














1. Introduction

In the theory of non-normal operators on Hilbert spaces, it is important

to seek ways to reduce the problem to the normal operator case. Many

mathematicians have tried to extend the significant properties of normal

operators to the case of non-normal operators in various way since early

1960. Some classes of non-normal operators are closely related to normal

operators, and the analogy and the difference between such non-normal

operators and normal operators have been discussed.

Let H be a Hilbert space and let L(H) be the set of all bounded

linear operators on H. We denote the kernel of T and the range of

T by ker T (= N(T )) and R(T ) respectively. Write σ(T ) = {λ ∈ C :

T − λI is not invertible} for the spectrum of T , ρ(T ) = σ(T )c for the re-

solvent of T , σp(T ) = πo(T ) = {λ ∈ C : ker(T − λ) 6= {0} } for the set of

eigenvalues of T , π0f (T ) for the points of σ(T ) that are eigenvalues of finite

multiplicity, and π00(T ) for the isolated points of σ(T ) that are eigenvalues

of finite multiplicity. A complex number λ ∈ C is an approximate eigenvalue

of T if there exists a sequence {xn} with ‖xn‖ = 1 such that Txn−λxn → 0,

i.e., (T − λ)xn → 0. Let

σap(T ) = {λ ∈ C : λ is an approximate eigenvalue of T }.

Then σap(T ) is the approximate point spectrum of T . The spectral radius

r(T ) of T is defined by

lim
n→∞

‖T n‖1/n = sup{|λ| : λ ∈ σ(T )}.
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A closed linear subspace M of H is invariant under the operator T if

T (M) ⊆ M . A closed linear subspace M reduces the operator T if both

M and M⊥ are invariant under T . Clearly, {0} and H are invariant under

every operator T .

If K is a subset of C, we write iso K for the set of isolated points of K

and Lat T for the lattice of the operator T , i.e. the set of all closed linear

subspaces which are invariant under T .

The well-known results on the spectra are as follows;

Lemma 1.1.([11],[14]) For any operator T ∈ L(H),

(1) ker T ∗ = R(T )⊥.

(2) σ(T ) is a nonempty compact subset of C.

(3) σp(T ) ⊂ σap(T ) ⊂ σ(T ).

(4) σap(T ) is a closed subset of σ(T ) .

(5) ∂σ(T ) ⊂ σap(T ).

Lemma 1.2.([7]) If T ∈ L(H) and M is any closed linear subspace of

H, the following conditions are equivalent ;

(1) M reduces T .

(2) M⊥ reduces T .

(3) M reduces T ∗.
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(4) M is invariant under both T and T ∗.

By T. Saito, T. Furuta, etc., the following non-normal operators have

been defined as follows; An operator T ∈ L(H) is called normal if T ∗T =

TT ∗, quasinormal if T commutes T ∗T , i.e., T (T ∗T ) = (T ∗T )T , subnormal

if T has a normal extension(i.e., there exist a Hilbert space K containing

H as a subspace and a normal operator B on K such that Tx = Bx for

all x ∈ H), hyponormal if T ∗T − TT ∗ = D ≥ 0, or equivalently ‖Tx‖ ≥

‖T ∗x‖ for x ∈ H, seminormal if T ∗T − TT ∗ = D, D ≥ 0 or D ≤ 0

(or equivalently T or T ∗ is hyponormal), and normaloid if ‖T‖ = r(T ) or

equivalently ‖T n‖ = ‖T‖n for any positive integer n. An operator T is

called ∗-paranormal if ‖T ∗x‖2 ≤ ‖T 2x‖‖x‖ for every x ∈ H.

We have the following implication, but the converse of the implication

are not reversible([23], [42]).

Normal ⊂ Quasinormal ⊂ Subnormal ⊂ Hyponormal

⊂ ∗-paranormal ⊂ Normaloid.

B. L. Wadhwa([53]) introduced the class of M -hyponormal operators

and V. Istratescu([29]) has studies some structure theorem for a subclass of

M -hyponormal operator. An operator T is called M-hyponormal if there

exists a real number M > 0 such that M‖(T − λI)x‖ ≥ ‖(T − λI)∗x‖ for

any unit vector x in H and for any complex number λ. Every hyponormal
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operator is M -hyponormal, but the converse is not true in general : For

example, consider the weighted shift S on l2 given by

S(x1, x2, . . .) = (0, 2x1, x2, x3, . . .).

Then S is M -hyponormal, but not hyponormal.

On the other hand, an operator T is called M∗-paranormal if ‖T ∗x‖2 ≤

M‖T 2x‖ for any unit vector x in H. In paticular if M = 1, the class of

M∗-paranormal operators becomes the class of ∗-paranormal operators as

studied by S. C. Arora and S. M. Patel([6], [38]).

S. M. Patel has characterized the ∗-paranormal operator as follows: An

operator T is ∗-paranormal if and only if

T ∗2T 2 − 2λTT ∗ + λ2I ≥ 0

for all λ > 0.

Theorem 1.3.([16]) (The Spectral Mapping Theorem) If T ∈ L(H) and

f is analytic in a neighborhood of σ(T ), then σ(f(T )) = f(σ(T )).

The organization of this thesis is as follows:

In section 1, we introduce basic properties of various spectra(spectrum,

point spectrum, approximate point spectrum etc.) of a bounded linear

operator and the spectral mapping theorem.

In section 2, we give the well-known results of hyponormal operators

and ∗-paranormal operators on a Hilbert space H.
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In section 3, we shall study certain properties of M∗-paranormal op-

erators. In particular, we shall give an essentially characterization of M∗-

paranormal operators in the following way; An operator T is M∗-paranormal

if and only if

M2T ∗2T 2 + 2λTT ∗ + λ2I ≥ 0

for all real number λ.
In section 4, we shall study a new class of operators called a kth root

of G-operator : An operator T ∈ L(H) is a kth root of a G-operator if T k

is a G-operator. In particular, if a G-operator is ∗-paranormal, then T is

called the kth root of a ∗-paranormal operator. We shall show the following

results:

(1) Let T be a weighted shift with non-zero weights {αn} (n = 0, 1, 2, . . .).

Then T is a kth root of M∗-paranormal operator if and only if

|αn−1|2|αn−2|2 · · · |αn−k|2 ≤ M |αn||αn+1| · · · |αn+2k−1|

for n = k, k + 1, k + 2, . . .

(2) Let T be a kth root of ∗-paranormal operator and N ∈ Lat T. Then

T |N is a kth root of ∗-paranormal operator.

(3) If S ∈ L(H) is a kth root of ∗-paranormal operator and S is unitarily

equivalent to T , then T is a kth root of ∗-paranormal operator.

(4) Let T be any kth root of M∗-paranormal operator and commute with

an unitary operator S. Then TS is also a kth root of M∗-paranormal

operator.
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(5) The set of all the kth roots of ∗-paranormal operator is a proper closed

subset of L(H) with the norm topology.
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2. Hyponormal operators and ∗-paranormal operators

Lemma 2.1. Let T be a hyponormal operator on a Hilbert space H.

Then

(1) T − λI and T−1 are hyponormal operators for all λ ∈ C.

(2) Tx = λx implies T ∗x = λ̄x for all x ∈ H and λ ∈ C.

(3) Tx = λx, Ty = µy and λ 6= µ for all x, y ∈ H, λ, µ ∈ C imply that x

and y are orthogonal.

Proof. (1) Since T is a hyponormal oprator, we have

(T − λI)(T ∗ − λ̄I) = TT ∗ − λT ∗ − λ̄T + |λ|2I

≤ T ∗T − λT ∗ − λ̄T + |λ|2I

= (T ∗ − λ̄I)(T − λI)

for all λ ∈ C. Hence T − λI is a hyponormal operator.

If T is invertible and T ∗T − TT ∗ ≥ 0, then

0 ≤ T−1(T ∗T − TT ∗)T ∗−1

= T−1T ∗TT ∗−1 − I.

Since A ≥ I implies A−1 ≤ I, we have I − T ∗T−1T ∗−1T ≥ 0 and hence

T ∗−1T−1 − T−1T ∗−1 = T ∗−1(I − T ∗T−1T ∗−1T )T−1 ≥ 0.
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(2) Since T − λI is a hyponormal operator and Tx = λx

0 ≤ ‖(T − λI)∗x‖ ≤ ‖(T − λI)x‖ = 0.

Thus ‖(T − λI)∗x‖ = 0, and so T ∗x = λ̄x.

(3) Since

λ(x, y) = (λx, y) = (Tx, y) = (x, T ∗y) = (x, µ̄y) = µ(x, y),

(λ− µ)(x, y) = 0 implies (x, y) = 0 (λ 6= µ). Hence x, y are orthogonal. �

Definition 2.2. An operator T ∈ L(H) is said to be nilpotent if T n = 0

for some positive integer n ∈ N, and quasinilpotent if ‖T n‖ 1
n −→ 0 as

n −→∞.

Evidently, if T is nilpotent then T is also quasinilpotent and since the

spectral radius r(T ) can be expressed as

r(T ) = lim
n→∞

‖T n‖
1
n ,

it follows that r(T ) = 0 if T is quasinilpotent.

Lemma 2.3. Let T be a hyponormal operator on H. Then

(1) For any vector x ∈ H,

‖Tx‖ = ‖T ∗x‖ if and only if T ∗Tx = TT ∗x.

(2) The set N = {x ∈ H : ‖Tx‖ = ‖T ∗x‖} is a closed subspace of H.
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(3) The restriction T |N of T to an invariant subspace N is hyponormal.

(4) For every positive integer n, ‖T n‖ = ‖T‖n and so T is normaloid.

(5) The only quasinilpotent hyponormal operator is a zero operator.

Proof. (1) The proof of the sufficiency is obvious. If ‖Tx‖ = ‖T ∗x‖ for

each vector x ∈ H, then ((T ∗T − TT ∗)x, x) = 0 and hence for each vector

y ∈ H,

|((T ∗T − TT ∗)x, y)|2 ≤ |((T ∗T − TT ∗)x, x)| |((T ∗T − TT ∗)y, y)| = 0

by the generalized Schwarz inequality for positive operators. Since y is

arbitrary, we have T ∗Tx = TT ∗x for each x ∈ H.

