碩士學位論文

Psim 프로그램에 의한 유도전동기의 간접 벡터제어 해석

濟州大學校 産業大學院

電子電氣工學科

梁 泰 洗

1 9 9 9

碩士學位論文

Psim 프로그램에 의한 유도전동기의 간접 벡터제어 해석

指導教授 金 一 焕

濟州大學校 産業大學院

電子電氣工學科

梁 泰 洗

1 9 9 9

Psim 프로그램에 의한

유도전동기의 간접 벡터제어 해석

指導教授 金 一 焕

이 論文을 工學 碩士學位 論文으로 提出함

1999年 12月 日

濟州大學校 産業大學院

梁泰洙

梁泰洙의 工學 碩士學位論文을 認准함

1999年 12月 日

- 委員長 (印)
- 委員 (印)
- 委員(印)

차 목

그림목차 · · · · · · · · · · · · · · · · · · ·
표목차····································
SUMMARY · · · · · · · · · · · · · · · · · · ·
I. 서론 ···································
Ⅱ. 유도전동기의 벡터제어 ····································
Ⅲ. 컴퓨터 시뮬레이션 · · · · · · · · · · · · · · · · · · ·
Ⅳ. 실험결과 및 고찰・・・・・・・・・・・・・・15
V. 결 론 ··································
참고문헌 ••••••

그 림 목 차

Fig. 1 Idealized three-phase induction motor in d-q				
synchronously rotating reference frame				
Fig. 2 d-q equivalent circuits at synchronously rotating				
reference frame · · · · · · · · · · · · · · · · · · ·				
Fig. 3 The proposed control block diagram $\cdots \cdots \cdots$				
Fig. 4 Simulation results of step response				
Fig. 5. Simulation results of speed response with CW and				
CCW ···································				
Fig. 6 Simulation results of speed response with load				
change ••••••14				
Fig. 7 Schematic diagram of experimental system15				
Fig. 8 Photo graph of M-G system · · · · · · · · · · · · 16				
Fig. 0. Dhote graph of DSD and investor system 17				
rig. 9 rhoto graph of DSr and inverter system ••••••1/				

Fig.	10	Photo graph of Resistor for load change •••••18
Fig.	11	Experimental results of step response ••••••19
Fig.	12 (Experimental results of speed response with CW and CCW

표 목 차

Analysis of Vector Control for Induction Motor Drive using Psim Program

Tae-Su Yang

DEPATRMENT OF ELECTRONIC AND ELECTRICAL ENGINEERING GRADUATE SCHOOL OF INDUSTRY CHEJU NATIONAL UNIVERSITY

Supervised by professor Eel-Hwan Kim

This paper describes the indirect vector control method for induction motor drive controlled by IGBT PWM inverter system using Psim program. In the computer simulation, it is shown how to make a design for indirect vector control of induction motor with PI speed control loop. Experiments with the induction motor that has 5 hp power ratings under the same condition of simulation status are made to verify the effectiveness of the proposed method.

Key Words : Indirect vector control, Psim program, Induction motor, PI control.

- 4 -

I. 서 론

유도전동기는 구조가 간단하고 견고하며 가격이 저렴하여 정속도를 요하는 산업현장에서는 오래전 부터 널리 사용되어 왔다. 그러나 유도전 동기를 가변속 구동 하기 위해서는 입력 전원의 주파수를 제어하거나 극 수를 변환 시켜야 한다. 극수변환 방법은 정밀 속도제어가 어려워 응용 범위가 한정되어 있지만 주파수 변환법은 속도제어를 정밀하게 할 수가 있다. 그렇지만 예전에는 기술적인 문제로 인하여 산업현장에서 주로 직류기가 많이 사용되었다. 그런데 1960년말 독일 과학자가 발표한 벡터 제어 이론의 도입과 컴퓨터와 전력용 반도체 기술의 발달로 인하여, 최 근에는 유도전동기도 직류전동기와 같은 운전특성으로 제어할 수 있게 되었다. 이로 말미암아 종전에 직류전동기가 주종을 이루던 산업분야에 서 지금은 유도전동기가 서보 시스템의 주 전통기로 크게 각광받고 있 다.

