6.1 Linear Preservers ofZ1(F)

Consider the set of matrix pairs:

Z1(F) = {(X, Y ) ∈ Mn(F)2|z(XY ) = 0}.
This set contains(J, J), where J is then×n matrix with1′s as its all entries. ThusZ1(F)

is not empty.

We characterize the linear operators that preserve setZ1(F).

Theorem 6.1. Let F be a fuzzy semiring,T : Mn(F) → Mn(F) be a linear surjective map.

Then T preserves the setZ1(F) if and only if T is a nontransposing(P, P t) − operators ,

where P is a permutation matrix.

Proof. By Theorem 4.3 we have thatT (Ei,j) = Eσ(i,j) for all i, j, 1 ≤ i ≤ m, 1 ≤ j ≤ n, σ

is a permutation on the set of pairs(i, j).

Let us show thatT maps lines to lines.

Suppose that the images of two cells are in the same line, but the cells are not in the same

line, say,Ei,j , Ei,k are the cells such thatT−1(Ei,j), T−1(Ei,k) are not in the same line.

Let us considerA = T−1(J \Ri). Thus there are no zero rows ofA sinceT is a permuta-

tion on the set of cells and not all elements of the preimage of thei’th row of J lie in one row

by the choice ofi. HenceAJ does not have zero elements by the additions and multiplications

in F andz(AJ) = 0.
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Thus (A, J) ∈ Z1(F) as far as(T (A), T (J)) = (T (T−1(J \ Ri)), T (J)) = (J \
Ri, T (J)) 6∈ Z1(F ), sincez((J \ Ri)(T (J))) = z(J \ Ri) = 1, a contradiction to the as-

sumption that T preserves the setZ1(F) .

Moreover, sinceσ is bijective on the set of pairs(i, j) and each row intersects each column

and does not intersect rows,T maps rows to rows and columns to columns, or , it is also

possibleT maps all rows to columns and all columns to rows. Thus there are permutation

matricesP andQ such thatT (Ei,j) = PEi,jQ, or,T (Ei,j) = PEj,iQ = P (Ei,j)tQ, i.e,T is a

(P, Q)-operator whereP andQ are permutation matrices of order n. Let us show thatQ = P t

. Assume on the contrary thatQP 6= I. Thus there exists indexesi, j such thatQP transforms

i’th column intoj’th column. In this case we take matricesA = J\(E1,1 + · · ·+ E1,n) + E1,i

, B = J\Ej,1. ThusAB has no zero elements, i.e,z(AB) = 0.

However, the(1, j)th element ofT (A)T (B) is zero, i.e,z(T (A)T (B)) 6= 0.

This contradiction implies thatQP = I. ThusQ = P t. HenceT is a(P, P t)− operator.

Conversely(P, Q)-operators preserve zero term rank by Lemma 4.2. Thus(P, P t) −
operators preserve the setZ1(F).

Example 6.2.LetF be a fuzzy semiring,T : M4(F) → M4(F) be a surjective map such that

T (A) = PAQ, whereP = I4, Q =




1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1




, andQP = Q 6= I.

ThenT maps rows to themselves. ButT maps1st column of A to itself,2nd column of A

to 3rd column,3rd column of A to2nd column and4th column of A to4th column.

ConsiderA =




0 1 0 0

1 1 1 1

1 1 1 1

1 1 1 1




, B =




1 1 1 1

1 1 1 1

0 1 1 1

1 1 1 1




.

ThusAB = J and hencez(AB) = 0. Thus(A,B) ∈ Z1(F).
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But T (A) =




0 0 1 0

1 1 1 1

1 1 1 1

1 1 1 1




, T (B) =




1 1 1 1

1 1 1 1

0 1 1 1

1 1 1 1




.

ThenT (A)T (B) =




0 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1




and hencez(T (A)T (B)) = 1. Thus(T (A), T (B)) 6∈

Z1(F)

This example shows that linear operatorT does not preserveZ1(F), whereT is not

(P, P t)− operator.

6.2 Linear Preservers ofZ2(F)

Consider the set of matrix pairs:

Z2(F) = {(X, Y ) ∈ Mn(F )2|z(XY ) = z(X) + z(Y )}.
This set contains(J, J), where J is then×n matrix with1′s as its all entries. ThusZ1(F)

is not empty.

We characterize the linear operators that preserve setZ2(F).

Theorem 6.3. Let F be a fuzzy semiring,T : Mn(F) → Mn(F) be a linear surjective map.

Then T preserves the setZ2(F) if and only if T is a nontransposing(P, Q) − operators ,

where P is a permutation matrix.

Proof. By Theorem 4.3 we have thatT (Ei,j) = Eσ(i,j) for all i, j, 1 ≤ i ≤ m, 1 ≤ j ≤ n, σ

is a permutation on the set of pairs(i, j).

Let us show thatT maps lines to lines. Suppose that the images of two cells are not

in the same line, but the cells are in the same line, say,Ei,j , Ei,k are the cells such that

T (Ei,j), T (Ei,k) are not in the same line.

Note thatz((J \Ri)J) = z(J \Ri) = 1 = 1 + 0 = z(J \Ri) + z(J). Thus(J \Ri, J) ∈
Z2(F). Now, T (J \ Ri has no zero rows by above argument, andT (J) = J overMn(F).
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HenceT (J \Ri)T (J) = T (J \Ri)J = J onMn(F) by the sums and products overF . Thus

z(T (J \ Ri)T (J)) = 0. On the other hand,(T (J \ Ri), T (J)) 6∈ Z2(F). This contradiction

shows thatT maps lines to lines.

It follows from Lemma4.1 thatT is a (P, Q)-operator whereP andQ are permutation

matrices of order n.

To show that transposition operator does not preserveZ2(F), it suffices to take the pair of

matricesA = J \Ri, B = J \Ci. ConsiderA = J \R1, B = J \C1. Thenz(AB) = 2 = 1+

1 = z(A)+z(B), hence(A,B) ∈ Z2(F). Butz(AtBt) = z(J) = 0 andz(At) = z(Bt) = 1.

Hencez(AtBt) 6= z(At) + z(Bt), that is,(At, Bt) 6∈ Z2(F). Thus(T (A), T (B)) 6∈ Z2(F).

This show that transposing operator does not preserveZ2(F).

ThereforeT is a nontransposing(P,Q)-operator.

Let us show thatQ = P t now.

Assume on the contrary thatQP 6= I. Thus there exists indexesi, j such thatQP trans-

formsi’th column intoj’th column. But then considerA = J Ci, B = Ri. We havez(AB) =

z(0) = n =1 + n = z(A) + z(B). Hence(A,B) ∈ Z2(F). But z(AQPB) = z((J − Cj)Ri)

= z(J) = 0 andz(AQP ) + z(B) = 1 + (n − 1) = n. Thus(T (A), T (B)) 6∈ Z2(F), which

contradicts the fact thatT preservesZ2(F). HenceQP = I, andQ = P t. We haveT is a

nontransposing(P, P t)-operator.

Conversely,(P,Q)operator preserve zero term rank by Lemma 4.2. Thus(P, P t)-operators

preserve the setZ2(F).
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