碩士學位請求論文

ON THE ARC LENGTH UNDER INVERSION

指導教授 玄 進 五

濟州大學校 教育大學院

數學教育專攻

梁 昌 洪

1993年 8月

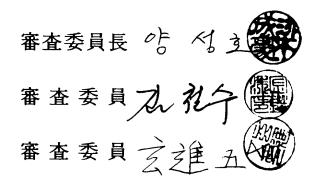
ON THE ARC LENGTH UNDER INVERSION

指導教授 玄 進 五

> 濟州大學校 教育大學院 數學教育專攻 提出者 梁 昌 洪

梁昌洪의 教育學 碩士學位 論文을 認准함

1993年 7月 日



CONTENTS

<Abstract>

Introduction	
1.	The arc length of a regular curve
2.	The properties of inverse curve under inversion
3.	The arc length under inversion
	REFERENCES15
	<초 록>16

ON THE ARC LENGTH UNDER INVERSION

Yang, Chang-Hong

Mathematics Education Major Graduate School of Education, Cheju National University Cheju, Korea

Supervised by professor Hyen, Jin-Oh

Two points P and P' of the plane are said to be inverse with respect to a given circle $(O)_R$, if $OP \cdot OP' = R^2$ and also if both points are on the same side of O. Circle $(O)_R$ is called the circle of inversion and the transformation which sends point P into point P' is known as an inversion.

In theis paper we consider the curves in two dimensional Euclidean space R^2 and prove that the length of a regular new curve segment $\beta(t)$ of the inside curve $\alpha(t)$ under inversion is equal to the length of a regular curve segment $\alpha(t)$ by scalar multiple.

Introduction

In this paper, our study of curves will be restricted to the certain plane curves in two dimensional Euclidean space \mathbb{R}^2 .

In Section 1, we present the basic definitions and examples with respect to reparametrized curves and study some properties of the differential geometry, in particular, the arc length of curve segment $\alpha: [a,b] \to R^2$.

Next, in Section 2, we introduce the definition and some properties of inverse curve under inversion. That is, the symbol $(O)_R$ is an inversion circle with center O and radius R and the relation between the inside point P and the outside point P' of $(O)_R$ is given by $OP \cdot OP' = R^2$ where its two points and O are collinear.

Finally, in Section 3, from the definition and the properties in Section 2, we prove the main theorem; the length of a regular new curve segment $\beta(t)$ of the inside curve $\alpha(t)$ under inversion is equal to the length of a regular curve segment $\alpha(t)$ by scalar multiple.

1. The arc length of a regular curve

Let α be an injective function from an interval into R^2 and $\alpha(t)$ denote the curve in the plane. Then we have the derivative $\frac{d\alpha}{dt}(t_0)$ of α evaluated at $t=t_0$ if $\alpha(t)$ is differentiable in interval (a,b).

Definition 1.1 A curve $\alpha:(a,b)\to R^2$ is called a regular curve if $\alpha\in C^k$ for some $k\geq 1$ and if $\frac{d\alpha}{dt}\neq 0$ for all $t\in (a,b)$.

If t is time, then the velocity vector of a regular curve $\alpha(t)$ at $t=t_0$ is the derivative evaluated at $t=t_0$. The speed of $\alpha(t)$ at $t=t_0$ is the length of the velocity vector at $t=t_0$, $\left|\frac{d\alpha}{dt}(t_0)\right|$.

Let $g:(c,d)\to (a,b)$ be an one-to-one and onto function, and let g and its inverse $h:(a,b)\to (c,d)$ be of class C^k for some $k\geq 1$. Then g is called a reparametrization of a curve $\alpha:(a,b)\to R^2$.

Proposition 1.2 If $\alpha:(a,b)\to R^2$ is a regular curve then the new curve $\beta=\alpha\circ g$ is a regular curve, if $\frac{dg}{dr}\neq 0$.

Proof.

(1.1)
$$\frac{d\beta}{dr} = \frac{d}{dr} [\alpha \circ g(r)] = \frac{d\alpha}{dt} \cdot \frac{dg}{dr},$$

that is,

if
$$\frac{dg}{dr} \neq 0$$
 then $\frac{d\beta}{dr} \neq 0$.

Example 1.3 Let $g:(0,1)\to (1,2)$ be given by $g(r)=1+r^2$. Then g is one-to-one and onto with inverse $h(t)=\sqrt{t-1},\ g\in C^k,\ \text{on}\ (0,1)$ and $h\in C^k$ on (1,2) for some $k\geq 1.$ Thus g is a reparametrization of any regular curve on (1,2).

A regular curve segment is a function $\alpha:[a,b]\to R^2$ together with an open interval (c,d), with c< a< b< d, and a regular curve $r:(c,d)\to R^2$ such that $\alpha(t)=r(t)$ for all $t\in [a,b]$.