여기서 유도전동기를 직류기와 같이 제어할 수 있는 벡터제어 이론은 유도전동기의 고정자 전류를 동기속도로 회전하는 d-q축으로 변환하여 d축을 자속성분, q축을 토오크 성분으로 분리하여 마치 타여자 직류전동 기와 유사한 특성으로 제어할 수 있다는 이론이다(Bose,1997). 그런데 벡 터제어 이론을 유도전동기에 적용하기 위해서는 반드시 인버터 시스템을 채용하여야 한다. 이 시스템을 현장에 적용하기에 앞서 시스템을 제어하 기 위한 이론과 용량에 대해서 설계를 하여야 한다. 설계를 위해서는 시 스템의 운전특성에 대해서 분석을 하여야 하는데 이 때 컴퓨터 시뮬레이 션이 필요하다.

여기서 고전적인 수치해석 방법은 전 제어시스템을 프로그램화 하여 출 력을 나타내는데 많은 시간과 기술이 필요하며, 또한 프로그램 버그시 디버

- 1 -

깅하기가 어렵다는 문제점을 가지고 있다. 뿐만 아니라 소자의 고유특성에 대한 해석도 하기가 어렵다. 반면에 시뮬레이션을 위한 전용 프로그램 들은 이러한 문제들을 어느 정도 해결할 수가 있다. 그러나 개발한 회사의 제품 에 따라서 고유한 장단점을 가지고 있기 때문에 사용하고자 하는 용도에 가장 알맞는 프로그램을 선정해야 한다. 이러한 프로그램들 중에서 Psim 프로그램은 아날로그와 디지털 그리고 자동제어의 제어 블록선도 개념까지 를 포함한 사용자위주의 인터페이스를 구성하여, schemetic 상에서 프로그 램이 수행되기 때문에 다른 어떤 프로그램보다도 이해가 쉽고 사용하기가 편리하도록 되어 있다는 큰 장점을 가진다(목형수,1998).

따라서 본 논문에서는 전기전자 회로시스템 해석 프로그램 중 전체 시스 템의 토폴로지 및 제어기법을 검증하기가 쉬운 Psim 프로그램을 택하여, 벡터제어 방법 중 구현하기가 쉬운 간접 벡터제어 방법으로 5 [hp]의 정격 을 갖는 유도전동기의 속도제어 및 부하 시험시의 해석방법을 제안하고, 제 안한 해석방법의 타당성을 검증하기 위해 실험을 통하여 이를 입증하고자 한다.

II. 유도 전동기의 벡터제어

2-1. 유도기의 d-q 등가 모델

3상 유도전동기의 전압방정식을 구하기 위하여 고정자 전원이 대칭이며 고정자의 1차 권선과 회전자의 2차권선의 기자력 분포를 정현파로 하고, 철 심의 포화는 없는 것으로 가정하면 고정자 및 회전자의 전압방정식은 정지 좌표계에서 식(1)과 식(2)와 같이 나타내어진다. Fig. 1은 3상 2극을 갖는 유도전동기의 고정자 및 회전자의 동기좌표축에 의한 d-q변환을 나타내고 있다(Bose,1997).

$$V_{s} = R_{s} i_{s} + \frac{d\Phi_{s}}{dt}$$

$$V_{r} = R_{r} i_{r} + \frac{d\Phi_{r}}{dt}$$
(1)
(2)

여기서,

$$V_{s} = \begin{bmatrix} V_{as} & V_{bs} & V_{cs} \end{bmatrix}^{T}$$
(3)

$$i_{s} = \begin{bmatrix} i_{as} & i_{bs} & i_{cs} \end{bmatrix}^{T}$$

$$\tag{4}$$

$$\boldsymbol{\varPhi}_{s} = \begin{bmatrix} \boldsymbol{\varPhi}_{as} & \boldsymbol{\varPhi}_{bs} & \boldsymbol{\varPhi}_{cs} \end{bmatrix}^{T}$$
(5)

$$V_r = \begin{bmatrix} V_{ar} & V_{br} & V_{cr} \end{bmatrix}^T$$
(6)

$$i_{r} = \begin{bmatrix} i_{ar} & i_{br} & i_{cr} \end{bmatrix}^{T}$$

$$\tag{7}$$

$$\boldsymbol{\varPhi}_{r} = \begin{bmatrix} \boldsymbol{\varPhi}_{ar} & \boldsymbol{\varPhi}_{br} & \boldsymbol{\varPhi}_{cr} \end{bmatrix}^{T}$$
(8)

