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{ Abstract )

Transversal twistor spinors

on a Riemannian foliation

We study the properties of the transversal Killing and twistor
spinors for a Riemannian foliation with a transverse spin structure.
Moreover, we investigate the relationship between them by means of
two conformal invariants. And we study the properties of the
transversal Weyl conformal curvature tensor which is invariant under
any transversally conformal change of the metric. We give a new
lower bound for the eigenvalues of the basic Dirac operator by using
the transversal twistor operator.



1 Introduction

Twistor spinors were introduced by R. Penrose in General Relativ-
ity([25]). In [21], A. Lichnerowicz introduced the twistor operator on the
spinors, which is a conformally invariant, and proved that the twistor
spinors are zeroes of the twistor operator. Further, it is remarkable that
the twistor spinors corrrespond to parallel sections in a certain bundle
(see [3] or [6]). Any killing spinor is a twistor spinor. On the other hand,
it is well known ([6],[20]) that for the twistor spinor ¥, there are two
interesting conformal scalar invariants C(¥), Q(¥) which are constant
on a Riemannian spin manifold. And they proved that a non-vanishing
twistor spinor ¥ is conformally equivalent to a real Killing spinor if and
only if C(¥) # 0 and Q(¥) = 0. Similarly, we can define two invariants
C'(¥), Q' (¥) on a Riemannian spin foliation (see Chapter 6).

Let (M, gar, F) be a Riemannian manifold with a transverse spin fo-
liation F and a bundle-like metric gps. In [13], the author introduced the

transversal Killing spinor which is given by the solution of the equation
Vx¥ + fa(X)- =0 for X € TM, (1.1)

where f is a basic function and 7 : TM — Q is a projection (see (2.2)).
It is well known [13] that any eigenvalue A of the basic Dirac operator

D, satisfies the inequality

2 S qa . v 2). .
A _4(q_1)1£14f(0 + |&|%), (1.2)

where g = codimF, oV is the transversal scalar curvature and & is the
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mean curvature form of F. And in the limiting case, M admits a transver-
sal Killing spinor.

In this paper, we study the properties of the transversal Killing spinor
which occurs in the limiting case in (1.2) and transversal twistor spinors.
Moreover, we investigate the relationship between them by means of two
conformal invariants.

The paper is organized as follows. In Chapter 2, we review the known
facts on a foliated Riemannian manifold. In Chapter 3, we study the
transversal twistor(resp. W-twistor) spinor, which satisfy the transversal

twistor (resp. W-twistor) equation
1 1
Vx¥+ EW(X) Dy ¥ =0 (resp. Vx ¥+ E?T(X) ‘D, ¥=0) XeTM.

Moreover, we prove that the transversal W-twistor spinors correspond to
parallel basic sections in E = S(F) @ S(F). And we study the transver-
sal Killing spinor. In Chapter 4, we consider a transversally confor-
mal change of the Riemannian metric. Using the relation between the
transversal Levi-Civita connections on the normal bundle @ correspond-
ing to two transversally conformally related metrics, we relate the two
canonical spinor connections acting on two isometric foliated spinor bun-
dles. In Chapter 5, we define the transversal Weyl conformal curvature
tensor WV and study the properties of WV. In Chapter 6, we define two
transversally conformal invariants C'(¥) and @’'(¥), which are similar to
ones on [6]. And we study the (transversally) conformal relation between
transversal twistor spinors and transversal Killing spinors. In Chapter 7,

any eigenvalue of the basic Dirac operator estimates.



2 Foliations

2.1 Riemannian foliations

Let M be a smooth manifold of dimension p + q.

