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⟨Abstract⟩

TERM RANK-SUM PRESERVERS

OF FUZZY MATRICES

In this thesis, we construct the sets of fuzzy matrix pairs. These sets are naturally occurred

at the extreme cases for the (zero) term rank inequalities relative to the sum of fuzzy matrices.

These sets were constructed with the fuzzy matrix pairs which are related with the term ranks

of the sums and the zero term ranks of the sums of two fuzzy matrices.

That is, we construct the following 5 sets;

T1(F) = {(X, Y ) ∈ Mm,n(F)2|t(X + Y ) = t(X) + t(Y )};

T2(F) = {(X, Y ) ∈ Mm,n(F)2|t(X + Y ) = 1};

T3(F) =
{

(X, Y ) ∈ Mm,n(F)2|t(X + Y ) = max{t(X), t(Y )}
}

;

Z1(F) = {(X, Y ) ∈ Mm,n(F)2|z(X + Y ) = min{z(X), z(Y )}};

Z2(F) = {(X, Y ) ∈ Mm,n(F)2|z(X + Y ) = 0};

For these 5 sets of fuzzy matrix pairs, we consider the linear operators that preserve them.

We characterize those linear operators asT (X) = PXQ or T (X) = PXtQ with appropriate

invertible fuzzy matricesP andQ. We also prove that these linear operators preserve above 5

sets.



1 Introduction and Preliminaries

The linear algebra over semiring is a subject of intensive research because of its purely

algebraic interest and its numerous applications to matrix algebra and combinatorial theory.

During the last century, problems on the characterization of the linear operators that leave

certain matrix subsets invariants were actively studied. For survey of these types of problems,

we refer to the article of Song([11]) and the papers in [10]. The specified frame of problems

is of interest both for matrices with entries from a field and for matrices with entries from

an arbitrary semiring such as Boolean algebra, nonnegative integers, and fuzzy sets. It is

necessary to note that there are several rank functions over a semiring that are analogues of

the classical function of the matrix rank over a field. Detailed research and self-contained

information about rank functions over semirings can be found in [1, 11].

There are some results on the inequalities for the rank function of matrices([1, 2, 3, 4]).

Beasley and Guterman ([1]) investigated the rank inequalities of matrices over semirings. And

they characterized the equality cases for some rank inequalities in [2]. The investigation of

linear preserver problems of extreme cases of the rank inequalities of matrices over fields

was obtained in [4]. The structure of matrix varieties which arise as extremal cases in the

inequalities is far from being understood over fields, as well as semirings. A usual way to

generate elements of such a variety is to find a matrix pairs which belongs to it and to act on

this set by various linear operators that preserve this variety. Song and his colleagues ([3])

characterized the linear operators that preserve the extreme cases of column rank inequalities

over semirings.

There are some results on the linear operators that preserve term rank([7, 8]) and zero-term

rank([5]). But in these papers, the authors studied the term rank and zero-term rank function

themselves.

In this thesis, we characterize linear operators that preserve the sets of matrix pairs which

satisfy extreme cases for the term rank inequalities and zero-term rank inequalities for the sum

of matrices over fuzzy semirings.
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Definition 1.1. A semiringS consists of a setS and two binary operations, addition and

multiplication, such that:

• S is an Abelian monoid under addition (identity denoted by 0);

• S is a semigroup under multiplication (identity, if any, denoted by 1);

• multiplication is distributive over addition on both sides;

• s0 = 0s = 0 for all s ∈ S.

Definition 1.2. A semiring is calledantinegativeif the zero element is the only element with

an additive inverse.

Definition 1.3. A semiring is calledchain if the setS is totally ordered with universal lower

and upper bounds and the operations are defined bya + b = max{a, b} anda · b = min{a, b}.

It is straightforward to see that any chain semiring is commutative and antinegative.

Throughout we assume thatm ≤ n. The matrixIn is then × n identity matrix,Jm,n is

them × n matrix of all ones,Om,n is them × n zero matrix. We omit the subscripts when

the order is obvious from the context and we writeI, J , andO, respectively. The matrixEi,j ,

called acell, denotes the matrix with exactly one nonzero entry, that being a one in the(i, j)

entry. LetRi denote the matrix whoseith row is all ones and is zero elsewhere, andCj denote

the matrix whosejth column is all ones and is zero elsewhere. We let|A| denote the number

of nonzero entries in the matrixA.

Definition 1.4. Let R be the field of reals, letF={α ∈ R | 0 ≤ α ≤ 1} denote a subset of

reals. Definea+b = max{a, b} anda ·b = min{a, b} for all a,b in F . Then(F , +, ·) is called

a fuzzysemiring. LetMm,n(F) denote the set of allm × n matrices with entries in afuzzy

semiringF . We call a matrix inMm,n(F) as afuzzymatrix.