- 3 -

Fig. 1 Idealized three-phase induction motor in d-q synchronously rotating reference frame 제주대학교 중앙도서관

일반적으로 유도기는 고정자와 회전자 상호간의 결합 효과 때문에 동특 성이 매우 복잡하며, 시변계수를 갖는 상태 미분방정식으로 표현된다. 유도 기의 제어나 해석을 위해 동특성을 고찰할 때 자속이 시변원소를 갖기 때 문에 해석하기가 매우 어려워진다. 따라서 시변원소를 상수 원소로 만들기 위해 d-q 좌표계 변환을 사용하여 시변계수를 제거하고, 변수와 파라메터 값들은 d-q 좌표계 값으로 표현한다. a-b-c 축으로부터 d-q축으로 변환하 기 위한 변환 행렬 T_{dq} 는 다음과 같다.

$$T_{dq} = \frac{2}{3} \begin{bmatrix} \cos \omega t & \cos(\omega t - \frac{2}{3}\pi) & \cos(\omega t + \frac{2}{3}\pi) \\ \sin \omega t & \sin(\omega t - \frac{2}{3}\pi) & \sin(\omega t + \frac{2}{3}\pi) \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \end{bmatrix}$$
(9)

- 4 -

어떤 변수 X에 대한 3상을 2상으로 변환하는 식은 다음과 같이 나타낼 수 있다.

$$X_{dq} = T_{dq} \cdot X_{abc} \tag{10}$$

 $(\exists 7] \forall X_{dq} = [X_d X_q]^T, X_{abc} = [X_a X_b X_c]^T$

식(9)에서 각속도 w는 두 좌표계 사이의 상대 각속도이며 세번째 행은 영 상분을 나타내는 것으로 3상 평형조건에서는 0이 된다. 식(1)을 d-q축 값으 로 변환하기 위해 양변에 변환행렬 T_{dq} 를 곱하면 다음과 같다.

$$T_{dq} V_{s} = T_{dq} R_{s} i_{s} + T_{dq} \frac{d \Phi_{s}}{dt}$$
(11)

이 된다. 식(11)에서

$$T_{dq} V_{s} = V_{dqs} \tag{12}$$

이고, $R_s = R_s I$ 로 나타낼 수 있다. 여기서 I는 Unit Vector이다. 그러므 로

$$T_{dq}R_s i_s = R_s I T_{dq} i_s$$

$$= R_s i_{dqs}$$
(13)

가 되고

- 5 -

$$T_{dq} \frac{d \Phi_{s}}{dt} = -\frac{d}{dt} (T_{dq} \Phi_{s}) - -\frac{d}{dt} (T_{dq}) \Phi_{s}$$

$$= -\frac{d \Phi_{dqs}}{dt} - -\frac{d}{dt} (T_{dq}) \Phi_{s}$$
(14)

가 된다. 식(14)에서

 $\left(\frac{d}{dt} T_{dq}\right) \mathbf{\Phi}_{s} = \omega_{e} \begin{bmatrix} -\mathbf{\Phi}_{ds}^{e} \\ +\mathbf{\Phi}_{qs}^{e} \end{bmatrix}$ 로 나타낼 수 있기 때문에 식(11)은 다음 과 같이 동기 좌표계에서 d-q식으로 표현할 수 있다.

$$V_{qs}^{e} = R_{s} i_{qs}^{e} + \frac{d\Phi_{qs}^{e}}{dt} + \omega_{e} \Phi_{ds}^{e}$$
(15)

$$V_{ds}^{e} = R_{s} i \frac{e}{ds} + \frac{d\Phi_{ds}^{e}}{dt} - \omega_{e} \Phi_{qs}^{e}$$
(16)

마찬가지의 방법으로 회전자의 d-q 전압식을 구하면 아래와 같이 된다.