Definition 2.1 A codimension q foliation F on M is given by an open
cover U = (U,)qer and for each @, a diffeomorphism ¢, : R**? — U, such
that, on U, N Up # 0, the coordinate change ¢3! 0 ¢4 : 03! (Ua NUs) —
¢35 (Us NUp) has the form

5" © Pa(T,¥) = (Pap(T, ¥), Yap(¥))- 2.1)

From Definition 2.1, the manifold M is decomposed into connected sub-
manifolds of dimension p. Each of these submanifolds is called a leaf of
F. Coordinate patches (U,, @) are said to be distinguished patches for
the foliation F. The tangent bundle L of a foliation is the subbundle
of TM, consisting of all vectors tangent to the leaves of 7. The normal
bundle Q of a codimension ¢ foliation F on M is the quotient bundle
Q=TM/L. Let (M, grp, F) be a (p + ¢q)-dimensional Riemannian man-
ifold with a foliation F of codimension ¢ and a Riemannian metric gys

with respect to F. We recall the exact sequence
0-L->TMS5Q—>0 (2.2)

determined by the tangent bundle L and the normal bundle @ = TM/L
of F. The transversal geometry of a foliation is the geometry infinites-

imally modeled by @, while the tangential geometry is infinitesimally
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modeled by L. A key fact is the existence of the Bott connection in Q
defined by
Vxs = n([X,Y)]) for X € TL, (2.3)

where Y, € TM is any vector field projecting to s under 7 : TM —
Q. It is a partial connection along L. The right hand side in (2.3)
is independent of the choice of Y;. Namely, the difference of two such
choices is a vector field X’ € TL and [X, X'] € 'L so that 7[X, X']| = 0.

A Riemannian metric gg on the normal bundle Q of a foliation F is

holonomy invariant, if
0(X)go=0 VXeTlL, (2.4)

where 8(X) is the transverse Lie derivative operator. Here we have by

definition for s,t € I'Q,

(8(X)gQ)(s,t) = Xgq(s,t) — go(0(X)s,t) — gq(s, 8(X)1).

Definition 2.2 A Riemannian foliation is a foliation F with a holon-
omy invariant transversal metric gg. A metric gp is bundle-like, if the

induced metric gg on @ is holonomy invariant.

The study of Riemannian foliations was initiated by Reinhart in 1959.
A simple example of a Riemannian foliation is given by a nonsingular
Killing vector field X on (M, gar). This means that (X )ga = 0.

An adapted connection in @ is a connection restricting along L to
the partial Bott connection % To show that such connections exist,
consider a Riemannian metric gy on M. Then TM splits orthogonally

as TM = L @ L*. This means that there is a bundle map o : Q@ — L*
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splitting the exact sequence (2.2), i.e., satisfying 7 o o = identity. This

metric gy, on TM is then a direct sum

gM = 9L D gL

With go = 0*g,1, the splitting map o : (Q, go) — (L+, g,1) is a metric
isomorphism.

For a distinguished chart & C M the leaves of F in U are given as
the fibers of a Riemannian submersion f : # — V C N onto an open
subset V of a model Riemannian manifold N.

For overlapping charts U, N Uy, the corresponding local transition
functions Yep = fa 0 f5 ! on N are isometries. Further, we denote by V
the canonical connection of the normal bundle @ of F. It is defined by

7([X,Y,]) for X €TL,
sz = (25)

m(VYY,) for X e TL*,

where s € I'Q, and Y, € I'L! corresponding to s under the canonical
isomorphism L' = Q. For any connection V on @, there is a torsion Ty
defined by

To(Y,2) = Vyn(Z) = Vzn(Y) - (Y, Z] (2.6)

for any Y,Z € T'TM. Then we have the following proposition.

Proposition 2.3 The connection V is metric and torsion free.

Proof. For X e 'L, s,t € I'Q,

XgQ(S7t) = gQ(VXS’t) + gQ(S, VXt)'



For X € I'Q and s,t € TQ, we have Xgg(s,t) = Xgu(Y;,Yy) for Y =
a(s), Yy =0o(t).

Xgu(Ye,Y) = gu(VYY, YY) +gm(Y,, VYY)
= gu(on(VEY,),0(t)) + gu(o(s), om(VX YY)
= gQ(W(V)AgY&)vt) + gQ(37 W(V%Yt))

= go(Vxs,t) + gq(s, Vxt).

Therefore, the connection V is metric.