Definition 1.5. A line of a matrixA is a row or a column of the matrixA.

Definition 1.6. A matrix A ∈ Mm,n(F) hasterm rankk (t(A) = k) if the least number of

lines needed to include all nonzero elements ofA is equal tok. Let us denote byc(A) the least
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number of columns needed to include all nonzero elements ofA and byr(A) the least number

of rows needed to include all nonzero elements ofA.

Definition 1.7. A matrix A ∈ Mm,n(F) haszero-term rankk (z(A) = k) if the least number

of lines needed to include all zero elements ofA is equal tok.

Example 1.8. Let

A =


1 2 3

2 0 4

1 3 2

 , B =


1 0 0

2 3 0

0 0 0


Thent(A) = 3, z(A) = 1, t(B) = 2 andz(B) = 3.

Definition 1.9. A matrix A ∈ Mm,n(F) has factor rank k (rank(A) = k) if there exist

matricesB ∈ Mm,k(F) andC ∈ Mk,n(F) such thatA = BC andk is the smallest positive

integer such that such a factorization exists. By definition the only matrix with factor rank

equal to 0 is the zero matrix,O.

If S is a subsemiring of a certain field then there is a usual rank functionρ(A) for any

matrix A ∈ Mm,n(S). It is easy to see that these functions are not equal in general but the

inequalityrank(A) ≥ ρ(A) always holds.

Example 1.10.ConsiderZ+, the set of nonnegative integers. The semiringZ+ is embedded

in the real fieldR. Then the matrix

A =


0 1 2

2 1 0

3 3 3


has different values as, whererank(A)=3 andρ(A)=2.

Definition 1.11. Let F be a fuzzy semiring. An operatorT : Mm,n(F) → Mm,n(F) is

calledlinear if T (X + Y ) = T (X) + T (Y ) andT (αX) = αT (X) for all X, Y ∈ Mm,n(F),

α ∈ F .

Definition 1.12. We say an operator,T , preservesa setP if X ∈ P implies thatT (X) ∈ P,

or, if (X, Y ) ∈ P implies that(T (X), T (Y )) ∈ P whenP is a set of ordered pairs.
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Definition 1.13. An operatorT strongly preservesthe setP if X ∈ P if and only ifT (X) ∈ P,

or, if (X, Y ) ∈ P if and only if (T (X), T (Y )) ∈ P whenP is a set of ordered pairs.

Definition 1.14. The matrixX ◦ Y denotes theHadamardor Schur product, i.e., the(i, j)

entry ofX ◦ Y is xi,jyi,j .

Definition 1.15. An operatorT is called a(P, Q, B)-operator if there exist permutation ma-

tricesP andQ, and a matrixB with no zero entries, such thatT (X) = P (X ◦ B)Q for all

X ∈ Mm,n(F), or, if m = n, T (X) = P (X ◦ B)tQ for all X ∈ Mm,n(F). A (P, Q, B)-

operator is called a(P, Q)-operatorif B = J , the matrix of all ones.

It was shown in [2, 4, 9] that linear preserves for extremal cases of classical matrix inequal-

ities over fields are types of(P, Q)-operators whereP andQ are arbitrary invertible matrices.

On the other side, linear preservers for various rank functions over semirings have been the

object of much study during the last years, see for example [6, 7, 8, 10], in particular term rank

and zero term rank were investigated in the last few years, see for example [5].

Definition 1.16. We say that the matrixA dominatesthe matrixB if and only if bi,j ̸= 0

implies thatai,j ̸= 0, and we writeA ≥ B or B ≤ A.

Definition 1.17. If A andB are matrices andA ≥ B we letA\B denote the matrixC where

ci,j =

 0 if bi,j ̸= 0

ai,j otherwise

The behaviour of the functionρ with respect to matrix multiplication and addition is given

by the following inequalities:

Therank-sum inequalities:

| ρ(A) − ρ(B) |≤ ρ(A + B) ≤ ρ(A) + ρ(B),

Sylvester’s laws:

ρ(A) + ρ(B) − n ≤ ρ(AB) ≤ min{ρ(A), ρ(B)},

and theFrobenius inequality:

ρ(AB) + ρ(BC) ≤ ρ(ABC) + ρ(B),
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whereA, B, C are conformal matrices with coefficients from a field.

In [2, 3, 4, 9] they considered these sets:Q1 − Q5.