(2) By (1),

N = {x ∈ H : ‖Tx‖ = ‖T ∗x‖}

= {x ∈ H : (T ∗T − TT ∗)x = 0} = ker(T ∗T − TT ∗)

is clearly closed.

(3) Since N is invariant under T , PTP = TP where P is the projection

on N . Since T is hyponormal,

‖PT ∗Px‖ ≤ ‖T ∗Px‖ ≤ ‖TPx‖ = ‖PTPx‖

for each vector x ∈ H, and so PTP is a hyponormal operator. Hence T |N

is a hyponormal operator.
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(Another method) Let x be any vector in N . Since (T |N)x = Tx and

T is a hyponormal operator, we have

‖(T |N)x‖ = ‖Tx‖ ≥ ‖T ∗x‖ = ‖(T |N)∗x‖.

Hence T |N is a hyponormal operator.

(4) For n = 1, the equality is trivial. Assume that ‖T n‖ = ‖T‖n for

1 ≤ k ≤ n. We shall prove it for n + 1. Then

‖T nx‖2 = (T nx, T nx) = (T ∗T nx, T n−1x)

≤ ‖T ∗T nx‖ ‖T n−1x‖

≤ ‖T n+1x‖ ‖T n−1x‖.

Since ‖T n−1‖ = ‖T‖n−1, we get ‖T n+1‖ ≥ ‖T‖n+1. The converse inequality

being obvious, the proof is complete.

(5) By hypothesis σ(T ) = {0} and so ‖T‖ = r(T ) = 0. Hence T is a

zero operator. �

Corollary 2.4. Every nonzero hyponormal operator has a nonzero ele-

ment in its spectrum.

Proof. r(T ) = lim
n→∞

‖T n‖
1
n = ‖T‖ > 0.

Theorem 2.5.([5]) The class of all hyponormal operators on a Hilbert

space H is closed in the norm topology of operators.
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Theorem 2.6.([42]) Let T be the weighted shift operator defined by

Ten = αnen+1 (n ≥ 1) with weights {αn}∞n=0. Then T is a hyponormal

operator if and only if the weight sequence {αn} is monotonically increas-

ing.

S. L. Campbell([13]) and Peng Fan([17]) showed the following examples.

Example 2.1. Let T be the unilateral weighted shift with weight se-

quence {1, 1
2
, 1, 1, . . .}. Then T is not a hyponormal operator by Theorem

2.6.

Example 2.2. Let T be a bilateral shift defined by

Ten =

{
en−1 for n ≤ 2

2en−1 for n ≥ 3.

Then T is a hyponormal operator.

Remark. ([21]) T 2 may not be hyponormal when T is a hyponormal

operator. For example, if U is the unilateral shift on l2 and T = U∗ + 2U ,

then

T ∗T − TT ∗ = 3(I − UU∗) > 0.

Therefore T is hyponormal, However, if we take x = (1, 0, −2, 0, 0, . . .),

then T 2x = (0, 0, −4, 0, −8, 0, . . .), (T ∗)2x = (−6, 0, −7, −2, 0, . . .) and
so

‖T 2x‖2 = 80 < 89 = ‖(T ∗)2x‖2.

Hence T 2 is not a hyponormal operator.
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A hyponormal operator T does not imply that T 2 is hyponormal. This

can be seen from the following another example due to M. Putinar[34].

Example 2.3. Let H denote an arbitrary Hilbert space and let Λ denote

the set of all function x = x(n) defined on integers with values in H and

satisfying
∑∞

−∞ ‖x(n)‖2 < ∞. Then Λ become a Hilbert space with inner

product (x, y) =
∑

(x(n), y(n)). Next, let {Pn} be a bounded sequence of

nonnegative operators on H, so that 0 ≤ Pn ≤ (constant) · I, and define

the operators U on Λ by

Ux(n) = x(n + 1) and Px(n) = Pnx(n).

It is clear that U is unitary and that P is a nonnegative bounded operator.

Furthermore, if T = UP then

Tx(n) = Pn+1x(n + 1) and T ∗x(n) = Pnx(n− 1),

and hence T ∗Tx(n) = P 2
nx(n) and TT ∗x(n) = P 2

n+1x(n).

Consequently, T ∗T − TT ∗ ≥ 0 if and only if

P 2
n ≥ P 2

n+1 for n = 0 , ±1 , ±2, . . . . (1)

An easy calculation shows that

T 2x(n) = Pn+1Pn+2 x(n + 2)

and T ∗2x(n) = PnPn−1 x(n− 2), and hence

T ∗2T 2 x(n) = PnP
2
n−1Pn x(n)
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and

T 2T ∗2 x(n) = Pn+1P
2
n+2Pn+1 x(n).

Thus T 2 is a hyponormal operator if and only if

PnP
2
n−1Pn ≥ Pn+1P

2
n+2Pn+1 for all n (2)

It will be shown that (1) does not imply (2).

Let H be two-dimensional, so that operators on H can be regarded as

2× 2 matrices and let

A =

(
2 1
1 1

)
and B =

(
1 0
0 0

)
.

Then A ≥ 0, B ≥ 0 and A−B =

(
1 1
1 1

)
≥ 0 but A2 −B2 =

(
4 3
3 2

)
is

not positive definite. Let Pn be the nonnegative square root of A for n ≤ 0

and nonnegative square root of B for n ≥ 0. Then P 2
n ≥ P 2

n+1, so that (1)

holds and T is a hyponormal operator. But

P0P
2
−1P0 = A2 and P1P

2
2 P1 = B2

so that (2) fails to hold for n = 0. Hence T 2 is not a hyponormal operator.

�

Definition 2.7. An operator T is said to be unitarily equivalent to an

operator S if S = U∗TU for a unitary operator U .

Theorem 2.8. An operator unitarily equivalent to a hyponormal oper-

ator is a hyponormal operator.
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Proof. Suppose S = U∗TU , T is hyponormal and U is unitary. Now for

every x ∈ H,

‖S∗x‖ = ‖U∗T ∗Ux‖ = ‖T ∗Ux‖ ≤ ‖TUx‖ = ‖U∗TUx‖ = ‖Sx‖

and so S is hyponormal. �

In [19], T. Furuta and R. Nakamoto have proved the following theorem.

Theorem 2.9. A hyponormal operator unitarily equivalent to its adjoint

is normal.
Proof. Suppose T ∗ = U∗TU , U is unitary and T is a hyponormal oper-

ator. Now for any vector x in H,

‖Tx‖ = ‖U∗T ∗Ux‖ = ‖T ∗Ux‖ ≤ ‖TUx‖ = ‖U∗TUx‖ = ‖T ∗x‖.

Thus ‖Tx‖ ≤ ‖T ∗x‖ and ‖Tx‖ ≥ ‖T ∗x‖. Therefore ‖Tx‖ = ‖T ∗x‖. �

Definition 2.10. Two bounded linear operators S and T are doubly

commutative(resp. weakly doubly commutative) if TS = ST and TS∗ =

S∗T (resp. TS 6= ST but TS∗ = S∗T ).

Theorem 2.11. Let T be a hyponormal operator such that T ∗T com-

mutes with TT ∗. Then T 2 is a hyponormal operator.

Proof. By hypothesis, we have

T ∗2T 2 − T 2T ∗2 = T ∗(T ∗T )T − T (TT ∗)T ∗

≥ T ∗(TT ∗)T − T (T ∗T )T ∗

= (T ∗T )2 − (TT ∗)2 (because T ∗T ≥ TT ∗)
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≥ 0.

Thus T 2 is a hyponormal operator. �

In the following Lemma, we show that if two operators are weakly doubly

commutative, then the sum and product of two hyponormal operators are

hyponormal.

Lemma 2.12. If T and S are hyponormal operators such that T ∗S =

ST ∗, then T + S is a hyponormal operator.

Proof. By hypothesis, we have

(T + S)∗(T + S) = T ∗T + T ∗S + S∗T + S∗S

≥ TT ∗ + T ∗S + S∗T + S∗S

≥ TT ∗ + TS∗ + ST ∗ + SS∗

= (T + S)(T + S)∗.

Thus T + S is a hyponormal operator. �

Lemma 2.13. If T and S are hyponormal operators such that T ∗S =

ST ∗, then TS is a hyponormal operator.

Proof. For all x ∈ H, we have

‖(TS)∗x‖2 = ‖S∗T ∗x‖2 ≤ ‖ST ∗x‖2 = ‖T ∗Sx‖2 ≤ ‖(TS)x‖2.

Thus TS is a hyponormal operator.

(Another method) By the hyponormality and the hypothesis, we have

(TS)∗(TS) = S∗(T ∗T )S ≥ S∗(TT ∗)S
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= T (S∗S)T ∗ ≥ T (SS∗)T ∗ = (TS)(TS)∗.

Thus TS is a hyponormal operator. �

From Lemma 2.12 and Lemma 2.13, the sum and the product of two

weakly double commuting hyponormal operators are hyponormal.

The sum and product of two double commuting hyponormal operators

are easily shown to be a hyponormal operator. But the sum and product

of two commuting hyponormal operators are not necessarily hyponormal.

We attempt to find conditions under which the product of two hyponormal

operators is also hyponormal.

If we replace one of the hyponormal operators by an isometric operator

in Lemma 2.13, then the condition of commutativity is sufficient to ensure

the hyponormality of their product.

Theorem 2.14. If a hyponormal operator T commutes with an isomet-

ric operator S, then TS is hyponormal.

Proof. For any x ∈ H, we have

‖(TS)∗x‖ = ‖S∗T ∗x‖ = ‖ST ∗x‖

= ‖T ∗x|| ≤ ‖Tx‖ = ‖STx‖ = ‖(TS)x‖.

Thus TS is a hyponormal operator. �

Lemma 2.15. If a hyponormal operator S is unitarily equivalent to T

such that T commute with S∗, then ST is hyponormal.
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Proof. Let T = U∗SU for a unitary operator U . Then, for each x ∈ H,

‖T ∗x‖ = ‖U∗S∗Ux‖ = ‖S∗Ux‖ ≤ ‖SUx‖ = ‖U∗SUx‖ = ‖Tx‖.