$$V_{qr}^{e} = R_{r} i_{qr}^{e} + \frac{d\Phi_{qr}^{e}}{dt} + (\omega_{e} - \omega_{r}) \Phi_{dr}^{e}$$
(17)

$$V_{dr}^{e} = R_{r} i_{dr}^{e} + \frac{d\Phi_{dr}^{e}}{dt} + (\omega_{e} - \omega_{r}) \Phi_{qr}^{e}$$
(18)

식(17)과 식(18)에서 (ω_e-ω_r) 은 고정자축과 회전자축 간의 상대속 도 즉 슬립 각속도이다. 농형 유도전동기에서는 V^e_{qr}=V^e_{dr}=0 이 성립 한다. 또한 고정자와 회전자의 쇄교자속은 다음과 같이 표현된다.

- 6 -

$$\Phi_{qs}^{e} = L_{ls} i_{qs}^{e} + L_{m} (i_{qs}^{e} + i_{qr}^{e})$$
(19)

$$\Phi_{ds}^{e} = L_{ls} i_{ds}^{e} + L_{m} (i_{ds}^{e} + i_{dr}^{e})$$
(20)

$$\Phi_{qr}^{e} = L_{lr} i_{qs}^{e} + L_{m} (i_{qs}^{e} + i_{qr}^{e})$$
(21)

$$\Phi_{dr}^{e} = L_{lr} i_{dr}^{e} + L_{m} (i_{ds}^{e} + i_{dr}^{e})$$
(22)

Fig. 2 d-q equivalent circuits at synchronously rotating reference frame

식(19)부터 식(22)까지에서 L_{k} 와 L_{lr} 은 고정자와 회전자의 누설 인 덕턴스이고 L_{m} 은 상호 인덕턴스이다. 식(15)부터 식(22)까지를 이용하여 동기 좌표계에서의 d-q 등가회로를 구하면 Fig. 2와 같다. 출력 토오크는 다음과 같이 나타낼 수 있다.

$$T_{e} = \frac{3}{2} \frac{P}{2} \frac{L_{m}}{L_{r}} \left(\boldsymbol{\Phi}_{dr}^{e} i_{qs}^{e} - \boldsymbol{\Phi}_{qr}^{e} i_{ds}^{e} \right)$$
(23)

여기서 P는 극수이다.

- 7 -

2-2. 유도전동기의 간접 벡터제어

벡터제어는 자속의 회전각을 알아내는 방식에 따라 크게 직접 벡터제어 와 간접 벡터제어로 나누어진다. 직접 벡터제어는 직접 측정한 자속을 이용 하거나 전압과 전류 그리고 속도 정보등을 이용하여 간접적으로 추정된 자

속을 이용하는 제어 방식이다. 그런데 직접 측정법은 고정자 slot에 홀 소자와 자속 검출 코일을 설치해야 하므로 기계적으로 취부가 어렵고, 비용 이 증가하며 고조파 및 노이즈에 취약하여 거의 쓰이지 않고 있다. 또 간접 적으로 추정된 자속을 이용하는 방식은 복잡한 제어이론과 제어 시스템의 빠른 응답특성을 요하는 문제 때문에 구현하기가 어렵다는 문제점을 내포 하고 있다. 반면에 간접 벡터 제어방식은 고정자 전압이나 전류에 의해 기 준 자속을 구하지 않고 기준 토크 전류나 자속 전류로부터 슬립 각속도를 계산하고, 이에 회전자 속도를 더하여 간접적으로 구한 회전자 자속의 순시 속도가 동기 각속도 ω_e 되도록 하여 회전 자속이 d축에만 존재하도록 제 어하는 것이다. 즉

$$\boldsymbol{\Phi}_{ar}^{e} = 0 \tag{24}$$

이 되도록 하는 것이다. d-q 변수로부터 표현된 토오크와 자속 관계식은 식(21)과 식(24)로 부터

$$i_{qs}^{e} = -\frac{L_{r}}{L_{m}} i_{qr}^{e}$$
(25)

을 얻을 수 있고 또 식(23)과 식(24)로부터 다음과 같은 토오크식을 얻을 수 있다.