1. Q1 = {(A,B)|ρ(A + B) = ρ(A) + ρ(B)};

2. Q2 = {(A,B)|ρ(A + B) = |ρ(A) − ρ(B)|};

3. Q3 = {(A,B)|ρ(AB) = min{ρ(A), ρ(B)}};

4. Q4 = {(A,B)|ρ(AB) = ρ(A) + ρ(B) − n};

5. Q5 = {(A,B, C)|ρ(AB) + ρ(BC) = ρ(ABC) + ρ(B)};

They also characterized the linear operators that preserves these sets. For examples, bijec-

tive linear operator T preservesQ5 if and only if T (X) = αPXP−1 or T (X) = αPXtP−1.

5



2 Term Rank Inequality Over Fuzzy Semiring

We obtain various inequalities for term rank of matrix addtion over fuzzy semirings. We

also show that these inequalities are exact and best possible.

We denote byA
⊕

B the block-diagonal matrix of the form A O

O B

 .

Note that in this sense the operation
⊕

is not commutative.

Proposition 2.1. LetF be an arbitrary fuzzy semiring. For any matricesA, B ∈ Mm,n(F)

we have:

t(A + B) ≤ min{t(A) + t(B), m, n}.

This bound is exact and the best possible.

Proof. This inequality follows directly from the definition of term rank. The substitutionAr =

Ir
⊕

On−r, Bs = On−s
⊕

Is for each pair(r, s), 0 ≤ r, s ≤ n shows that this bound is exact

and the best possible in the casem = n. It is routine to generalize this example to the case

m ̸= n.

Example 2.2. A nontrivial additive lower bound for the term rank of a sum does not hold over

an arbitrary semiring. It is enough to takeA = B = Jm,n over a field whose characteristics

is equal to 2. Thent(A + B) = t(0) = 0. Sincet(A) = t(B) = min{m,n}, we have

t(A + B) < max(t(A), t(B)).

However for antinegative semiring there is a lower bound for the term rank of a sum which

is better than the one for fields or arbitrary semirings. Namely, the following is true.

Proposition 2.3. LetF be a fuzzy semiring. For any matricesA, B ∈ Mm,n(F) the following

inequality holds:

t(A + B) ≥ max{t(A), t(B)}.

This bound is exact and the best possible.
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Proof. This inequality follows from the antinegativity ofF , i.e.,a + b ̸= 0 for anya, b ∈ F ,

a ̸= 0, and the definition of the term rank. To prove that this bound is exact and the best

possible we consider the matricesAr = Ir
⊕

On−r, Bs = On−s
⊕

Is for each pair(r, s),

0 ≤ r, s ≤ n shows that this bound is exact and the best possible in the casem = n. It is

routine to generalize this examle to the casem ̸= n.

Example 2.4. A nontrivial multiplicative lower bound does not hold over an arbitrary fuzzy

semiring. It is enough to takeA = B = Jn over a field whose characteristic is a divisor ofn.

Thent(AB) = t(nJn) = 0.

Over a fuzzy semiring the Sylvester lower bound holds:

Proposition 2.5. LetF be a fuzzy semiring. Then for anyA ∈ Mm,n(F), B ∈ Mn,k(F) the

following inequality holds:

t(AB) ≥


0 if t(A) + t(B) ≤ n,

t(A) + t(B) − n if t(A) + t(B) > n.

This bound is exact and best possible.

Proof. Let A ∈ Mm,n(F), B ∈ Mn,k(F) be arbitray matrices,t(A) = tA, t(B) = tB. Then

A and B have generalized diagonals withtA andtB nonzero elements, respectively. Denote

them byDA andDB, respectively. ThenAB ≥ DADB since F is antinegative. Since the prod-

uct of two generalized diagonal matrices, which havetA andtB nonzero entries, respectively,

has at leasttA + tB − n nonzero entries, the inequality follows.

In order to show that this bound is exact and the best possible for each pair(r, s), 0 ≤ r,

s ≤ n let us takeAr = Ir
⊕

On−r, Bs = On−s
⊕

Is in the casem = n. It is routine to

generalize this example for the casem ̸= n.

Example 2.6. Let A,B ∈ Mn,n(F). The inequalityt(AB) ≤ min(t(A), t(B)) does not

hold. It is enough to takeA = C1, B = R1. Then

t(AB) = t(Jn) = n > 1.
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However the following inequality is true.

Proposition 2.7. LetF be a fuzzy semiring. Then for anyA ∈ Mm,n(F), B ∈ Mn,k(F) the

inequalityt(AB) ≤ min(tr(A), tc(B)) holds. This is exact and the best possible bound.