Thus T is hyponormal. Since T and S∗ commute,

‖(ST )∗x‖ = ‖T ∗S∗x‖ ≤ ‖TS∗x‖ = ‖S∗Tx‖ ≤ ‖STx‖.

Therefore ST is a hyponormal operator. �

Let H be a separable dimensional Hilbert space. Recall that an operator

T ∈ L(H) is hyponormal if TT ∗ ≤ T ∗T , or equivalently, ‖T ∗x‖ ≤ ‖Tx‖

for every x ∈ H. In general, T 2 can be hyponormal without T being

hyponormal. An operator T ∈ L(H) is said to be Fredholm if its range R(T )

is closed and both the null space ker T and ker T ∗ are finite dimensional.

The index of a Fredholm operator T , denoted by ind T or i(T ), is defined

by

ind(T ) = dim ker T − dim ker T ∗.

The essential spectrum of T , denoted by σe(T ), is defined by

σe(T ) = {λ ∈ C : T − λI is not Fredholm}.

An operator T ∈ L(H) is called Browder if it is Fredholm of finite ascent

and descent, or equivalently if T is Fredholm and T − λI is invertible for

sufficiently small λ 6= 0 in C. A Fredholm operator of index zero is called a

Weyl operator. The Weyl spectrum of T , denoted by w(T ), is defined by

w(T ) = {λ ∈ C : T − λI is not Weyl}.
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For any operator T , σe(T ) ⊂ w(T ) ⊂ σ(T ) and w(T ) is a nonempty

compact subset of C.

H. Weyl([54]) asserted that if T is a self-adjoint operator acting on a

Hilbert space H, then w(T ) consists precisely of all points of σ(T ) except

the isolated eigenvalues of finite multiplicity, that is,

w(T ) = σ(T )− π00(T ).

Following L. A. Coburn([14]), we say that Weyl’s theorem holds for T if

w(T ) = σ(T )− π00(T ), or equivalently, if σ(T )− w(T ) = π00(T ).

There are several classes of operators for which Weyl’s theorem holds :

(1) H. Weyl([54]) showed that Weyl’s theorem holds for any self adjoint

operator.

(2) L.A. Courn([14]) showed that Weyl’s theorem holds for any hyponor-

mal operator and any Toeplitz operator.

(3) S.K. Berberian([8],[9]) showed that Weyl’s theorem holds for any semi-

normal operator.

(4) K.K. Oberai([37]) showed that if N is nilpotent operator commuting

with T and if Weyl’s theorem holds for T , then it also holds for T +N .
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Theorem 2.16.([14]) Weyl’s theorem holds for hyponormal operators.

Proof. If T is hyponormal, then T − λI is hyponormal. Thus it suffices

to show that 0 ∈ σ(T )− w(T ) if and only if 0 ∈ π00(T ).

(=⇒) Let 0 ∈ σ(T ) − w(T ). Then T is Weyl but not invertible. Then

R(T ) is closed, dim ker T = dim R(T )⊥ < ∞ and ker T 6= {0}, so that

R(T )⊥ 6= {0}. Since T is hyponormal, ‖Tx‖ ≥ ‖T ∗x‖. In particular,

ker T ⊂ ker T ∗ = R(T )⊥. Thus T = 0 ⊕ B, where B is invertible. Hence

σ(T ) = {0} ∪ σ(B). Since 0 6∈ σ(B), 0 ∈ iso σ(T ). Thus 0 ∈ π00(T ).

(⇐=) Let 0 ∈ π00(T ). Then 0 ∈ iso σ(T ) and 0 < dim ker T < ∞. By

hyponormality, ker T ⊂ R(T )⊥. So T = 0 ⊕ B, where B is injective and

hyponormal. Also, B is invertible. Since

H = ker T ⊕ (ker T )⊥ = ker T ⊕ R(T ),

ker T = R(T ) and (ker T )⊥ = R(T ). Thus dim ker T = dim R(T )⊥ < ∞

and ind (T ) = 0. Since 0 ∈ iso σ(T ), T is not invertible. Hence 0 ∈

σ(T )− w(T ). �

Definition 2.17. An operator T ∈ L(H) is said to be isoloid if isolated

points of σ(T ) are eigenvalues of T .

Theorem 2.18. Every hyponormal operator T is isoloid.

Proof. It suffices to show that if 0 ∈ iso σ(T ), then 0 ∈ σp(T ). Choose

R > 0 sufficiently enough that 0 is the only point of σ(T ) contained in or
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on the circle |λ| = R. Define

P =

∫
|λ|=R

(λI − T )−1dλ.

Then P is the Riesz projection corresponding to 0. So PH is an invariant

subspace for T . Moreover, PH 6= {0} and σ(T |PH) = {0}. T |PH is hy-

ponormal, since P be a projection of H onto PH. By Lemma 2.3(5), it

follows that T |PH = 0, so that T is not one-to-one. Therefore 0 ∈ σp(T ). �

Lemma 2.19. Every hyponormal operator is ∗-paranormal.

Proof. If T is a hyponormal operator, then

‖T ∗x‖2 = (T ∗x, T ∗x) = (TT ∗x, x) ≤ (T ∗Tx, x) ≤ ‖T ∗(Tx)‖‖x‖

≤ ‖T (Tx)‖‖x‖ = ‖T 2x‖‖x‖.

Thus T is a ∗-paranormal operator. �

Every hyponormal operator is a ∗-paranormal operator, but the converse

is not true([5]).

Example 2.4. Suppose H is a 2-dimensional Hilbert space. Let K be

the direct sum of denumerable copies of H. Let A and B be any two positive

operators on H. Let n be any fixed positive integer. Define an operator

T = TA,B,n on K as

T (x1, x2, x3, . . .) = (0, Ax1, Ax2, . . . Bxn+1, Bxn+2, . . .),
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where A and B are positive operators on H satisfying this time A2 = C and

B4 = D, where C and D are positive operators on H defined as

C =

(
1 1
1 2

)
and D =

(
1 2
2 8

)
.

By the computations, T is a ∗-paranormal operator if and only if

T ∗2T 2 − 2λTT ∗ + λ2I = B4 − 2λA2 + λ2I ≥ 0

for each λ > 0. Now

B4 − 2λA2 + λ2I = D − 2λC + λ2 =

(
(1− λ)2 2(1− λ)
2(1− λ) (2− λ)2 + 4

)

which is a positive operator for each λ > 0. Therefore T is a ∗-paranormal

operator. However,

T ∗T − TT ∗ = B4 − A4 = D − C2 =

(
−1 −1
−1 3

)

which is not positive. Hence T is not a hyponormal operator. �

Lemma. 2.20.([5]) Every ∗-paranormal operator is normaloid.

Proof. Let T be any ∗-paranormal operator. We prove that ‖T n‖ = ‖T‖n

by mathematical induction on positive integer n. For any unit vector x ∈ H,

we have ‖T ∗x‖2 ≤ ‖T 2x‖ and so ‖T ∗‖2 = ‖T‖2 ≤ ‖T 2‖ ≤ ‖T‖2. That means

‖T 2‖ = ‖T‖2.
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Assume that the result is true for all positive integers k ≤ n. To

prove the result for n + 1, we prove the following inequality : ‖T nx‖3 ≤

‖T n+2x‖‖T n−1x‖2.

We assume that T nx 6= 0. Now we have

‖T nx‖4 = (‖T nx‖2)2 = (T nx, T nx)2

= (T ∗T nx, T n−1x)2 ≤ ‖T ∗T nx‖2‖T n−1x‖2

by Schwarz’s inequality. This gives ‖T nx‖4 ≤ ‖T n+2x‖‖T n−1x‖2‖T nx‖ and

so ‖T nx‖3 ≤ ‖T n+2x‖ ‖T n−1x‖2. Therefore

‖T n‖3 ≤ ‖T n+2‖‖T n−1‖2 ≤ ‖T‖‖T n+1‖‖T n−1‖2.

Since ‖T k‖ = ‖T‖k for all k ≤ n, we obtain ‖T‖n+1 ≤ ‖T n+1‖. Therefore

T is normaloid. �

The inclusion relation of the classes of non-normal operators listed above

is as follows :

Normal ⊂ Quasinormal ⊂ Subnormal ⊂

Hyponormal ⊂ ∗-paranormal(or paranormal) ⊂ Normaloid.

Every ∗-paranormal operator is normaloid, but the converse is not true([5]).

Example 2.5. Suppose H is a 2-dimensional Hilbert space. Let K be

the direct sum of denumerable copies of H. Let A and B be any two positive
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operators on H. Let n be any fixed positive integer. Define an operator

T = TA,B,n on K as

T (x1, x2, x3, . . .) = (0, Ax1, Ax2, . . . Bxn+1, Bxn+2, . . .).

It can be computed to see that T is a hyponormal operator if and only if

B2 ≥ A2. Let C and D be defined on H as

C =

(
1 0
0 0

)
and D =

(
2 1
1 1

)
.

Then C and D are positive operators on H satisfying

D − C =

(
1 1
1 1

)
≥ 0.

Choose A and B to be positive operators so as to satisfy A2 = C and

B2 = D. With this choice T is a hyponormal operator and hence normaloid

and therefore T 2 is also normaloid. We claim that T 2 is not a ∗-paranormal

operator. By the simple computations, we show that T 2 is a ∗-paranormal

operator if and only if B8 − 2λA4 + λ2I > 0 for each λ > 0. Putting

λ = 1
2
, we obtain

B8 − 2λA4 + λ2I =

(
133
4

21
21 53

4

)
.

Now if x = (1,−84
53

), then (

(
133
4

21
21 53

4

)
x, x) < 0. Hence T 2 is not a ∗-

paranormal operator. �
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Lemma 2.21.([21]) The classes of ∗-paranormal operators and paranor-

mal operators are independent by using example given by Halmos.

We give an example of a paranormal operator which is not a ∗-paranormal

operator.