- 8 -

$$T_{e} = \frac{3}{2} \frac{P}{2} \frac{L_{m}}{L_{r}} \boldsymbol{\Phi}^{e}_{dr} i^{e}_{qs}$$
(26)

식 (26)에서 토오크는 자속이 일정할 경우, 토오크분 전류 i_{gs}^{e} 에 비례함 을 알 수 있다. 유도전동기의 동기 좌표계에서는 q축 자속은 0이고 d축 자 속은 일정한 값을 가진다. 이러한 조건을 이용하면 식(17)부터 식(22)에서 다음과 같은 슬립 관계식을 얻을 수 있다.

$$\omega_{e} - \omega_{r} = \omega_{sl} = -\frac{R_{r}i_{ar}^{e}}{\Phi_{dr}^{e}} = \frac{R_{r}i_{as}^{e}}{L_{r}i_{ds}^{e}}$$
(27)

식(27)에서 ω_e 는 속도 명령값이고 ω_r 은 실제 전동기의 속도값이기 때문에 ω_{sl} 은 전동기의 속도 오차에 해당된다. 따라서 ω_{sl} 를 i^e_{qs} 와 i^e_{ds} 로부터 계산하여 ω_r 과 합산하면 원하는 속도제어를 할 수 있고, 간접 벡터제어가 가능하게 된다. 이것을 공간 좌표상에서 고정자 좌 표축과 회전자 좌표축의 관계로 나타내면 Fig. 1과 같다. 이 그림에서 알 수 있듯이 속도 제어시 오차가 0 이 되도록 제어하면 회전자 속도가 기준 속도에 도달하게

된다. 결국 간접 벡터 제어방식은 저속에서부터 고속영역까지 운전이 가능 하며 시스템 구성이 간단하다는 큰 장점을 가져 유도전동기의 벡터 제어시 많이 사용되고 있다.

-9-

III. 컴퓨터 시뮬레이션

시스템을 설계하고 구동하기 앞서 시스템의 특성들을 파악하기 위해 일 반적으로 컴퓨터 시뮬레이션을 행한다. Psim 프로그램으로 유도전동기의 간접 벡터제어를 위한 시스템 제어 블록선도를 Fig. 3과 같이 만들어 Table 1과 같은 파라메터를 갖는 유도전동기를 모델전동기로 사용하여, PI 제어에 의한 속도제어와 부하변동에 대한 시스템의 응답특성을 해석하였다. Fig. 4는 일반적인 PI 속도 제어시 스텝 속도명령으로 1000 [rpm]을 인가했 을 때 속도응답, q축 전류, 그리고 전동기 한 상의 전류를 나타내고 있다. 여기서 샘플링 시간은 속도제어 루프에서는 1 [ms], 전류제어 루프에서는 100 [µs]로 하고 과전류 방지를 위해 전류 제한기로 최대 10 [A]로 제한하 였다. 그리고 자속분 전류 i_{ch} 는 3 [A]로 유지 시켰다.

Rated power	5 [hp]	Rs	1.6282 [Ω]
Rated voltage	220/380 [V]	Ls	0.0044 [H]
Rated current	13.5/7.8 [A]	Rr	1.5042 [Ω]
Rated speed	1730 [rpm]	Lr	0.0044 [H]
J	0.015[kg- m ²]	Lm	0.158 [H]
Pole number		4	

지주대학교 중앙도서관 Table 1 Parameters of model motor 이 결과에서 정상상태에 도달하는 시간이 약 0.4 [sec] 쯤에 도달하고 있 고 Fig. 5는 1000 [rpm]의 정역 운전시의 결과를 나타내고 있다. 여기서 정역 속도명령에 실제 속도가 잘 추종하고 있음을 알 수 있다. Fig. 6은 M-G set에 의한 부하실험을 행한 결과로서 1000 [rpm]으로 운전하고 있는 전동기의 축에 연결된 직류발전기의 출력에 저항 부하를 인가하여 부하변 동에 대한 속도 응답특성을 나타내고 있다. 이 결과에서 보면 부하 변동시 에도 속도변화가 거의 없어 제어가 잘되고 있음을 알 수 있다.