Definition 1.4 The length of a regular curve segment $\alpha:[a,b] \to \mathbb{R}^2$ is defined by

Theorem 1.5. The length of a curve is a geometric property, that is, it does not depend on the choice of reparametrization.

Proof. Let $g:[c,d]\to [a,b]$ be a reparametrization of a curve segment $\alpha:[a,b]\to R^3$, and let the new curve $\beta=\alpha\circ g$. Then, for $r\in[c,d]$,

since g(r) = t, $t \in [a, b]$, the length of β is

$$\int_{c}^{d} \left| \frac{d\beta}{dr} \right| dr = \int_{c}^{d} \left| \frac{d}{dr} (\alpha \circ g) \right| dr$$

$$= \int_{c}^{d} \left| \left(\frac{d\alpha}{dt} \right) \left(\frac{dg}{dr} \right) \right| dr$$

$$= \int_{c}^{d} \left| \frac{d\alpha}{dt} \right| \left| \frac{dg}{dr} \right| dr.$$

If
$$\frac{dg}{dr} > 0$$
, then $\left| \frac{dg}{dr} \right| = \frac{dg}{dr}$ and

$$g(c) = a, \quad g(d) = b.$$

Thus

$$\int_{c}^{d} \left| \frac{d\alpha}{dt} \right| \left| \frac{dg}{dr} \right| dr$$

$$= \int_{c}^{d} \left| \frac{d\alpha}{dt} \right| \left(\frac{dg}{dr} \right) dr$$

$$= \int_{a}^{b} \left| \frac{d\alpha}{dt} \right| dt.$$

If
$$\frac{dg}{dr} < 0$$
, then $\left| \frac{dg}{dr} \right| = -\frac{dg}{dr}$ and

$$g(c) = b, \quad g(d) = a.$$

Hence

$$\int_{c}^{d} \left| \frac{d\alpha}{dt} \right| \left| \frac{dg}{dr} \right| dr = -\int_{b}^{a} \left| \frac{d\alpha}{dt} \right| \left(\frac{dg}{dr} \right) dr$$
$$= \int_{a}^{b} \left| \frac{d\alpha}{dt} \right| dt.$$

Example 1.6. Let $\alpha(t) = (r \cos t, r \sin t)$ with r > 0. Then $\frac{d\alpha}{dt} = (-r \sin t, r \cos t)$. Consider the arc length s = s(t) of $\alpha(t)$.

Then

$$s = \int_{c} \left| \frac{d\alpha}{dt} \right| dt$$
$$= \int_{c} \sqrt{r^{2} \sin^{2} t + r^{2} \cos^{2} t} dt$$

= rt.
제주대학교 중앙도서관
JEJU NATIONAL UNIVERSITY LIBRARY

That is,

$$s = rt$$
 and $t = g(s) = \frac{s}{r}$.

Hence,

 $\beta(s) = (r\cos\frac{s}{r}, r\sin\frac{s}{r})$ is the unit speed parametrization of a circle of radius r.

2. The properties of inverse curve under inversion

In order to study the theorems in Section 3, we will see the properties of inverse curve.

Let the symbol $(O)_R$ denote the circle with center O and radius R.

Definition 2.1 Two points P and P' of the plane are said to be inverse with respect to a given circle $(O)_R$, if $OP \cdot OP' = R^2$ and if P, P' are on the same side of O and the (O, P, P') are collinear.

A circle $(O)_R$ is called the circle of inversion, and the transformation which sends point P into P' is called an inversion. As point P moves on a curve C, its inverse point P' moves on a curve C' which is the inverse curve of C. But the center O of the circle of inversion has no inverse point, for when P is at point O, OP = 0 and the relation $OP' = \frac{R^2}{OP}$ is meaningless.

Proposition 2.2 A line through O inverts into a line through O.

Proof. It is evident from the fact that O and inverse points are collinear.

Proposition 2.3 A line not through O inverts into a circle through

O. Conversely, a circle through O inverts into a line not through O.

Proof. Let l be a line not through O and Q be the foot of the perpendicular from O to l, and let P be any point on l (Fig. 2.1).

Then, there are the inverse point $\,Q'\,$ and $\,P'\,$ of $\,Q\,$ and $\,P\,$, respectively.

That is,

$$(2.1.a) OQ \cdot OQ' = OP \cdot OP' = R^2$$

and

(2.1.b)
$$\frac{OQ}{OP} = \frac{OP'}{OQ'}.$$

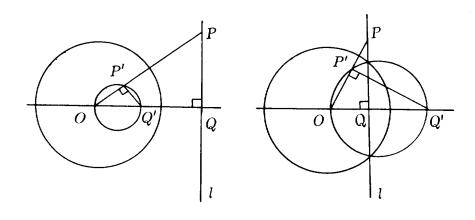
Therefore, \triangle OQP and \triangle OQ'P' have a common angle \angle POQ. By (2.1), \triangle OQP is similar to \triangle OP'Q'.