Example 2.6. Let H be a Hilbert space, and let Λ be the set of all

functions x = x(n) defined on integers with values H, such that
∑
‖xn‖2 <

∞. Then Λ becomes a Hilbert space with inner product (x, y) =
∑

(xn, yn).

Let {Sn} be a sequence of positive operators on Z such that {‖Sn‖} is

bounded, and define, for every x in H, (Ux)n = xn+1 , (Sx)n = Snxn. It is

easy to verify that U and S are operators on H. Since U is unitary, (U∗x)n =

(U−1x)n = xn−1. Let T = US. Then (T ∗Tx)n = S2
n xn, (TT ∗x)n = S2

n+1 xn,

(T ∗2T 2x)n = SnS
2
n−1Sn xn, (T 2T ∗2x)n = Sn+1S

2
n+2Sn+1 xn.

Now let H be a two-dimensional Hilbert space and let

A =

(
2 1
1 1

)
, B =

(
1 0
0 0

)
(action on H).

Then A − B ≥ 0, and A2 − B2 is not positive. Let Sn =

{√
A (n ≤ 0)√
B (n > 0).

Then T ∗T − TT ∗ = S2
n − S2

n+1 ≥ 0. So T is a hyponormal operator. Thus

T 2 is a paranormal operator.

Since (T ∗4T 4x)n = SnSn−1Sn−2S
2
n−3Sn−2Sn−1Snxn, T 2 is a ∗-paranormal

operator if and only if
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((T ∗4T 4 − 2λT 2T ∗2 + λ2I)x)n

= ((SnSn−1Sn−2S
2
n−3Sn−2Sn−1Sn − 2λSn+1S

2
n+2Sn+1 + λ2I)x)n ≥ 0

for each λ > 0.

But, if n = 0, then

S0S−1S−2S
2
−3S−2S−1S0 − 2λS1S

2
2S1 + λ2I

= A4 − 2λB2 + λ2I

=

(
34− 2λ + λ2 21

21 13 + λ2

)
for each λ > 0.

Putting λ = 1
2
, we obtain that A4−2λB2+λ2I =

(
133
4

21
21 53

4

)
is not positive,

and so T 2 is not a ∗-paranormal operator. Therefore, T 2 is a paranormal

operator, but T 2 is not a ∗-paranormal operator. �

The above example shows that there exists a paranormal operator which

is not ∗−paranormal. On the other hand, the example 4.8(later) shows that

there exists a ∗-paranormal operator which is not paranormal.
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3. Properties of M∗-paranormal operators

Definition 3.1. An operator T ∈ L(H) is said to be M-hyponormal if

there exists a real number M > 0 such that

‖(T − λI)∗x‖ ≤ M‖(T − λI)x‖

for all x in H and for all λ ∈ C. An operator T is said to be M∗-paranormal

if there exists a real number M > 0 such that ‖T ∗x‖2 ≤ M‖T 2x‖ for any

unit vector x in H.

Every hyponormal operator is M -hyponormal, but the converse is not

true in general : for example, consider the weighted shift S on l2 given by

S(x1, x2, . . .) = (0, 2x1, x2, x3, . . .).

The examples of M -hyponormal non-hyponormal operators seem to be

scarce from the literature. B.L. Wadhwa([53]) gave an example of M -

hyponormal non-hyponormal weighted shift T on l2 :

T =



0
1 0

2 0
1 0

1 0
. .

. .
. .


.
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The notion of a M -hyponormal operator is due to J. Stampfli and B. L.

Wadhwa([48]). The M -hyponormality of operators has been studied by

many authors ([2], [3], [18], [27], [29], [48], [52], [53]).

If T is a ∗-paranormal operator, then T is a M∗-paranormal operator

for each real number M ≥ 1. But the converse is not true.

Example 3.1. Let H be a separable Hilbert space and let {an}∞n=1 be

an orthonormal basis of H. Define a weighted shift T on H as follows :

Te1 = e2, T e2 =
√

2e3, T en = en+1 for all n ≥ 3.

Then T ∗e1 = 0, T ∗e2 = e1, T ∗e3 =
√

2e2 and T ∗en+1 = en for all n ≥ 3.

Therefore T is M∗-paranormal for M ≥ 2 and T is not ∗-paranormal.

Theorem 3.2. T is a M∗-paranormal operator if and only if

M2T ∗2T 2 − 2λTT ∗ + λ2I ≥ 0

for each λ > 0.

Proof. If T is M∗-paranormal, then ‖T ∗x‖2 ≤ M‖T 2x‖ for any unit

vector x, and so (‖T ∗x‖2)2 ≤ M2‖T 2x‖2, i.e., (‖T ∗x‖2)2 −M2‖T 2x‖2 ≤ 0.

By the elementary properties of real quadratic forms, this gives

λ2I − 2λ‖T ∗x‖2 + M2‖T 2x‖2 ≥ 0

for each λ > 0. Hence M2T ∗2T 2 − 2λTT ∗ + λ2I ≥ 0 for each λ > 0.
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Conversely, suppose M2T ∗2T 2 − 2λTT ∗ + λ2I ≥ 0 for each λ > 0. Then

for each unit vector x ∈ H,

((M2T ∗2T 2 − 2λTT ∗ + λ2I)x, x) ≥ 0

=⇒ λ2I − 2λ(TT ∗x, x) + M2(T ∗2T 2x, x) ≥ 0

=⇒ λ2I − 2λ‖T ∗x‖2 + M2‖T 2x‖2 ≥ 0

=⇒ (‖T ∗‖2)2 −M2‖T 2x‖2 ≤ 0

=⇒ ‖T ∗x‖2 ≤ M‖T 2x‖.

Therefore T is a M∗-paranormal operator. �

Patel([38]) has characterized ∗-paranormal operator as follow :

Corollary 3.3.([38]) An operator T is a ∗-paranormal operator if and

only if

T ∗2T 2 − 2λTT ∗ + λ2I ≥ 0 for all λ > 0.

Corollary 3.4. Let T be a weighted shift with weights {αn}∞n=1. Then

T is a M∗-paranormal operator if and only if

|αn−1|2 ≤ M |αn||αn+1|

for each n = 2, 3, 4, . . . .

Proof. Let {en}∞n=1 be an orthonormal basis of the Hilbert space H.

Suppose T is a M∗-paranormal operator. Since Ten = αnen+1,

‖T 2en‖ = ‖T (αnen+1)‖ = |αn|‖αn+1en+2‖ = |αn||αn+1|
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and ‖T ∗en‖ = |αn−1| for each n = 2, 3, 4, . . . . Since T is a M∗-paranormal

operator,

‖T ∗en‖2 ≤ M‖T 2en‖

and so |αn−1|2 ≤ M |αn||αn+1| for each n = 2, 3, 4, . . . .

Conversely, suppose |αn−1|2 ≤ M |αn||αn+1| for each n = 2, 3, 4, . . . .

Then for each n = 2, 3, 4, . . . , we have

M‖T 2en‖ − ‖T ∗en‖2 = M |αn||αn+1| − |αn−1|2 ≥ 0.

Therefore M‖T 2en‖ ≥ ‖T ∗en‖2 for each n = 2, 3, 4, . . . , and so T is a M∗-

paranormal operator. �

Corollary 3.5.([6]) Let T be a non-singular weighted shift with weights

{αn}. Then T−1 is a M∗-paranormal operator if and only if

|αn−1||αn−2| ≤ M |αn|2

for each n = 3, 4, 5, . . . .

Theorem 3.6. An operator T is a M∗-paranormal operator if and only

if

M2T ∗2T 2 + 2λTT ∗ + λ2I ≥ 0

for all real number λ.

Proof. Let x be any unit vector in H. Then

M2T ∗2T 2 + 2λTT ∗ + λ2I ≥ 0 for all real number λ
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⇐⇒ ((M2T ∗2T 2 + 2λTT ∗ + λ2I)x, x) ≥ 0 for all real number λ

⇐⇒ M2‖T 2x‖2 + 2λ‖T ∗x‖2 + λ2‖x‖2 ≥ 0 for all real number λ

⇐⇒ (‖T ∗x‖2)2 ≤ M2‖T 2x‖2

⇐⇒ ‖T ∗x‖2 ≤ M‖T 2x‖

⇐⇒ T is a M∗-paranormal operator.

�

Corollary 3.7. An operator T is a ∗-paranormal operator if and only

if

T ∗2T 2 + 2λTT ∗ + λ2I ≥ 0

for all real number λ.

We establish that the classes of M∗-paranormal operators and M -paranormal

operators are independent.

Example 3.2. Let {en}∞n=−∞ be an orthonormal basis of the Hilbert

space H. Define a bilateral weighted shift T on H with weights {αn} given

by

αn =


3
7

if n ≤ −1√
2
7

if n = 0
n

n+1
· 6

7
if n > 0.

Then it can be easily seen that the weights {αn} satisfy

|αn−1|2 ≤
7

6
|αn||αn+1|
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for each n. Hence T is a 7
6

∗
-paranormal operator by Corollary 3.4. But

7
6
|α1| = 1

2
6≥

√
2
7

= |α0|. By the fact that M |αn+1| ≥ |αn| ⇔ T is a

M -paranormal operator. Thus T is not a 7
6
-paranormal operator.

Example 3.3. Let T be a bilateral weighted shift defined as

Ten =
1

2|n|
en+1

for each n. Then T is M -paranormal for M ≥ 2. However, by Corollary 3.4,

T is M∗-paranormal provided M ≥ 8. Thus T is not M∗-paranormal, for

2 ≤ M ≤ 8, although T is M -paranormal.

Theorem 3.8. Let T be any M∗-paranormal operator and let N be any

invariant subspace under T . Then

(1) T |N is M∗-paranormal .

(2) λT is M∗-paranormal for every complex number λ.

(3) If T is unitarily equivalent to an operator S, then S is M∗-paranormal.

(4) ker T ⊆ ker T ∗

(5) ker T = ker T 2

Proof. (1) Let x be any unit vector in N. Since T is M∗-paranormal,

‖T ∗x‖2 ≤ M‖T 2x‖ and so

‖(T |N)∗x‖2 = ‖T ∗x‖2 ≤ M‖T 2x‖ = M‖(T |N)2x‖.
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Therefore T |N is M∗-paranormal.