For X e T'L,Y € I'TM, we have n(X) = 0 and

To(X,Y) = Vxn(Y)~- Vyn(X)-7[X,Y]
= Vxn(Y)-7[X,Y]=0

by (2.3). For Z,Z' e TL*,

To(Z,2") = 7(VYZ")-n(VHZ)=7([Z,2Z')
= n(Tym(Z,2')) =0,

where Tys is the (vanishing) torsion VM. O
The connection V corresponds to the Riemannian connection of the

model space N. The curvature RV of V is defined by
RV(X,Y) =VxVy - VyVyx — V[X,y] for X, Y eTM.

From an adapted connection V in @ defined by (2.5), its curvature RY
coincides with R for X,Y € TL, hence RV(X,Y) =0 for X,Y € TL.
And we have the following proposition ([18]).



Proposition 2.4 Let (M, gn, F) be a (p + g)-dimensional Riemannian
manifold with a foliation F of codimension q and bundle-like metric gy
with respect to F. Let V be a connection defined by (2.5) in Q with
curvature RY. Then the following holds:

i(X)RY =8(X)RY =0 VX eTlL. (2.7)
Proof. (i) Let Y € 'TM and s € I'Q. Then we have

RV(X, Y)S = VxVyS — VyVXS - V[x,y]s
= 0(X)Vy8 - Vyo(X)S - Vg(x)ys
= (O(X)V)ys =0.

(i) Let Y, Z € I'TM and s € I'Q. Then we have

(B(X)RV)Y,Z)s = 6(X)R(Y,Z)s — R¥(8(X)Y, Z)s

—RY(Y,8(X)Z)s — RY(Y,2)8(X)s

= 9(X){VyVzs—VzVys— Vyzs}
—{Veox)yVzs — VzVexyrs — Vigxyy,z18}
—{VyVex)zs — Vex)zVys — Vivex)zs}
—{VyV28(X)s — VzVy8(X)s — Viy,z10(X)s}

= Vy(0(X)Vzs) — Vz(0(X)Vys) — Vex)y,z)s
+V2zVexyys + Vigxy,z)s — Vy Vex)zs
+Vivex)z)s — VyVz0(X)s + VzVy0(X)s

= =Vexv,z1s + Vigxyr.z1s + Vivex)z)s

= (-Vixwz) + Vixyz+ Viyxz)s=0. O



Since i(X)RY = 0 for any X € 'L, we can define the (transversal) Ricci

curvature p¥ : I'Q — I'Q and the (transversal) scalar curvature oV of F
by
p¥(s) =D R"(5,E)Es, 0" =) ga(o"(Eu), Ed),

where {E,},=1.. 4 is an orthonormal basic frame for Q.

Definition 2.5 The foliation F is said to be (transversally) Finsteinian

if the model space N is Einsteinian, that is,

1
p’ ==0" -id (2.8)
q

with constant transversal scalar curvature oV.

2.2 The basic cohomology
The second fundamental form a of F is given by

a(X,Y) =7n(V¥Y) for X,Y €T'L. (2.9)
Proposition 2.6 « is Q-valued, bilinear and symmetric.

Proof. By definition, it is trivial that « is Q-valued and bilinear. Next,

we have that for any X,Y € 'L,
a(X,Y) = n(VYY) = (VY X) — n([X,Y]).

By the torsion freeness of VM and n(X) = n(Y) = 0, n[X,Y] = 0.

Therefore, we have

o(X,Y) = n(V¥X) = a(Y, X). 0



Definition 2.7 The mean curvature vector field of F is defined by

& =Y a(E, E) =" _ n(VEE), (2.10)

where {E;}i=1.. , is an orthonormal basis of L. Its dual form «, the

mean curvature form for L, is then given by
k(X) = go(s", X) V X eTQ. (2.11)
The foliation F is said to be minimal (or harmonic ) if K = 0.