Proof. This inequality is a direct consequence of the definition of the term rank and antineg-

ativity. The exactness follows from Example 2.6. In order to prove that this bound is the

best possible, for each pair(r, s), 0 ≤ r ≤ m, 0 ≤ s ≤ k, consider the family of matrices

Ar = E1,1 + . . . + Er,1 andBs = E1,1 + . . . + E1,s.

Example 2.8. For an arbitrary fuzzy semiring, the triple(C1, R1, 0) is a counterexample to

the term rank version of the Frobenius inequality, sincet(C1R1)+ t(R10) = n > t(C1R10)+

t(R1) = 1. However ifF is a subsemiring ofR+ the following obvious version is true :

ρ(AB) + ρ(BC) ≤ t(ABC) + t(B)
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3 Zero-Term Rank Inequality Over Fuzzy Semiring

We obtain inequalities for the zero-term rank addition over fuzzy semirings. We also show

that these inequalities are exact and best possible.

Proposition 3.1. LetF be a fuzzy semiring. ForA, B ∈ Mm,n(F) one has that

0 ≤ z(A + B) ≤ min{z(A), z(B)}.

These bounds are exact and the best possible.

Proof. The lower bound follows from the definition of the zero-term rank function.

In order to check that this exact and the best possible for each pair(r, s), 0 ≤ r, s ≤

min{m, n} let us consider the family of matricesAr = J\(Σr
i=1Ei,i), Bs = J\(Σs

i=1Ei,i+1)

if s < min{m, n} andBs = J\(Σs−1
i=1Ei,i+1 + Es,1) if s = min{m,n}. Thenz(Ar) = r,

z(Bs) = s by definition andz(Ar + Bs) = 0 by antinegativity.

The upper bound follows directly from the definition of zero-term rank and from the an-

tinegativity ofF . For the proof of its exactness let us takeA = J andB = O. In order to

check that this bound is the best possible we consider the following family of matrices: for

each pair(r, s), 0 ≤ r, s ≤ min{m, n} let us consider the matricesAr = J\(Σr
i=1Ei,i) and

Bs = J\(Σs
i=1Ei,i).

Proposition 3.2. LetF be a fuzzy semiring. ForA ∈ Mm,n(F), B ∈ Mn,k one has that

0 ≤ z(AB) ≤ min{z(A) + z(B), k, m}.

These bounds are exact and the best possible forn > 2.

Proof. The lower bound follows from the definition of the zero-term rank function. In order

to show that this bound is exact and the best possible let us consider the family of matrices:

for each pair(r, s), 0 ≤ r ≤ min{m,n}, 0 ≤ s ≤ min{k, n}, we takeAr = J\(Σr
i=1Ei,i),

Bs = J\(Σs
i=1Ei,i+1) if s < min{k, n} andBs = J\(Σs−1

i=1Ei,i+1 + Es,1) if s = min{k, n}.

Thenz(Ar) = r, z(Bs) = s by definition and ifn > 2 thenArBs does not have zero elements

by antinegativity. Thusz(ArBs) = 0.
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The upper bound follows directly from the definition of zero-term rank and from the an-

tinegativity ofF .

In order to show that this bound is exact and the best possible let us consider the family

of matrices: for each pair(r, s), 0 ≤ r ≤ min{m,n}, 0 ≤ s ≤ min{k, n}, we takeAr =

J\(Σr
i=1Ri) andBs = J\(Σs

i=1Ci).

Example 3.3. The triple(C1, I, R1) is a counterexample to the zero-term rank version of the

Frobenius inequality, since

z(C1) + z(R1) = 2n − 2 > z(C1R1) + z(I) = n

for n > 2.
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4 Basic results for linear operator over fuzzy semiring

In this section, we obtain some basic results for our main theorems in the section 5 and 6.

For a surjective linear operator, we have the followings.

Theorem 4.1.LetF be a fuzzy semiring andT : Mm,n(F) → Mm,n(F) be a linear operator.

Then the following are equivalent:

1. T is bijective.

2. T is surjective.

3. There exists a permutationσ on {(i, j) | i = 1, 2, · · · , m; j = 1, 2, · · · , n} such that

T (Ei,j) = Eσ(i,j).

Proof. That 1) implies 2) and 3) implies 1) is straightforward. We now show that 2) implies

3).

We assume thatT is surjective. Then, for any pair(i, j), there exists someX such that

T (X) = Ei,j . ClearlyX ̸= O by the linearity ofT . Thus there is a pair of indexes(r, s) such

thatX = xr,sEr,s + X ′ where(r, s) entry ofX ′ is zero and the following two conditions are

satisfied:xr,s ̸= 0 andT (Er,s) ̸= O. Indeed, if in the contrary for all pairs(r, s) eitherxr,s = 0

or T (Er,s) = O thenT (X) = 0 which contradicts with the assumptionT (X) = Ei,j ̸= 0.