(2) Let x be any unit vector in H. Then

‖(λT )∗x‖2 = ‖λ̄T ∗x‖2 = |λ|2‖T ∗x‖2

≤ |λ|2M‖T 2x‖ = M‖(λT )2x‖.

Therefore λT is M∗-paranormal.

(3) We must show that M2S∗2S2 + 2λSS∗ + λ2I ≥ 0 for all real number

λ. Since T is unitarily equivalent to S, there is a unitary operator U such

that S = U∗TU . For any real number λ ∈ R, we have

M2S∗2S2 + 2λSS∗ + λ2I

= M2(U∗T ∗U)(U∗T ∗U)(U∗TU)(U∗TU) + 2λ(U∗TU)(U∗T ∗U) + λ2U∗U

= U∗(M2T ∗2T 2 + 2λTT ∗ + λ2I)U ≥ 0.

Therefore S is M∗-paranormal.

(4) Since ‖T ∗x‖2 ≤ M‖T 2x‖ for any unit vector x ∈ H. Let x ∈ ker T,

i.e., Tx = 0. Then T (Tx) = 0, and so T 2x = 0. By definition, T ∗x = 0.

Hence x ∈ ker T ∗ and so ker T ⊆ ker T ∗.

(5) Since ker T ⊂ ker T 2, it suffices to show that ker T 2 ⊂ ker T. If

x ∈ ker T 2, then Tx ∈ ker T. Since T is a M∗-paranormal operator, ker T ⊂

ker T ∗. Therefore T ∗Tx = 0, and so

‖Tx‖2 = (T ∗Tx, x) ≤ ‖T ∗Tx‖‖x‖ = 0.

Thus Tx = 0, i.e., x ∈ ker T. �
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Corollary 3.9. Let T be any ∗-paranormal operator and let N be any

invariant subspace under T . Then

(1) T |N is ∗-paranormal .

(2) λT is ∗-paranormal for every complex number λ.

(3) ([19]) If T is unitarily equivalent to an operator S, then S is ∗-

paranormal.

(4) ker T ⊆ ker T ∗.

(5) ker T = ker T 2.

Corollary 3.10. Let N be any closed linear reducing subspace under

the operator T. Then T is a M∗-paranormal operator if and only if both T |N

and T |N⊥ are M∗-paranormal operators.

The inverse of a M∗-paranormal operator may not be M∗-paranormal.

Example 3.4. Let T be a bilateral weighted shift with weights {αn}

defined as

αn =

{
1 if n ≤ 0

n
n+1

if n ≥ 1.

Then T is a 3∗-paranormal operator by Corollary 3.4, but by Corollary 3.5,

T−1, is not 3∗-paranormal since |α0||α−1| = 1 6< 3|α1|2 = 3
4
.
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The sum of M∗-paranormal operators even commuting or double com-

muting may not be M∗-paranormal.

Example 3.5. Let T =

(
1 0
1 1

)
and S =

(
−1 0
0 −1

)
be operators

on 2-dimensional space. Then T and S are 4∗-paranormal operator while

T + S =

(
0 0
1 0

)
is not so.

The product of two M∗-paranormal operators, in general, may not be

M∗-paranormal.

Example 3.6. Suppose that H is a 2-dimensional Hilbert space. Let

K be the direct sum of denumerably many copies of H. Let A and B be

any two positive operators on H. Let n be a fixed positive integer. Define

an operator T = TA,B,n on K as

T (x1, x2, . . .) = (0, Ax1, . . . , Axn, Bxn+1, . . .).

Then T is a M∗-paranormal operator if and only if

M2B4 − 2λA2 + λ2I ≥ 0

for each λ > 0.

Set C =

(
M M
M 2M

)
and D =

(
1 2
2 8

)
.

Then both C and D are positive and for each λ > 0

M2D − 2λC + λ2I =

(
(M − λ)2 2M(M − λ)

2M(M − λ) (2M − λ)2 + 4M2

)
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is a positive operator. Now choose A = C
1
2 and B = D

1
4 . With this choice,

T = TA,B,n is a M∗-paranormal operator.

Now we show that T ⊗ T is not a M∗-paranormal operator. In fact for

λ = 1,

M2(T ⊗ T )∗2(T ⊗ T )2 − 2(T ⊗ T )(T ⊗ T )∗ + I ⊗ I

= [M2(A4 ⊗ A4) + I ⊗ I]⊕ [M2(A4 ⊗ A4)− 2(A2 ⊗ A2) + I ⊗ I]

⊕ · · · ⊕ [M2(A4 ⊗ A4)− 2(A2 ⊗ A2) + I ⊗ I]

⊕ [M2(AB2A)⊗ AB2A)− 2(A2 ⊗ A2) + I ⊗ I]

⊕ [M2(B4 ⊗B4)− 2(A2 ⊗ A2) + I ⊗ I]⊕ · · ·

which is not positive.

From the above examples, we can summarized as follows :

Theorem 3.11.([38]) We have the following properties;

(1) The power and the inverse(if exists) of M∗-paranormal operators are

not necessarily M∗-paranormal.

(2) The sum, the direct sum, the product and the tensor product of M∗-

paranormal operators are not necessarily M∗-paranormal.

(3) The class of ∗-paranormal operators is closed in the norm topology of

operators.

(4) The class of ∗-paranormal operators is not translation invariant.
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Theorem 3.12. Let T be any M∗-paranormal operator. Then we have

the following properties:

(1) ‖T nx‖3 ≤ M‖T n+2x‖‖T n−1x‖2 for any unit vector x in H and positive

integer n.

(2) ‖Tx‖3 ≤ M‖T 3x‖ for any unit vector x in H.

Proof. (1) Assume that T nx 6= 0. We have

‖T nx‖4 = (T nx, T nx)2 = (T ∗T nx, T n−1x)2 ≤ ‖T ∗T nx‖2‖T n−1x‖2

= ‖T ∗ T nx

‖T nx‖
‖2‖T n−1x‖2‖T nx‖2

≤ M‖T n+2x‖‖T n−1x‖2‖T nx‖.

Thus ‖T nx‖3 ≤ M‖T n+2x‖‖T n−1x‖2.

(2) It follows from (1).

(Another method) Since T satisfies M2T ∗2T 2 + 2λTT ∗ + λ2I ≥ 0 for

all real number λ. This implies that

T ∗(M2T ∗2T 2 + 2λTT ∗ + λ2I)T ≥ 0

for all real number λ. Let x be any unit vector in H. Then

((M2T ∗3T 3 + 2λT ∗TT ∗T + λ2T ∗T )x, x) ≥ 0 for all real number λ

=⇒ M2‖T 3x‖2 + 2λ‖T ∗Tx‖2 + λ2‖Tx‖2 ≥ 0 for all real number λ

=⇒ (‖T ∗Tx‖2)2 −M2‖T 3x‖2‖Tx‖2 ≤ 0

=⇒ (‖Tx‖2)2 ≤ M‖T 3x‖‖Tx‖.
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Hence ‖Tx‖3 ≤ M‖T 3x‖ for any unit vector x in H. �

Corollary 3.13. Let T be any ∗-paranormal operator. Then we have

the following properties:

(1) ‖T nx‖3 ≤ ‖T n+2x‖‖T n−1x‖2 for any unit vector x in H and positive

integer n.

(2) ‖Tx‖3 ≤ ‖T 3x‖ for any unit vector x in H.

Recall that an operator T is quasinormal if T commutes with T ∗T , or

equivalently (T ∗T )T = T (T ∗T )

Theorem 3.14. If a partial isometry T is M∗-paranormal, then T is

quasinormal.

Proof. Let T be a M∗-paranormal partial isometry. We claim that R(T ),

the range space of T , is contained in ker(T )⊥, the initial space of T . Since

T is M∗-paranormal, we have ‖T ∗x‖2 ≤ M‖T 2x‖ for any unit vector x in

H. Hence

ker(T ) ⊆ ker(T ∗) = R(T )
⊥
.

This implies that

R(T ) ⊆ R(T ) = R(T )
⊥⊥
⊆ ker(T )⊥.

From this it follows that ker(T )⊥ reduces T . Since T is a partial isometry,

T is of the form A ⊕ O, where A is an isometry. Thus T commutes T ∗T

and hence T is quasinormal. �
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Theorem 3.15. If a M∗-paranormal operator T commutes with an

isometric and surjective operator S, then TS is M∗-paranormal.

Proof. Let A = TS. We must show that

M2A∗2A2 + 2λAA∗ + λ2I ≥ 0

for all real number λ. Since (S∗Sx, x) = (Sx, Sx) = (x, x), S∗S = I and

SS∗ = SS∗(SS−1) = S(S∗S)S−1 = SIS−1 = I.

Thus

M2A∗2A2 + 2λAA∗ + λ2I = M2S∗T ∗S∗T ∗TSTS + 2λTSS∗T ∗ + λ2I

= M2T ∗2T 2 + 2λTT ∗ + λ2I ≥ 0

for all real number λ. Hence TS is M∗-paranormal. �

Corollary 3.16. If a ∗-paranormal operator T commutes with an iso-

metric operator S, then TS is ∗-paranormal.

Corollary 3.17. If a M∗-paranormal operator T commutes with a uni-

tary operator S, then TS is M∗-paranormal.

Theorem 3.18. Let T and S be doubly commuting M∗-paranormal

operators.

(1) If ‖T ∗Sx‖‖x‖ ≥
√

M‖T ∗x‖‖Sx‖ for all x in H, then TS is M∗-

paranormal.

38



(2) If ‖T ∗S2x‖‖x‖ ≥ M‖T ∗x‖‖S2x‖ for all x in H, then TS is M∗-

paranormal.

Proof. (1) Assume that ‖T ∗Sx‖‖x‖ ≥
√

M‖T ∗x‖‖Sx‖ for all x in H.