Thus

$$\angle OQP = \angle OP'Q' = 90^{\circ}.$$

But the arc in which a 90° angle is inscribed is a semicircle. Thus the point P' lies on a circle whose diameter is OQ'.

A reversal of these arguments completes the proof of this theorem.



< Fig. 2.1 >

Proposition 2.4 The angle between any two curves intersecting at a point which is different from the center O of the circle of inversion is unchanged under inversion.

Proof. Let the given curves C_1 and C_2 (Fig.2.2) intersect in a point P distinct from the center O of the circle of inversion and let any line l through O intersect these curves in the respective points A and B. Then the inverse curves to C_1 and C_2 , namely C_1' and C_2' , intersect at the inverse point P' to P.

If curves C_1' and C_2' are met by line l in the inverse points A' and B' of A and B, respectively. Let θ be the angle between the tangents

at P to curves C_1 and C_2 and let θ' be the angle between the tangents at P' to curves C'_1 and C'_2 . We must show that $\theta = \theta'$. Consider the triangles OPA and OP'A'. Then we have

(2.2)
$$\frac{OA}{OP} = \frac{OP'}{OA'}.$$

Hence $\triangle OPA$ and $\triangle OP'A'$ are similar, so are $\triangle OPB$ and $\triangle OP'B'$. Therefore

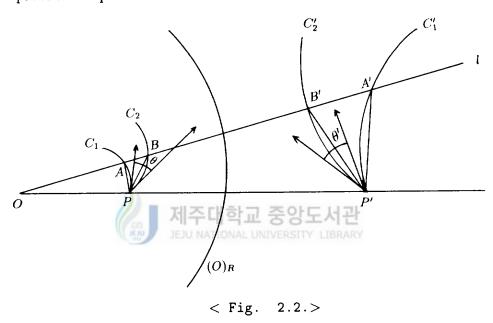
$$(2.3) \angle OPA = \angle OA'P'$$

and

Subtraction (2.3) from (2.4) gives

$$\angle APB = \angle A'P'B'.$$

Therefore $\lim_{l\to OP} \angle\ APB = \theta$ and $\lim_{l\to O'P'} \angle\ A'P'B' = \theta'$. Hence the proof is complete.



3. The arc length under inversion

Let $\alpha:(a,b)\to R^2$ be the curve C_1 inside of inversion circle $(O)_R$. Then, for all $t\in(a,b),\,\alpha(t)$ the image of α is the points P_t on curve C_1 . There exists a inverse curve $C_2=\beta(t)$ outside of $(O)_R$.

Let OP_t be a distance from O to point P_t on curve C_1 . If a function $g:C_1\to C_2$ is defined by

$$(3.1) g(P_t) = P'_t \text{ for } P_t \in C_1,$$

then we can take a new curve $\beta(t) = g \circ \alpha(t)$ and see that the following properties hold.

Theorem 3.1 If curve $C_1 = \alpha(t)$ is a regular curve, then the inverse curve $C_2 = \beta(t)$ is also a regular curve.

verse curve $C_2=\beta(t)$ is also a regular curve. Proof. Let $\alpha(t)=P_t$, for each $t\in(a,b)$. Then $\frac{d\alpha(t)}{dt}\neq 0$ for all $t\in(a,b)$, since $\alpha(t)$ is regular on (a,b). Since $g(x,y)=\left(\frac{R^2x}{x^2+y^2},\frac{R^2y}{x^2+y^2}\right)$, g is of class C^1 in $R^2\setminus\{(0,0)\}$. Now

$$\frac{d\beta(t)}{dt} = \begin{pmatrix} \frac{R^2(y^2 - x^2)}{(x^2 + y^2)^2} & \frac{-2R^2xy}{(x^2 + y^2)^2} \\ \frac{-2R^2xy}{(x^2 + y^2)^2} & \frac{R^2(x^2 - y^2)}{(x^2 + y^2)^2} \end{pmatrix} \frac{d\alpha(t)}{dt}.$$

Since
$$\frac{R^4(y^2-x^2)(x^2-y^2)}{(x^2+y^2)^4} - \frac{4R^4x^2y^2}{(x^2+y^2)^4} \neq 0$$
 for all (x,y) except $(x,y)=(0,0), \ \frac{d\beta}{dt} \neq (0,0), \ \text{and hence} \ \beta \ \text{is regular in} \ (a,b).$

Let OP_t and OP_t' be distances from the center of inversion circle $(O)_R$ to point P_t and P_t' on curves C_1 and C_2 , respectively. Consider the curve equation $OP_t = \alpha(t)$ with respect to the polar coordinate. Then the equation of the new curve $\beta(t)$ is given by $OP_t' = \beta(t)$.