Hence

T (xr,sEr,s) ≤ T (xr,sEr,s) + T (X \ (xr,sEr,s)) = T (X) = Ei,j

That is,xr,sT (Er,s) = T (xr,sEr,s) ≤ Ei,j . ThusT (xr,sEr,s) = αEi,j for a certainα ∈ F .

That is there is some permutaionσ on{(i, j) | i = 1, 2, · · · , m; j = 1, 2, · · · , n} such that for

some scalarsbi,j , T (Ei,j) = bi,jEσ(i,j). we now only need show that thebi,j are all units. Since

T is surjective andT (Er,s) ̸≤ Eσ(i,j) for (r, s) ̸= (i, j),there is someα such thatT (αEi,j) =

Eσ(i,j). But then, sinceT is linear,T (αEi,j) = αT (Ei,j) = αbi,jEσ(i,j) = Eσ(i,j). That is,

αbi,j = 1, or bi,j is a unit. But 1 is the only unit over fuzzy semiring.
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Lemma 4.2. LetF be a fuzzy semiring,T : Mm,n(F) → Mm,n(F) be an operator which

maps lines to lines and is defined byT (Ei,j) = Eσ(i,j), whereσ is a permutation on the set

{(i, j) | i = 1, 2, · · · , m; j = 1, 2, · · · , n}. ThenT is a (P, Q)-operator.

Proof. Since no combination ofu rows andv columns can dominateJ whereu+v = m unless

v = 0 (or if m = n, if u = 0) we have that either the image of each row is a row and the image

of each column is a column, orm = n and the image of each row is a column and the image of

each column is a row. Thus, there are permutation matricesP andQ such thatT (Ri) ≤ PRiQ

andT (Cj) ≤ PCjQ or, if m = n, T (Ri) ≤ P (Ri)tQ andT (Cj) ≤ P (Cj)tQ. Since each cell

lies in the intersection of a row and a column andT maps nonzero cells to nonzero (weighted)

cells, it follows thatT (Ei,j) = PEi,jQ, or, if m = n, T (Ei,j) = PEj,iQ = P (Ei,j)tQ

12



5 The Term Rank Preservers Over Fuzzy Semiring

In this section, we obtain characterizations of the linear operators that preserve the set of

matrix pairs which arise as the extremal cases in the inequalities of term rank of matrix sums.

Below, we use the following notations in order to denote sets of matrices that arise as

extremal cases in the inequalities of term rank of matrix sums listed in section 2.

T1(F) = {(X, Y ) ∈ Mm,n(F)2|t(X + Y ) = t(X) + t(Y )};

T2(F) = {(X, Y ) ∈ Mm,n(F)2|t(X + Y ) = 1};

T3(F) =
{

(X, Y ) ∈ Mm,n(F)2|t(X + Y ) = max{t(X), t(Y )}
}

;

5.1 Linear Preservers ofT1(F)

Consider the set of matrix pairs:

T1(F) = {(X, Y ) ∈ Mm,n(F)2 | t(X + Y ) = t(X) + t(Y )}.

We characterize the linear operators that preserve the setT1(F).

Theorem 5.1. LetF be a fuzzy semiring,T : Mm,n(F) → Mm,n(F) be a surjective linear

map. ThenT preserves the setT1(F) if and only ifT is a (P, Q)-operator, whereP andQ are

permutation matrices of appropriate sizes.

Proof. By Theorem 4.1 we have thatT (Ei,j) = Eσ(i,j) for all i, j, 1 ≤ i ≤ m, 1 ≤ j ≤ n, σ

is a permutation on the set of pairs(i, j).

Let us show thatT maps lines to lines. Suppose that the images of two cells are in the

same line, but the cells are not, sayEi,j , Ek,l are the cells such thatt(Ei,j + Ek,l) = 2 and

t(T (Ei,j + Ek,l)) = 1. Then(Ei,j , Ek,l) ∈ T1 but (T (Ei,j), T (Ek,l)) /∈ T1, a contradiction.

ThusT maps lines to lines. Thus by Lemma 4.2,T is a (P, Q)-operator whereP andQ are

permutation matrices of appropriate sizes.
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Conversely,(X, Y ) ∈ T1 thent(T (X) + T (Y )) = t(T (X + Y )) = t(P (X + Y )Q) =

t(X+Y ) = t(X)+t(Y ) = t(PXQ)+t(PY Q) = t(T (X))+t(T (Y )). Thus(T (X), T (Y )) ∈

T1 and T preservesT1

Theorem 5.2. LetF be a fuzzy semiring.T : Mm,n(F) → Mm,n(F) strongly preserves the

setT1(F) if and only ifT is a (P, Q)-operator, whereP andQ are permutation matrices of

appropriate sizes.