Since T and S are doubly commuting M∗-paranormal operators, we have

M2‖T 2S2x‖‖S2x‖‖Sx‖2‖T ∗x‖‖x‖2 ≥ M‖T ∗S2x‖2‖Sx‖2‖T ∗x‖‖x‖2

= ‖S2T ∗x‖‖T ∗x‖‖S2T ∗x‖‖Sx‖2‖x‖2

≥ ‖S∗T ∗x‖2‖S2T ∗x‖‖Sx‖2‖x‖2

= ‖S∗T ∗x‖2‖T ∗S2x‖‖Sx‖2‖x‖2

≥ M‖S∗T ∗x‖2‖T ∗x‖‖S2x‖‖Sx‖2‖x‖.

Hence M‖(TS)2x‖‖x‖ ≥ ‖(TS)∗x‖2. Thus TS is a M∗-paranormal opera-

tor.

(2) Assume that ‖T ∗S2x‖‖x‖ ≥ M‖T ∗x‖‖S2x‖ for all x in H. Since T

and S are doubly commuting M∗-paranormal operators, we have

M2‖T 2S2x‖‖S2x‖‖S∗x‖‖T ∗x‖‖x‖ ≥ M‖T ∗S2x‖2‖S∗x‖‖T ∗x‖‖x‖

= M‖S2T ∗x‖‖T ∗x‖‖S∗x‖‖x‖‖S2T ∗x‖

≥ ‖S∗T ∗x‖2‖S∗x‖‖x‖‖T ∗S2x‖

≥ M‖S∗T ∗x‖2‖T ∗x‖‖S2x‖‖S∗x‖.

Hence M‖(TS)2x‖ ‖x‖ ≥ ‖(TS)∗x‖2. Thus TS is M∗-paranormal. �

An operator may be M3∗-paranormal operator but may not be M -

hyponormal.
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Example 3.7. If T is an operator on H with basis {en}∞n=1 defined as

Te1 = e2, T e2 =
1

3
e3, T en = en+1

for each n ≥ 3. Then T is 8∗-paranormal, but is not 2-hyponormal.

Theorem 3.19. If a M∗-paranormal operator T double commutes with

a N-hyponormal operator S, then the product TS is (MN3)∗-paranormal.

Proof. Let {E(t)} be the resolution of the identity for the self adjoint

operator S∗S. By hypothesis both TT ∗ and T ∗2T 2 commute with every

projection E(t). Since by the N -hyponormality of S

SS∗ ≤ N2S∗S and N2S∗2S2 ≥ (S∗S)2,

it follows from the double commutativity that for each λ > 0.

M2N6(TS)∗(TS)2 − 2λ(TS)(TS)∗ + λ2

= M2N6(T ∗2T 2)(S∗2S2)− 2λ(TT ∗)(SS∗) + λ2

≥ M2N4(T ∗2T 2)(S∗S)2 − 2λN2(TT ∗)(S∗S) + λ2

= N4

∫ ∞

0

[M2T ∗2T 2 − 2
λ

N2t
TT ∗ + (

λ

N2t
)2]t2dE(t)

≥ 0.

Hence TS is (MN3)∗-paranormal. �

Corollary 3.20. If a M∗-paranormal operator T is double commutative

with a hyponormal operator S, then TS is M∗-paranormal.
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Corollary 3.21. If a ∗-paranormal operator T is double commutative

with a hyponormal operator S, then TS is ∗-paranormal.

Definition 3.22. An operator T is said to be co-isometry if TT ∗ = I

but T ∗T 6= I. T is called M-quasihyponormal if there exists a real number

M > 0 such that ‖T ∗Tx‖ ≤ M‖T 2x‖ for any unit vector x in H.

Theorem 3.23. Let T ∈ L(H) be a contraction M∗-paranormal oper-

ator. Let N be a closed invariant subspace for T . If T |N is a co-isometry,

then T |N⊥ is M∗-paranormal.

Proof. Let S = T |N be a co-isometry. Then S∗ = (T |N)∗ is isometry.

‖S∗x− T ∗x‖2 = ‖T ∗x‖2 − (S∗x, T ∗x)− (T ∗x, S∗x) + ‖S∗x‖2

≤ ‖x‖2 − (TS∗x, x)− (x, TS∗x) + ‖x‖2

= 2‖x‖2 − 2‖S∗x‖2

= 0.

Thus T ∗x = (T |N)∗x ∈ N for all x ∈ N , which implies that N is invariant

under T ∗. Hence N reduces T . By Corollary 3.10, T |N⊥ is M∗-paranormal.

�

Theorem 3.24. Let T = V P = PV where P ≥ 0, V is isometry and

surjective. Then T is M-paranormal if and only if T is M∗-paranormal.

Proof. We must show that ‖Tx‖2 = ‖T ∗x‖2 for unit vector x in H.

‖Tx‖2 = (Tx, Tx) = (x, T ∗Tx) = (x, TT ∗x)
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= (T ∗x, T ∗x) = ‖T ∗x‖2.

Therefore M‖T 2x‖ ≥ ‖Tx‖2 = ‖T ∗x‖2. �

Theorem 3.25. If T is a M∗-paranormal partial isometry and it is co-

isometry, then T is M-quasihyponormal.

Proof. Let A = M2T ∗2T 2 + 2λTT ∗ + λ2I ≥ 0 for any real number λ. If

B = T ∗T , then B = B2 ≥ 0, and so AB ≥ 0. Thus for all real number λ,

(M2T ∗2T 2 + 2λTT ∗ + λ2I)(T ∗T ) ≥ 0

=⇒ M2T ∗T ∗TTT ∗T + 2λTT ∗T ∗T + λ2T ∗T ≥ 0

=⇒ M2T ∗2T 2 + 2λTT ∗T ∗T + λ2T ∗T ≥ 0

=⇒ M2T ∗2T 2 + 2λT ∗T + λ2T ∗T ≥ 0

=⇒ M2T ∗2T 2 + 2λ(T ∗T )2 + λ2(T ∗T )2 ≥ 0

and so for any unit vector x, we have

((M2T ∗2T 2 + 2λ(T ∗T )2 + λ2(T ∗T )2)x, x) ≥ 0 for all real number λ

=⇒ M2‖T 2x‖2 + 2λ‖T ∗Tx‖2 + λ2‖T ∗Tx‖2 ≥ 0 for all real number λ

=⇒ ‖T ∗Tx‖4 ≤ M2‖T 2x‖2‖T ∗Tx‖2

=⇒ ‖T ∗Tx‖ ≤ M‖T 2x‖.

�

Theorem 3.26. Let T, S and W ∈ L(H), where W has a dense range.

Assume that TW = WS and T ∗W = WS∗. Then
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(1) If S is a partial isometry, then T is a partial isometry.

(2) If S is M∗-paranormal, then T is M∗-paranormal.

Proof. Let W ∗ = V ∗B be the polar decomposition of W ∗, where WW ∗ =

B2. Since W has a dense range, W ∗ is injective. Thus B2 = WW ∗ is

injective, and V is co-isometry. From TW = WS and T ∗W = WS∗, we

have TWW ∗ = WSW ∗ = WW ∗T . Thus WW ∗ commutes with T , and so

B commutes with T . Hence we have BTV = TBV = TW = WS = BV S,

which implies that TV = V S because B is injective. Since V is co-isometry,

we have T = TV V ∗ = V SV ∗ and

V ∗TB = V ∗BT = W ∗T = SW ∗ = SV ∗B.

Hence V ∗T = SV ∗ and so V ∗V S = V ∗TV = SV ∗V .

(1) Assume that S is a partial isometry. Then

T = V SV ∗ = V V ∗V SS∗SV ∗V V ∗

= V SV ∗V S∗V ∗V SV ∗

= V SV ∗(V SV ∗)∗V SV ∗

= TT ∗T.

Therefore T is a partial isometry.

(2) If S is a M∗-paranormal operator. Then M2S∗2S2+2λSS∗+λ2I ≥ 0

for all real number λ.

M2T ∗2T 2 + 2λTT ∗ + λ2I

= M2(V SV ∗)∗(V SV ∗)∗(V SV ∗)(V SV ∗) + 2λ(V SV ∗)(V SV ∗)∗ + λ2I
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= M2V S∗V ∗V S∗V ∗V SV ∗V SV ∗ + 2λV SV ∗V S∗V ∗ + λ2I

= V (M2S∗2S2 + 2λSS∗ + λ2I)V ∗ ≥ 0.

Therefore M2T ∗2T 2 + 2λTT ∗ + λ2I ≥ 0 for all real number λ. �

Corollary 3.27. Let S, T and W ∈ L(H), where W has a dense range,

Assume that TW = WS and T ∗W = WS∗

(1) If S is a normal operator, then every operator T is M-paranormal if

and only if T is M∗-paranormal.

(2) If S is a hyponormal operator and T is a M-paranormal operator,

then T is M∗-paranormal.

(3) If S is co-hyponormal operator and T is a M∗-paranormal operator,

then T is M-paranormal.
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4. kth roots of ∗-paranormal operators

Definition 4.1. An operator T ∈ L(H) is a kth root of a G-operator if

T k is a G-operator. In particular, if a G-operator is a ∗-paranormal operator,

then T is called a kth root of a ∗-paranormal operator. We denote these

classes by ( k
√

H), ( k
√

P ∗) and ( k
√

P ) respectively. In particular, if k = 1,

the class ( k
√

P ∗) becomes the class of ∗-paranormal operators and the class

(
√

P ∗)(= ( 2
√

P ∗)) consists of square roots of ∗-paranormal operators.

Lemma 4.2. (1) Every hyponormal operator T on finite dimension

Hilbert space is a normal operator.

(2) If T is a ∗-paranormal and quasinilpotent, then T is zero.

An operator T is a kth root of a ∗-paranormal operator, but it is not

necessarily a ∗-paranormal operator.