Theorem 3.2 The length of a regular curve segment of new curve $\beta(t)$ of the inside curve $\alpha(t)$ under inversion is given by

$$\int_{t_1}^{t_2} \left| \frac{d\beta(t)}{dt} \right| dt = R^2 \int_{t_1}^{t_2} \frac{\sqrt{\alpha^2(t) + [\alpha'(t)]^2}}{\alpha^2(t)} dt$$

where t is the angle between OP_t and horizontal line.

Proof. Let
$$OP_t = \alpha(t)$$
, $OP'_t = \beta(t)$ and let $t_1 < t_2$.

Then
$$\int_{t_1}^{t_2} \left| \frac{d\beta(t)}{dt} \right| dt = \int_{t_1}^{t_2} \sqrt{\beta^2(t) + \left[\frac{d\beta(t)}{dt} \right]^2} dt$$
.

From (2.1.a), we have

$$\begin{split} &\int_{t_1}^{t_2} \sqrt{\beta^2(t) + \left[\frac{d\beta(t)}{dt}\right]^2} \, dt \\ &= \int_{t_1}^{t_2} \sqrt{\left[\frac{R^2}{\alpha(t)}\right]^2 + \left[\frac{d}{dt} \frac{R^2}{\alpha(t)}\right]^2} \, dt \\ &= R^2 \int_{t_1}^{t_2} \sqrt{\left(\frac{1}{\alpha(t)}\right)^2 + \left[-\frac{1}{\alpha^2(t)} \frac{d\alpha(t)}{dt}\right]^2} \, dt \\ &= R^2 \int_{t_1}^{t_2} \frac{\sqrt{\alpha^2(t) + [\alpha'(t)]^2}}{\alpha^2(t)} \, dt. \end{split}$$

Thus we have the result.

Example 3.3 Let the circle through center of inversion circle $(O)_R$

be
$$\alpha(t) = \cos t$$
 and let $0 \le t \le \frac{\pi}{3}$.

Then we have

$$\int_0^{\frac{\pi}{3}} \left| \frac{d\beta(t)}{dt} \right| dt = R^2 \int_0^{\frac{\pi}{3}} \frac{\sqrt{\cos^2 t + \sin^2 t}}{\cos^2 t} dt$$

$$= R^2 \int_0^{\frac{\pi}{3}} \sec^2 t dt$$

$$= R^2 \left[\tan t \right]_0^{\frac{\pi}{3}}$$

$$= \sqrt{3}R^2.$$

On the other hand, in virtue of (2.1.a), if $t = \frac{\pi}{3}$,

$$\beta(t) = \frac{R^2}{\alpha(t)} = \frac{R^2}{\cos t} = 2R^2.$$

Thus $PQ = \sqrt{3}R^2$ (Fig 2.1).

REFERENCES

- Richard S.Millman and George D.Parker (1977), Elements of Differential Geometry, Prentice-Hall.
- [2] Barrett O'Neill, Elementary Differential Geometry, Academic press.
- [3] Mandredo P.Do Carmo(1976), Differential Geometry of Curves and Surfaces, Prentice-Hall, Inc.
- [4] Claire Fisher Adler(1967), Modern Geometry, McGraw-Hill, Inc.
- [5] Marvin Jay Greenberg(1974), Euclidean and Non-Euclidean Geometries, W. H Freeman and Company.

Inversion의한 곡선의 길이

양 창 홍

제주대학교 교육대학원 수학교육전공

지도교수 현 잔 오

중심이 O이고 반지름의 길이가 R인 원 $(O)_R$ 에서 두 점 P,P'가 중심 O의 같은 쪽에 있고, $OP\cdot OP'=R^2$ 을 만족할 때, 이 두 점 P,P'을 서로 역(inverse)이라 하고, $(O)_R$ 를 전위 원(inversion circle)이라고 하며, 점 P에서 P'으로 보내어 주는 변환을 전위(inversion)라고 한다.

이 논문에서는 2차 Euclid 공간의 곡선으로 제한하여, 전위(inversion)에 의한 $(O)_R$ 의 내부의 곡선 $\alpha(t)$ 에 대응하는 새로운 곡선 $\beta(t)$ 의 길이는 곡선 $\alpha(t)$ 의 길이의 스칼라배로 나타낼 수 있음을 보였다.

^{*} 본 논문은 1993년 8월 제주대학교 교육대학원 위원회에 제출된 교육학 석 사학위 논문임.