Fig. 3 The proposed control block diagram

Fig. 5 Simulation results of speed response with CW and CCW

Fig. 6 Simulation results of speed response with load change

IV. 실험결과 및 고찰

제안한 해석 방법을 검증하기 위해 3상 IGBT 전압원 인버터와 TMS320C31 DSP를 이용하여, Fig. 7과 같은 형태의 제어 시스템으로 실험 을 행하였다. 실험에 사용된 IGBT소자는 1200[V]에 50 [A]의 정격을 가지 며 속도를 검출하기 위한 엔코더는 1024 [P/rev]를 갖는다. 그리고 전류를 검출하기 위해서 사용된 전류센서는 4 [V/60 A]의 용량을 갖는다. 측정된 전류값은 12 bit 4 채널 A/D 컨버터를 통해서 100 [µs]마다 DSP로 읽어 드리도록 하였다. 또한 시스템의 간결성을 위하여 EPLD를 사용하였는데 Space Vector PWM 펄스를 발생시키는 부분과 속도계산을 위한 M/T 방

Fig. 7 Schematic diagram of experimental system

법에 이용 되었다. 뿐만아니라 DSP에서 메모리 및 인터페이스 부분을 위 해 사용되었기 때문에 제어시스템을 간결하게 하였다. 실험중 분석하고자 하는 파형은 12bit 8채널의 D/A 컨버터를 통해서 오실로스코프로 나타내도 록 하였다. 실험은 시뮬레이션에서 이용된 것과 같은 정수를 갖는 유도전동 기를 택하여 구동시 속도 제어루프는 1 [ms], 전류제어 루프는 100 [µs]의 샘플링 타임으로 디지털 PI 제어에 실험을 행하였다.

Fig.8 은 본 논문에서 사용된 M-G set이고 부하 변동 실험을 위한 직 류발전기는 정격 여자전압이 180[V], 정격출력전압이 200[V], 정격속도는 1750 [rpm]을 갖는다. Fig.9 는 실험에 이용된 TMS320C31 DSP 시스템 과 3상 PWM IGBT 인버터 시스템을 나타내고 있다. Fig. 10 은 부하변동 에 사용된 저항 부하이며 용량은 1 [kW] 100 [*Q*] 이다.

Fig.8 Photograph of M-G system

- 16 -

Fig. 9 Photograph of DSP and inverter system

Fig. 10 Photograph of Resistor for load change

Fig. 11은 스텝 속도 명령에 대한 응답 특성을 나타내고 있다. 이 파형 을 분석해 보면 속도 명령에 대한 실제 속도가 0.4 [sec]만에 오버슈트없이 정상상태에 잘 도달하고 있고, 또한 전동기에 과전류 방지를 위해 전류 제 한기 동작이 정상적으로 잘되어 전동기 한상 *i*_{as} 의 최대치가 10 [A]가 넘 지 않고 있다. 이 결과들을 시뮬레이션 결과인 Fig. 4와 비교해 보면 서로 거의 일치함을 알 수 있다.

Fig. 12 는 1000 [rpm]의 속도 명령값으로 정역운전에 대한 결과를 나타 내고 있다. 이 그림에서 보면 실제속도가 정역운전시 응답 추종 특성이 실험장치의 커플링 문제로 인하여 약간 떨어지고 있음을 알 수 있다. 그러 나 i_{qs} 의 전류파형은 시뮬레이션과 결과와 잘 일치되고 있음을 알 수 있 다. Fig. 13은 외란의 한 예로 전동기 축에 연결된 발전기의 출력에 저항 부하를 변동했을 때 속도 응답특성과 전류특성에 대한 파형을 나타내고 있다. 이 부하변동 실험은 유도전동기에 직류발전기를 연결하여 유도전동기 를 정속 운전시 직류발전기의 출력에 저항부하를 연결한다. 부하로는 1 [kW] 100[Ω]짜리 습동저항을 이용하였다. 이 파형들과 Fig. 5와 Fig. 6을 비교해 봐도 정역 운전시와 부하 인가시에도 속도 특성이 거의 일치함을 알 수 있다. 이상의 실험결과와 컴퓨터 시뮬레이션 결과들을 종합해보면 서 로 잘 일치함을 알 수 있어, Psim 프로그램이 시스템의 운전특성을 해석하 는데 크게 유용함을 알 수 있다.