Proof. Suppose thatT strongly preservesT1. There is some power ofT which is idempotent,

sayL = T d andL2 = L. It is easy to see thatL strongly preservesT1.

If X ∈ Mm,n(F) and(X, X) ∈ T1 then necessarilyX = O. Thus, ifA ̸= O, L(A) ̸= O

sinceL strongly preservesT1.

Suppose that there existsi, 1 ≤ i ≤ m, such thatL(Ri) is not dominated byRi. Then

there is a pair of indexes(r, s) such thatEr,s is not dominated byRi andL(Ri) ≥ Er,s. Then

(Ri, Er,s) ∈ T1, andL(Ri) = aEr,s + X with xr,s = 0.

Now,

L(Ri + aEr,s) = L(Ri) + L(aEr,s)

= L2(Ri) + L(aEr,s)

= L(L(Ri)) + L(aEr,s)

= L(aEr,s + X) + L(aEr,s)

= L(X) + L(aEr,s) + L(aEr,s)

= L(X) + L(aEr,s + aEr,s)

= L(X) + L(aEr,s)

= L(X + aEr,s)

= L(L(Ri))

= L2(Ri)

= L(Ri).
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Now, (Ri, aEr,s) ∈ T1 but, L(Ri) + L(aEr,s) = L(Ri + aEr,s) = L(Ri) and hence,

(L(Ri), L(aEr,s)) /∈ T1, a contradiction.

We have established thatL(Ri) ≤ Ri for all i. Similarly, L(Cj) ≤ Cj for all j. By

considering thatEi,j is dominated by bothRi andCj we have thatL(Ei,j) ≤ Ei,j . SinceF

is fuzzy semiring, we have thatT also maps a cell to a cell, or|T (Ei,j)| = 1 for all i, j, and

T (J) has all nonzero entries.

So T induces a permutation,σ, on the set of subscripts{1, 2, · · · ,m} × {1, 2, · · · , n}.

That is,T (Ei,j) = Eσ(i,j). We have thatT is a(P, Q)-operator.

Conversely, all(P, Q) operators preserve the term rank.

5.2 Linear Preservers ofT2(F)

Consider the set of matrix pairs:

T2(F) = {(X, Y ) ∈ Mm,n(F)2 | t(X + Y ) = 1}.

We characterize the linear operators that preserve the setT2(F).

Theorem 5.3. LetF be a fuzzy semiring,T : Mm,n(F) → Mm,n(F) be a surjective linear

map. ThenT preserves the setT2(F) if and only ifT is a (P, Q)-operator, whereP andQ are

permutation matrices of appropriate sizes.

Proof. By Theorem 4.1 we have thatT (Ei,j) = Eσ(i,j) for all i, j, 1 ≤ i ≤ m, 1 ≤ j ≤ n, σ

is a permutation on the set of pairs(i, j).

The cellsEi,j , Er,s are in the same line, if and only ift(Ei,j + Er,s) = 1 if and only if

(Ei,j , Er,s) ∈ T2 then(T (Ei,j), T (Er,s)) ∈ T2. That is,t(T (Ei,j) + T (Er,s)) = 1. Therefore

T (Ei,j) andT (Er,s) are in the same line. Thus lines are mapped to lines, and we have thatT

is a(P, Q)-operator by Lemma 4.2.

Conversely, letT be a(P, Q)-operator, and(X, Y ) ∈ T2. Then1 = t(X +Y ) = t(P (X +

Y )Q) = t(T (X + Y )) = t(T (X) + T (Y )). Hence(T (X), T (Y )) ∈ T2. That is,T preserves

T2.
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5.3 Linear Preservers ofT3(F)

Consider the set of matrix pairs:

T3(F) = {(X, Y ) ∈ Mm,n(F)2|t(X + Y ) = max(t(X), t(Y ))}.

We characterize the linear operators that preserve the setT3(F).

Theorem 5.4. LetF be a fuzzy semiring,T : Mm,n(F) → Mm,n(F) be a surjective linear

map. ThenT preserves the setT3(F) if and only ifT is a (P, Q)-operator, whereP andQ are

permutation matrices of appropriate sizes.

Proof. By Theorem 4.1 we have thatT (Ei,j) = Eσ(i,j) for all i, j, 1 ≤ i ≤ m, 1 ≤ j ≤ n,

whereσ is a permutation on the set of pairs(i, j).