Example 4.1. (1) Let H be a k-dimensional Hilbert space. Define T

on H as

T = (aij) =

(
0 1
0 0

)
.

where aij = 0 if i ≥ j and aij = 1 if i < j. Then T k = 0 (k ≥ 2) is a

hyponormal operator and so T is a kth root of a hyponormal operator. But

TT ∗ 6≤ T ∗T . Therefore T is not hyponormal.
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(2) Let T be an operator on a two-dimensional Hilbert space defined by

T =

(
0 1
0 0

)
. Then T is the square root of a ∗-paranormal operator since

T 2 = 0 is ∗-paranormal. But T is not ∗-paranormal since ‖T ∗x‖2 = 1 >

0 = ‖T 2x‖ for some x = (1, 0).

(3) If U is the unilateral shift on l2 and T = U∗ + 2U , then

T ∗T − TT ∗ = 3− 3UU∗ = 3(I − UU∗) > 0.

Therefore T is hyponormal(and so ∗−paranormal). However, if we take

x = (1, 0,−2, 0, · · · ), then ‖T 2x‖2 = 80 < 89 = ‖(T ∗)2x‖2. Hence T 2 is

not hyponormal. Also we see that T 2 is not ∗-paranormal by the direct

calculation. This ia an example of a ∗-paranormal operator which is not

the square root of a ∗-paranormal operator.

From the above Example 4.1(1), we can deduce that if T is any nilpotent

operator of order k, i.e., T k = 0, then T is a kth root of a ∗-paranormal

operator, but it is not necessarily a ∗-paranormal operator.

If T is hyponormal, then T is normaloid, i.e., ‖T n‖ = ‖T‖n for each

natural number n. This is not true in the case of a square root of a hy-

ponormal operator. This can be seen as follow ; Let T be the operator on

k-dimensional Hilbert space H in Example 4.1. Then T k is hyponormal and

so T is kth root of a hyponormal operator. Also ‖T k‖ = 0. However, it is

easy to show that ‖T‖k = 1. Hence ‖T‖k 6= ‖T k‖. Thus T is not normaloid.
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If T is a ∗-paranormal operator, then T is normaloid, i.e., ‖T k‖ = ‖T‖k

for each natural number k, but the converse is not true. This is not true in

the case of the kth root of a ∗-paranormal operator by Example 4.1.

Theorem 4.3. Let T ∈ ( k
√

H) be any kth root of a hyponormal operator.

Then

(1) λT is a kth root of hyponormal operator for all scalar λ.

(2) If N is invariant subspace of T , then T |N is a kth root of a hyponormal

operator.

(3) If T is quasinilpotent, then T is nilpotent.

(4) If T is unitarily equivalent to S, then S is a kth root of a hyponormal

operator.

(5) If T is invertible, then T−1 is a kth root of hyponormal operator.

(6) If kerT ∗ is equal to ker (T ∗)k, then kerT reduces for T .

Proof. (1) For each vector x in H,

‖(λT )kx‖ = |λ|k‖T kx‖ ≥ |λ̄|k‖(T k)∗x‖ = ‖(λT )k∗x‖.

Thus (λT )k is a hyponormal operator. Therefore λT is a kth root of a

hyponormal operator, for all scalar λ.

(2) If N is invariant subspace of T , then (T |N)k = T k|N = T k. Since

T k|N is hyponormal, T |N is a kth root of a hyponormal operator.
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(3) Since T is quasinilpotent, σ(T ) = {0}. By the spectral mapping

theorem, we get that σ(T k) = {σ(T )}k = {0}. Hence T k is quasinilpotent.

Since T k is hyponormal and quasinilpotent, T k is a zero operator(Lemma

2.3). Therefore T is nilpotent.

(4) Since T is unitarily equivalent to S, there exists a unitary operator U

such that S = U∗TU . Thus Sk = (U∗TU)k = U∗T kU and so Sk is unitarily

equivalent to T k. Since T k is hyponormal by hypothesis, Sk is hyponormal

and hence S is a kth root of a hyponormal operator.

(5) If T is invertible, then T k is invertible and hyponormal. Hence

T−k = (T−1)k is hyponormal. Thus T−1 is a kth root of a hyponormal

operator.

(6) Let x be any point in ker T . Then T (Tx) = 0 and so Tx ∈ ker T .

Hence T (ker T ) ⊂ ker T . We need to show that T ∗(ker T ) ⊂ ker T . Since

T k is hyponormal,

‖(T ∗)kx‖ ≤ ‖T kx‖

for all x ∈ H, and hence ker T k ⊂ ker (T ∗)k. Since ker T ∗ = ker (T ∗)k and

ker T ⊂ ker T k,

ker T ⊂ ker T k ⊂ ker (T ∗)k ⊂ ker T ∗.

Therefore T ∗x = 0 for all x ∈ ker T . Hence T (T ∗x) = 0 for all x ∈ ker T

i.e., T ∗x ∈ ker T for all x ∈ ker T , and so T ∗(ker T ) ⊂ ker T. �
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The set of operators on H has three useful topologies(weak, strong and

norm). The corresponding concepts of convergence can be described by the

following ; An −→ A in norm if and only if ‖An − A‖ −→ 0, An −→ A

strongly if and only if ‖(An − A)x‖ −→ 0 for every x ∈ H, and An −→ A

weakly if and only if (Anx, y) −→ (Ax, y) for every x and y.

By [5], we know that the class of all hyponormal operators on H is closed

in the norm topology.

Theorem 4.4. The set of all the kth roots of hyponormal operators is

a proper closed subclass of L(H) with the norm topology.

Proof. Since T k is hyponormal, ker T k = ker T 2k. Hence ker T k =

ker T k+1. Let U∗ be any unilateral backward shift on l2. Since ker (U∗)k 6=

ker (U∗)k+1 for any k ∈ N , U∗ is not a kth roots of hyponormal operator.

Finally we show that the class ( k
√

H) is closed in L(H). Let Tn be a

kth root of a hyponormal operator for each positive integer n and let {Tn}

converge to an operator T in norm. Then {T k
n} converge to an operator T k

in norm. Since the set of all hyponormal operators is closed in the norm

topology and T k
n are hyponormal, T k is hyponormal and hence T ∈ ( k

√
H)

is a kth roots of hyponormal operator. �

Example 4.2. If T ∈ L(H) is any nilpotent operator of order k − 1,

then by Halmos characterization T is unitarily equivalent to the following
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operator matrix

A =


0 A12 · · · A1k

0 · · · A2k

· · · .
0

 .

Since A is a kth roots of a hyponormal operator and a kth roots of hy-

ponormal operators are unitarily invariant, T is a kth roots of hyponormal

operator.

The following are the straightway conclusions about shift.

Theorem 4.5. Let T be a weighted shift with nonzero weights {αn}∞n=0.

Then T is a kth roots of hyponormal operator if and only if |αn−k| · · · |αn−1| ≤

|αn| · · · |αn+k−1| for n = k, k + 1 . . . .

Proof. Let {en}∞n=0 be an orthonormal basis of a Hilbert space H.

Since T ken = αn · · ·αn+k−1en+k and T ∗ken = ᾱn−1 · · · ᾱn−ken−k, it is easy

to calculate that T k is a hyponormal if and only if |αn−k| · · · |αn−1| ≤

|αn| · · · |αn+k−1| for n = k, k + 1, . . . . �

Corollary 4.6. Let T be a weighted shift with non-zero weights {αn}∞n=0.

If T is hyponormal, then T is a kth roots of hyponormal operator for every

k ∈ N .

Next we give another example of kth roots of hyponormal operators.
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Example 4.3. Let Tx be the weighted shift with nonzero weights α0 =

x, α1 =
√

2
3
, α2 =

√
3
4
, . . . . Then it is an easy calculation from Theorem 4.5

that Tx is a kth root of hyponormal operator if and only if 0 < x ≤
√

(k+1)2

4k+2
.

Proof. Let Tx be the weighted shift with non-zero weights α0 = x, α1 =√
2
3
, α2 =

√
3
4
, . . . . Then Tx is a kth root of hyponormal operator if and

only if |αn−k| · · · |αn−1| ≤ |αn| · · · |αn+k−1| for n = k, k + 1, . . . .

Case 1. If n = k, then |α0||α1| · · · |αk−1| ≤ |αk||αk+1| · · · |α2k−1|

⇔ x

√
2

3

√
3

4
· · ·

√
k

k + 1
≤

√
k + 1

k + 2

√
k + 2

k + 3
· · ·

√
2k

2k + 1

⇔ 0 < x ≤
√

k + 1

2k + 1

√
k + 1

2
=

√
(k + 1)2

4k + 2
.

Case 2. If n ≥ k + 1, then it is always true since {αn}∞n=1 is increasing

sequence. �

Example 4.4. If k = 1 in Example 4.3, then Tx is hyponormal if and

only if 0 < x ≤
√

2
3
. And Tx is a kth root of a hyponormal, but is not

hyponormal if and only if

√
2

3
< x ≤

√
(k + 1)2

4k + 2
(k > 1).

Next we characterize a matrix on 2-dimensional complex Hilbert space

which is in ( k
√

H). Since every matrix on a finite dimensional complex
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Hilbert space is unitarily equivalent to a upper triangular matrix and kth

root of a hyponormal operator is invariant, it suffices to characterize a upper

triangular matrix T . From the direct calculation, we get the following char-

acterization. The class of the kth root of a hyponormal operators denoted

by ( k
√

H).

Lemma 4.7. For k ≥ 2 we have

T =

(
a b
0 c

)
∈ (

k
√

H) ⇔ b(ak−1 + ak−2c + · · ·+ ck−1) = 0.

Proof. (=⇒) Let T =

(
a b
0 c

)
. Then

T k =

(
ak b(ak−1 + ak−2c + · · ·+ ck−1)
0 ck

)

and T k is hyponormal.

Case 1. If x =

(
0
1

)
, then clearly ‖T kx‖ ≥ ‖T ∗kx‖.

Case 2. If x =

(
1
0

)
, then b(ak−1 + ak−2c + · · · + ck−1) is zero so that

‖T kx‖ ≥ ‖T ∗kx‖.

(⇐=) If b(ak−1 + ak−2c + · · ·+ ck−1) = 0, then T k =

(
ak 0
0 ck

)
is normal

and so hyponormal. Thus T ∈ ( k
√

H). �
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We remark here that Lemma 4.7 offers the convenient criterion to find

some examples of operators in ( k
√

H). Also we observe that ( k
√

H) is not

necessarily normal on a finite dimensional space.