Definition 2.8 Let F be an arbitrary foliation on a manifold M. A

differential form w € Q7(M) is basic if
i(X)w=0, 6(X)w=0 VX elL. (2.12)

In a distinguished chart (z1,...,Zp; ¥1,..-,¥s) of F, a basic form w is

expressed by
W = Z WayarQYay A+ AN dYq,,

a) <---<ar

where the functions w,, ..., are independent of z, i.e. 5‘2—‘_%,...0, = 0. Let
Q7% (F) be the set of all basic r-forms on M. Since for any X € 'L and any
basic form w, §(X)dw = d8(X)w = 0,i(X)dw = (X )w — di(X)w = 0,
the exterior derivative d preserves basic forms. Hence Q% (F) constitutes
a subcomplex

d: Qp(F) = Q5 H(F)
of the De Rham complex €*(M) and the restriction dp = d|qy () is well

defined. Its cohomology
Hp(¥) = H(Qp(F), ds)
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is the basic cohomology of F. It plays the role of the De Rham cohomology
of the leaf space M/F of the foliation. Let ép be the formal adjoint

operator of dg. Then we have the following proposition ([1,13]).

Proposition 2.9 On a Riemannian foliation F, we have

dg =Y 0.AVg, 0p=—) i(E)VE, +i(ks), (2.13)

a
where kg is the basic component of k, {E,} is a local orthonormal basic

frame in Q and {0,} its go-dual 1-form.

The foliation F is said to be isoparametric if x € Qp(F). We already

know that k is closed, i.e., dx = 0 if F is isoparametric ([23]).
Definition 2.10 The basic Laplacian acting on Q5(F) is defined by
Ap =dgdp + dpdp. (214)

The following theorem is proved in the same way as the corresponding

usual result in De Rham-Hodge Theory.

Theorem 2.11 ([26]) Let F be a transversally oriented Riemannian fo-
liation on a closed oriented manifold (M, grr). Assume gp to be bundle-

like metric with k € Q5(F). Then
Hp(F) = Hp(F),
where Hy(F) = {w € Q" (M)|Apw = 0}.

If F is the foliation by points of M, the basic Laplacian is the ordinary

Laplacian.
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3 The transverse spin structure

3.1 Clifford algebras

Definition 3.1 Let V be a vector space over a field K = {R,C} of
dimension n and g a non-degenerate bilinear form on V. The Clifford
algebra CI(V, g) associated to g on V is the algebra over K generated by

V with the relation
vow+w-v=—-29(v,w) (3.1)
for v,w € V. The product ”-” is called the Clifford multiplication.
Remark. (1) If (Ey,--- E,) is a g-orthonormal basis of V, then
(Biy-... E;J1<i1<...<%<n, 0<k<n}

is a basis of CI(V, g) , thus dimCI(V, g) = 2".
(2) There is a canonical isomorphism of vector spaces between the exte-

rior algebra and the Clifford algebra of (V, g) which is given by :
AV 3 CI(V,9)

Eil/\"'AEik’__)Eil""'Eik'

This isomorphism does not depend on the choice of the basis. Let us

denote Cl, = CI(R",< , >). Then we have the following proposition

([19)).

Proposition 3.2 For allv € R* and all ¢ € Cl,, , we have
v-o~vAp—i(v)e and ¢-v=(=1)"(vAp+i(v)p),

11



where A denotes the exterior, i(v) the interior product and ¢ € APR™ C

AR, ~Cl,.

Proof. Let v=FEjand p =E; -...- E

ip*

1. If there exists ix such that j = i, then v A ¢ = 0 and

’L(’U)(,O = (—1)k_lEil A A Eik—l A Eik+1 AN E,'p
~ (—l)k—lEil CaL. Eik—l . Eik+1 . .t E,'p
= —v-p
= (-1)%¢-v.

2. If j ¢ {i1,...,4p} then i(v)y = 0 and

’U/\(,O = EjAEil/\'--AEi,:Ej'Eil'---'Eip
= 'U-(p
= (=1)%¢-w.

As the equalities of the assertion are bilinear, the proposition is proved.

a
Definition 3.3 The Pin group Pin(V) is defined by
Pin(V)={a € Cl(V)la=a; - ax, ||ai|]| = 1}. (3.2)
The Spin group is defined by
Spin(V) = {a € Pin(V)|aa* = 1}, (3.3)

where at = ax---a; for any a = a;---ax. Equivalently, Spin(V) =

{61 . '62k| |€i| = 1}

12



Let V be a real vector space. Then Spin(V) is a compact and connected
Lie group, and for dimV > 3, it is also simply connected. Thus, for

dimV > 3, Spin(V) is the universal cover of SO(V) (for detail, see [19]).