Suppose that the images of two cells are not in the same line, but the cells are, sayEi,j , Ei,l

are the cells such thatT (Ei,j), T (Ei,l) are not in the same line, i.e.,t(T (Ei,j + Ei,l)) = 2.

Then(Ei,j , Ei,l) ∈ T3 but (T (Ei,j), T (Ei,l)) /∈ T3, a contradiction. ThusT−1 maps lines to

lines. By Lemma 4.2 it follows thatT−1 is a(P, Q)-operator whereP andQ are permutation

matrices of appropriate sizes. Hence,T is also of this type.

Conversely, if(X, Y ) ∈ T3 thent(X +Y ) = t(X), t(P (X +Y )Q) = t(PXQ), t(T (X +

Y )) = t(T (X)), t(T (X) + T (Y )) = t(T (X)). Hence(T (X), T (Y )) ∈ T3. That is,T

preservesT3.
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6 The Zero-Term Rank Preservers Over Fuzzy Semiring

In this section, we obtain the characterizations of the linear operators that preserve the set

of matrix pairs which arise as the extremal cases in the inequalities of zero-term rank of matrix

sums.

Below, we use the following notations in order to denote sets of matrices that arise as

extremal cases in the inequalities of zero-term rank of matrix sums listed in section 3.

Z1(F) = {(X, Y ) ∈ Mm,n(F)2|z(X + Y ) = min{z(X), z(Y )}};

Z2(F) = {(X, Y ) ∈ Mm,n(F)2|z(X + Y ) = 0};

6.1 Linear Preservers ofZ1(F)

Consider the set of matrix pairs:

Z1(F) = {(X, Y ) ∈ Mm,n(F)2|z(X + Y ) = min{z(X), z(Y )}}.

We characterize the linear operators that preserve the setZ1(F).

Theorem 6.1. LetF be a fuzzy semiring,T : Mm,n(F) → Mm,n(F) be a surjective linear

map. ThenT preserves the setZ1(F) if and only ifT is a (P, Q)-operator, whereP andQ is

a permutation matrices of appropriate sizes.

Proof. By Theorem 4.1 we have thatT (Ei,j) = Eσ(i,j) for all i, j, 1 ≤ i ≤ m, 1 ≤ j ≤ n,

whereσ is a permutation on the set of pairs(i, j).

Let us show thatT maps lines to lines. Suppose that the images of two cells are not in

the same line, but the cells are, sayEi,j , Ei,k are the cells such thatT (Ei,j), T (Ei,k) are

not in the same line. Then one has thatz((J\Ei,j\Ei,k) + Ei,k) = 1 = z(J\Ei,j\Ei,k),

i.e. (J\Ei,j\Ei,k, Ei,k) ∈ Z1, as far as z(T (J\Ei,j\Ei,k) + T (Ei,k)) = 1 < 2 =

min{z(T (J\Ei,j\Ei,k)), z(T (Ei,k))}, i.e. (T (J\Ei,j\Ei,k), T (Ei,k)) /∈ Z1, a contradiction.

ThusT maps lines to lines. By Lemma 4.2 it follows thatT is a(P, Q)-operator whereP and

Q are permutation matrices of appropriate sizes.
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Conversely, if(X, Y ) ∈ Z1 then z(X + Y ) = z(X), z(P (X + Y )Q) = z(PXQ),

z(T (X + Y )) = z(T (X)). Hence(T (X), T (Y )) ∈ Z1. That is,T preservesZ1.

6.2 Linear Preservers ofZ2(F)

Consider the set of matrix pairs:

Z2(F) = {(X, Y ) ∈ Mm,n(F)2|z(X + Y ) = 0}.

We characterize the linear operators that preserve the setZ2(F).

Theorem 6.2. LetF be a fuzzy semiring,T : Mm,n(F) → Mm,n(F) be a surjective linear

map. ThenT preserves the setZ2(F) if and only ifT is a (P, Q)-operator, whereP andQ is

a permutation matrices of appropriate sizes.

Proof. By Theorem 4.1 we have thatT (Ei,j) = Eσ(i,j) for all i, j, 1 ≤ i ≤ m, 1 ≤ j ≤ n,

whereσ is a permutation on the set of pairs{(i, j)|1 ≤ i ≤ m, 1 ≤ j ≤ n}.

Let us show thatT maps lines to lines. For alli = 1, 2, . . . , n, let C1 + . . . + Cn−1 = X,

Y = Cn. Thenz(X + Y ) = z(J) = 0. Hencez(T (X) + T (Y )) = 0 by assumption. Thus

each column is mapped to column. Similarly, each row is mapped to row. ThusT maps lines

to lines. By Lemma 4.2 it follows thatT is a(P, Q)-operator whereP andQ are permutation

matrices of appropriate sizes.