Fig.11 Experimental results of step response

Fig. 13 Experimental results of speed response with load change

□ STOPPED

4 AC 0.0 A

- 20 -

V. 결 론

본 논문에서는 전기전자 회로시스템 해석 프로그램인 Psim 프로그램을 이용하여 유도전동기의 간접 벡터제어에 의한 속도제어와 부하실험에 대한 해석 방법을 제안하였다. 제안한 해석 방법의 타당성을 검증하기 위해 실 제 실험과 컴퓨터 시뮬레이션에 의한 결과들을 서로 비교 검토하였다. 두 결과를 비교해보면 서로 거의 일치하여 제안한 해석 방법이 타당성을 입증 하고 있다. 이를 이용하면 전동기 구동 설계시 뿐만 아니라 다른 응용 시스 템에도 적용 가능하리라 사료되어, 제어 시스템 설계시 전체 시스템의 운전 특성을 이해하는데 도움이 될 것으로 기대된다.

참 고 문 헌

Bimal K. Bose, 1997. Power Electronics and Variable Frequency Drives. IEEE Press, pp. 209~276.

Andrzej M. Trzynadlowski, 1997. The Field Orientation Principle in Control of Induction Motors. KLUWER ACADEMIC PUBLISHERS, pp. $1\sim30$.

목형수, 1998. Pspice와 PSIM의 특성비교. 전력전자학회지. Vol. 3, No. 2, pp. 15~18.

Nagase, Y. Matsua, K. Ohnishi, H. Ninomiya, 1984. High Performance Induction Motor Drive System Using a PWM Inverter. IEEE Trans. on Ind. App1., Vol. IA-20, No. 6, pp. 1482~1489.

A. J. Polmann, 1988. Software Pulse Width Modulation for µP Control of AC Drives. IEEE Trans. on Ind. App1., Vol. IA-22, No. 4, pp. 691~696.

Texas Instrument, 1990. TMS320C3x user's guide.

J.Holtz,1992, Pulsewidth Modulation – A survey, IEEE-PESE Conf. Rec., pp. 11–18.

- 22 -

H.W.Van der Broeck, H.C.Skudelny,1998, Analysis and Realization of a Pulse Width Modulator on Voltage Space Vectors, IEEE Trans. on Appl., vol. IA-24, no.1, pp. 142-150.

H.W.Van der Broeck, 1991, Analysis of the Harmonics in Voltage Fed Inverter Drives Caused by PWM Schemes with Discontinuous Switching Operation, EPE Conf. Rec.-3, pp. 261–266.

감사의 글

커다란 긍지와 포부를 갖고 생활한 지난 나의 대학원생활은 참으로 힘들고 험난했지만 때론 흐뭇한 때도 있었습니다.

이 논문이 시작에서부터 완성되기까지 논문지도를 해주신 김일환 교수님, 그리고 본 논문을 심사해주신 이개명교수님, 김세호교수님께 도 감사드립니다.

부족한 저를 늘 염려해 주시고 한결같이 전과정에 걸쳐 격려의 말 씀과 용기를 주시면서 이끌어주신 좌종근교수님, 오성보교수님께 감 사드립니다.

지금 미국에 연구차 가 계신 김호찬교수님께도 진심으로 감사함을 드립니다. 그리고 전적으로 밤낮을 가리지 않고 논문정리에 애써준 김근택 학부생님께 감사한 마음을 전합니다. 그 외 저를 위해 애써주 신 모든 분들께도 감사드립니다.

끝으로 어려운 시기에 때늦은 공부를 하는 대학원생 남편과 고3,중3 두아들 뒷바지하느라 불평불만하지않고 나에게 용기를 준 사랑하는 아내 김경애에게 고맙다는 말을 전하고싶고, 나의 두아들 용주와,동 기에게도 이 작은 선물로 아빠의 부족함을 채워주면서 귀감이 되었 으면 하는 바램입니다.

감사합니다.

1999년 12월 양태수

- 24 -