3.2 'Transversal Dirac operator

Let (M, g, F) be a Riemannian manifold with a transversally ori-
ented Riemannian foliation F of codimension ¢ and a bundle-like met-
ric gy with respect to F. Let SO(q) —» Pso — M be the principal
bundle of (oriented) transverse orthonormal framings. Then a trans-
verse spin structure is a principal Spin(g)-bundle Psp, together with
two sheeted covering € : Pspin — Pso such that &(p - g) = &(p)&o(g) for
all p € Pspin, g € Spin(q), where & : Spin(q) = SO(q) is a covering.
In this case, the foliation F is called a transverse spin foliation. We then

define the foliated spinor bundle S(F) associated with Pspi, by
S(F) = Pspin X spin(q) Sqs (3.4)

where S, is the irreducible spinor space associated to . The Hermitian

metric (-,-) on S(F) induced from gg satisfies the following relation:

{0, 9) = (v-p,v 1) (3.5)

for every v € Q, go(v,v) = 1 and ¢,% € S,. And the Riemannian
connection V on Pso defined by (2.5) can be lifted to one on Pgpp, in

particular, to one on S(F), which will be denoted by the same letter.

13



Proposition 3.4 ([9, 12]) The spinorial covariant derivative on S(F) is
given locally by:

1
VY, = Z;QQ(VEG’ Eb)Ea “Ep - ¥, (36)

where ¥, is an orthonormal basis of S;. And the curvature transform

RS on S(F) is given as

R3(X,Y)® = % > " 9o(R¥(X,Y)E,, E,)E, - Ey - ® (3.7)
a,b

for X, Y € TM, where {E,} is an orthonormal basis of the normal
bundle Q.

Proposition 3.5 ([19]) (Compatibility of V with “-” and < -,- >)

(1) X{W,p) =(Vx¥,9) + (¥, Vxyp), VX eITM. (3.8)
(2) Vx(Y -9)=(VxY) - ¥+Y -Vxy, VY €IQ. (3.9)

Theorem 3.6 ([13,17]) On the foliated spinor bundle S(F), we have

> E,-RS(X,E,)® = —%pV(W(X)) - P, (3.10)
> E,-Ey- R°(E., Ey)® = %avé (3.11)

a<b

for X e TM.
Taking 7 to denote the projection
7: C®(T*M ® S(F)) = CZ(Q" ® S(F)) = C*(Q ® S(F)),
we define the transversal Dirac Operator D;,.([4,7]) by
D, =mo#oV5,

14



where m : Q®S(F) — S(F) is the Clifford multiplication, V¥ is a spinor
derivation on S(F) induced by (2.3).

If {E,}a=1,. 4 is taken to be a local orthonormal basic frame in @, then
D, =) E, Vg, (3.12)

In [4,7] it was shown that the formal adjoint D} * is given by D} * =
D, — k- and that therefore

1 1
Dy = D;, — 5k = ; E,- Vg, — 5k (3.13)
is a symmetric, transversally elliptic differential operator. Then we have
the Lichnerowicz-type formula on S(F).

Theorem 3.7 ([7,13]) On an isoparametric transverse spin foliation F

with dk = 0, we have

DAV = V; V¥ + %K“\p, (3.14)
where K° = oV + |k|? and

ViVl ==Y Vi p ¥+ Val. (3.15)
The operator V}.V,, is non-negative and formally self-adjoint([13]). In

fact, we have the following proposition.

Proposition 3.8 ([13]) Let (M, gm, F, S(F)) be a compact Riemannian
manifold with the transverse spin foliation F and a bundle-like metric

gy with respect to F . Then
<< V:,Vtr(I), \II >>:<< Vtrq)> Vtr\p >>

15



for all ®,¥ € TE, where < ®,¥ >= [, (®, V) is the inner product on
S(F).