Conversely, ifz(X + Y ) = 0 that is, sets of zero cells inX andY are disjoint. Thus the

same holds forT (X) andT (Y ) sinceσ is a permutation. Hence in(T (X)+T (Y )) there is no

zero elements. i.e.z(T (X) + T (Y )) = 0. Thus(P, Q)-operator preserves the setZ2(F).

As a concluding remark, we have characterized the linear operators that preserve the ex-

treme sets of the term rank inequalities and zero-term rank inequalities of the matrix sums over

fuzzy semirings. For further research, we hope to study the term rank inequalities of matrix

product and zero-term inequalities of matrix product over fuzzy semirings. Moreover, we hope

to research the linear operators that preserve the extreme sets of the term rank inequalities of

the matrix product over fuzzy semiring.

18



References

[1] L. B. Beasley and A. E. Guterman, Rank inequalities over semirings, J. Korean Math.

Soc. 42(2)(2005), 223-241.

[2] L. B. Beasley, A. E. Guterman, and C. L. Neal, Linear preservers for Sylvester and Frobe-

nius bounds on matrix rank, Rocky Mountains J. Math. 36(1)(2006), 67-75.

[3] L. B. Beasley, A. E. Guterman, Y. B. Jun and S. Z. Song, Linear preservers of extremes

of rank inequalities over semirings: Row and Column ranks, Linear Algebra Appl.,

413(2006), 495-509.

[4] L. B. Beasley, S.-G. Lee, and S.-Z. Song, Linear operators that preserve pairs of matrices

which satisfy extreme rank properties, Linear ALgebra Appl. 350 (2002), 263-272.

[5] L. B. Beasley, S.-G. Lee, S.-Z. Song, Linear operators that preserve zero-term rank of

Boolean matrices,J. Korean Math. Soc., V. 36, no. 6, 1999, pp. 1181-1190.

[6] L. B. Beasley and N. J. Pullman, Operators that preserve semiring matrix functions,Lin-

ear Algebra Appl.99 (1988) 199-216.

[7] L. B. Beasley and N. J. Pullman, Term rank, permanent and rook polynomial preservers,

Linear Algebra Appl.90 (1987) 33-46.

[8] L. B. Beasley and N. J. Pullman, Linear operators that preserve term rank 1,Proc. Royal

Irish Academy.91 (1990) 71-78.

[9] A. E. Guterman, Linear preservers for matrix inequalities and partial orderings,Linear

Algebra and Appl., 331(2001) 75-87.

[10] P. Pierce and others, A Survey of Linear Preserver Problems,Linear and Multilinear

Algebra, 33 (1992) 1-119.

[11] S. Z. Song, Topics on linear preserver problems - a brief introduction (Korean),Commun.

Korean Math. Soc., 21(2006), 595-612.

19



⟨국문초록⟩

퍼지행렬의항별계수합의선형보존자

본논문에서는퍼지행렬의짝들로구성되는집합들을구성하였다. 이집합들은두

퍼지행렬들의합의항별계수와영항계수와관련된부등식의극치인경우들에서자연

스럽게나타나는퍼지행렬짝들의집합들이다. 이퍼지행렬짝들의집합들은두퍼지

행렬의항별계수들의합과영항계수들의합과관련된부등식들에서극치인경우들로

구성하였다.

곧,다음과같은 5가지집합을구성하였다;

T1(F) = {(X, Y ) ∈ Mm,n(F)2|t(X + Y ) = t(X) + t(Y )};

T2(F) = {(X, Y ) ∈ Mm,n(F)2|t(X + Y ) = 1};

T3(F) =
{

(X, Y ) ∈ Mm,n(F)2|t(X + Y ) = max{t(X), t(Y )}
}

;

Z1(F) = {(X, Y ) ∈ Mm,n(F)2|z(X + Y ) = min{z(X), z(Y )}};

Z2(F) = {(X, Y ) ∈ Mm,n(F)2|z(X + Y ) = 0};

이상의퍼지행렬짝들의집합을선형연산자로보내어그집합의성질들을보존하

는선형연산자를연구하여그형태를규명하였다. 곧,이러한퍼지행렬짝들의집합을

보존하는 선형연사자의 형태는 T (X) = PXQ 또는 T (X) = PXtQ로 나타남을 보이

고,이들을증명하였다.그리고이선형연산자가위의 5가지집합들을보존함을증명하

였다.
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