Example 4.5. If k = 3 in Lemma 4.7, then T ∈ ( 3
√

H) if and only if

b(a2 + ac + c2) = 0. Take a = 2, b = 1 and c = −1 +
√

3i. Then

T =

(
2 1

0 −1 +
√

3i

)
∈ (

3
√

H),

but T is not a normal operator.

Theorem 4.8. Let T ∈ ( k
√

P ∗) be any kth root of a ∗-paranormal

operator. Then

(1) λT ∈ ( k
√

P ∗) for any complex number λ ∈ C.

(2) If N ∈ Lat T is invariant subspace of T , then T |N is a kth root of

∗-paranormal operator.

(3) If T is is quasinilpotent, then T is nilpotent.

(4) If T is unitarily equivalent to S, then S is a kth root of ∗-paranormal

operator.

Proof. (1) For each vector x in H,

‖(λT )k∗x‖2 = ‖(λ̄)kT k∗x‖2 = |λ̄|2k‖T k∗x‖2

≤ |λ̄|2k‖T 2kx‖ = |λ|2k‖T 2kx‖ = ‖(λT )2kx‖.
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Thus (λT )k is ∗-paranormal and so λT is a kth root of a ∗-paranormal

operator.

(2) If N ∈ Lat T is invariant subspace of T , then (T |N)k = T k|N . Since

T k is ∗-paranormal, T k|N is ∗-paranormal. Thus T |N is a kth root of ∗-

paranormal.

(3) Since T is quasinilpotent, σ(T ) = {0}. By the spectral mapping

theorem, we get that σ(T k) = {σ(T )}k = {0}. Hence T k is quasinilpotent.

Since T k is ∗-paranormal and quasinilpotent, T k is a zero operator(Lemma

4.2). Therefore T is nilpotent.

(4) Since T is unitarily equivalent to S, there exists a unitary operator

U such that S = U∗TU . Thus T k = (U∗SU)k = U∗SkU and so Sk is

unitarily equivalent to T k. Since T k is ∗-paranormal by hypothesis, Sk is

∗-paranormal and hence S is a kth root of ∗-paranormal operator. �

Theorem 4.9. Let T be a kth root of a M∗-paranormal operator. Then

(1) If T commutes with an unitary operator S, then TS is also a kth root

of a M∗-paranormal operator.

(2) If kerT ∗ is equal to ker (T ∗)k, then kerT reduces for T .

Proof. (1) If A = (TS)k, then we have for any real number λ, there

exists M > 0 such that

M2A∗2A2 + 2λAA∗ + λ2I

= M2Sk∗T k∗Sk∗T k∗T kSkT kSk + 2λT kSkT k∗Sk∗ + λ2I.

54



Since TS = ST, T ∗S∗ = S∗T ∗ and S∗S = I, we get

M2A∗2A2 + 2λAA∗ + λ2I = M2T k∗2T k2 + 2λT kT k∗ + λ2I ≥ 0,

so that A = (TS)k is a M∗-paranormal operator. Hence TS is a kth root

of M∗-paranormal operator.

(2) Let x be any point in ker T . Then T (Tx) = 0 and so Tx ∈ ker T .

Hence T (ker T ) ⊂ ker T . We need to show that T ∗(ker T ) ⊂ ker T. Since T k

is ∗-paranormal, ‖(T k)∗x‖2 ≤ M‖T 2kx‖ for unit vector x in H, and hence

ker T 2k ⊂ ker (T k)∗. Since ker T ∗ = ker (T ∗)k and ker T ⊂ ker T 2k,

ker T ⊂ ker T 2k ⊂ ker (T ∗)k = ker T ∗.

Therefore T ∗x = 0 for all x ∈ ker T . Hence T (T ∗x) = 0 for all x ∈ ker T.

Thus T ∗(ker T ) ⊂ ker T . �

Theorem 4.10. Let T be a weighted shift with non-zero weights {αn}

(n = 0, 1, 2, . . .). Then T is a kth root of M∗-paranormal operator if and

only if

|αn−1|2|αn−2|2 · · · |αn−k|2 ≤ M |αn||αn+1| · · · |αn+2k−1|

for n = k, k + 1, k + 2, . . . .

Proof. Since T is a kth root of M∗-paranormal operator, T k is a M∗-

paranormal operator. Therefore ‖(T k)∗en‖2 ≤ M‖T 2ken‖ (n = 1, 2, . . .).

Here T 2ken = αnαn+1 · · ·αn+(2k−1)en+2k and

(T k)∗en = αn−1αn−2 · · ·αn−ken−k
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for k = 1, 2, . . . . Since T k is M∗-paranormal,

‖(T k)∗en‖2 ≤ M‖T 2ken‖(n = 1, 2 . . .).

⇔ |αn−1|2|αn−2|2 · · · |αn−k|2 ≤ M |αn||αn+1| · · · |αn+2k−1|

for n = k, k + 1 . . . . �

Corollary 4.11. Let T be a weighted shift with non-zero weights {αn}∞n=0.

Then T is a kth root of ∗-paranormal operator if and only if |αn−k|2 · · · |αn−1|2 ≤

|αn| · · · |αn+2k−1| for n = k, k + 1, . . . .

Example 4.6. Let Tx be the weighted shift with nonzero weights α0 =

x, α1 =
√

2
3
, α2 =

√
3
4
, . . . . Then Tx is a kth root of ∗-paranormal operator

if and only if

0 < x ≤ 1√
2
· 4

√
(k + 1)3

3k + 1
.

Proof. From Corollary 4.11, Tx is a kth root of ∗-paranormal operator

if and only if

|αn−k|2 · · · |αn−1|2 ≤ |αn| · · · |αn+2k−1|

for n = k, k + 1, . . . .

Case 1. If n = k, |α0|2|α1|2 · · · |αk−1|2 ≤ |αk| · · · |α3k−1|

⇔ x2 · 2

3
· 3

4
· · · k

k + 1

≤
√

k + 1

k + 2
·
√

k + 2

k + 3
· · ·

√
3k

3k + 1

56



⇔ x2 ≤ k + 1

2
·
√

k + 1

3k + 1

⇔ 0 < x ≤ 1√
2
· 4

√
(k + 1)3

3k + 1
.

Case 2. If n ≥ k + 1, then it is always true. �

Example 4.7. If k = 1 in Example 4.6, then Tx is ∗-paranormal if

and only if 0 < x ≤ 1
4√2

. And Tx is a kth root of ∗-paranormal, but not

∗-paranormal if and only if

1
4
√

2
< x ≤ 1√

2
· 4

√
(k + 1)3

3k + 1
(k > 1).

Example 4.8. If 0 < x ≤
√

2
3
, then Tx is ∗-paranormal and paranor-

mal. If
√

2
3

< x ≤ 1
4√2

, then Tx is ∗-paranormal but not paranormal. If

x > 1
4√2

, then Tx is not ∗-paranormal and not paranormal.

Theorem 4.12. The set ( k
√

P ∗) of all the kth roots of ∗-paranormal

operator is a proper closed subclass of L(H) with the norm topology.

Proof. Since T k is ∗-paranormal, ker T k = ker T 2k. Hence ker T k =

ker T k+1. Let U∗ be any unilateral backward shift on l2. Since ker (U∗)k 6=

ker (U∗)k+1 for any k ∈ N , U∗ is not a kth roots of ∗-paranormal operator.

Finally we show that the class ( k
√

P ∗) is closed in L(H). Let Tn be a

kth root of a ∗-paranormal operator for each positive integer n and let {Tn}
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converge to an operator T in norm. Then {T k
n} converge to an operator

T k in norm. Since the set of all ∗-paranormal operators is closed in the

norm topology and T k
n are ∗-paranormal, T k is ∗-paranormal and hence

T ∈ ( k
√

P ∗) is a kth roots of ∗-paranormal operator. �

It is known that hyponormal operators have translation invariant prop-

erty. On the other hand, the class of square roots of hyponormal operators

may not have the translation invariant property.

Example 4.9. Let T ∈ L(H ⊕H) is defined as

T =

(
0 A
0 0

)
.

Then T is a square roots of hyponormal operator. But [(T − λI)∗2, (T −

λI)2] =

(
−4|λ|2AA∗ 0

0 4|λ|2A∗A

)
, which is not positive. Hence (T − λI)2

is not necessarily hyponormal.

Theorem 4.13. If T−λI is a kth root of hyponormal operator for every

λ ∈ C, then T is hyponormal.

Proof. If (T − λI)k is a hyponormal for every λ ∈ C, then

[(T ∗ − λ̄)k, (T − λI)k] ≥ 0.

Therefore, we have

0 ≤ ((T ∗ − λ̄)k(T − λ)k − (T − λ)k(T ∗ − λ̄)k
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= (T ∗ − λ̄)k(T − λ)k − (T − λ)k(T ∗ − λ̄)k,

(∗) =
k∑

r=0

(
k
r

)
(T ∗)k−r(−λ̄)r ·

k∑
s=0

(
k
s

)
T k−s(−λ)s

−
k∑

s=0

(
k
s

)
T k−s(−λ)s ·

k∑
r=0

(
k
r

)
(T ∗)k−s(−λ̄)r.

Set λ = ρeiθ for every 0 ≤ θ < 2π and ρ > 0. Then we get

(∗) =
k∑

r=0

k∑
s=0

(−1)r+s

(
k
r

) (
k
s

)
ρr+sei(s−r)θ(T ∗)k−rT k−s

−
k∑

r=0

k∑
s=0

(−1)r+s

(
k
r

) (
k
s

)
ρr+sei(s−r)θT k−s(T ∗)k−r.

Since terms in (∗) are eliminated when r = s = k, we do eliminate these

terms and then divide by ρ2k−2. Then we obtain

0 ≤
(

k
k − 1

) (
k

k − 1

)
[T ∗T − TT ∗] +

1

ρ
(the other terms).

Letting ρ −→∞, we get T ∗T ≥ TT ∗. �
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