Proposition 3.9 Let (M, gy, F) be a compact Riemannian manifold
with an isoparametric transverse spin foliation F and a bundle-like met-
ric gy such that 6k = 0. Then it holds
1
D2V = D2V + ZW\IJ + Va V. (3.16)
Proof. By (3.13), we have
1 1
DiV = D2V - 5{5 -D, ¥+ D, (k-VU)} — Z|n|2\If. (3.17)

Moreover, on an isoparametric transverse spin foliation F with éx = 0,

we have
D (k- ¥)+k- D, ¥
=Y E,-Vg,(x-¥)+x-D,¥

=Y {E. (Vg,K) ¥+ E, k- V5 ¥} +x- D, ¥
= {(Ea A VE,k — i(Ea)VE,K)Y

— (k- E,Vg,¥+2V, U} + k- D, ¥
= (dpk + dpk — |k[)T — 2V 4T
= —|&]*¥ — 2V 4.

From (3.17), the proof is completed. O

We define the subspace I'g(S(F)) of basic or holonomy invariant sec-

tions of S(F) by
Fp(S(F))={¥elS(F)|[Vx¥ =0 for X e 'L}.

16



Then Dy = Dylrgsr) : I'e(S(F)) = I's(S(F)) preserves the basic
sections if F is isoparametric, i.e., k € QL(F). This operator D, is
called the basic Dirac operator on (smooth) basic sections. It is well

known that D, and D? have a discrete spectrum, respectively.

3.3 Transversal twistor operator

Let p : Q@ ® S(F) — Ker m onto Ker m be a projection given by the

formula

q
p(X®\I!)=X®\II+lEE‘a®Ea-X-\II. (3.18)
a=1

We define the transversal twistor operator P] on S(F) by
P =poioV5.
If it does not cause any confusion, we will henceforward use V = V5.
Locally, it is given by
Py =Y E,®P,Y, (3.19)
a
where Py ¥ = VxU + %W(X) - D}, ¥ for any X € TM. Similarly, we put
P,V =Y E.®PgY, (3.20)
a
where PxW¥ = VxU + %W(X ) - Dy¥. Trivially, we have the following
lemma.

Lemma 3.10 On the transverse spin foliation F, we have that for any

XeTM
Px¥ = P,V — 2l7r(X) k- . (3.21)
q
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Definition 3.11 A spinor field of kernel of P, (resp. kernel of Py ) is
called the transversal twistor (resp. W-twistor) spinor, which satisfies the

so-called transversal twistor (resp. W-twistor) equation
1 1
VxV¥ + Eﬂ(X) - D, W = 0(resp.Vx ¥ + EW(X) - D, U =0). (3.22)

Theorem 3.12 If M admits a non-vanishing transversal twistor spinor

U, then F is minimal.
Proof. Let (0 #)¥ € KerP,,. Then we have
1
0=) E.-Pg¥ = > E,-Vg ¥+ aZE,,.E,,-Dt,\I:
1 1
= DyV+-k-¥V-D,¥=_kY9,
2 2
which implies that k = 0. Therefore F is minimal. O

Remark. From Theorem 3.12, we know that there does not exist a
solution of the transversal twistor equation (3.22) if F is not minimal.
So we use the operator P!, for much information of the foliation F when it
is not minimal. Note that any transversal twistor spinor is the transversal

W-twistor spinor. But the converse is not true in general.

Theorem 3.13 Let ¥ € KerP,. be a transversal W-twistor spinor. Then
for all vector fields X, Y € TM, we have

7(X) - Vy¥ 4+ 1(Y) - Vx¥ = %gq(w(X), f(Y)D,¥.  (3.23)

Also, the converse holds.
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Proof. Let ¥ be a transversal W-twistor spinor. Then ¥ satisfies the

transversal W-twistor equation
Vx¥ + %W(X) D, ¥ =0 forany X € TM.

Multiplying the above equation by a vector field on M we have

r(Y) - Vx¥ + %w(Y) x(X)- Dy ¥ =0,

7(X) - Vy¥ + gw(X) cx(Y)- D% =0,
By summing the above equations, we have

R(X) - V¥ 4 7(Y) - V¥ = Zgq(n(X), n(¥)) D}y ¥
Conversely, let (3.23) be valid. Then we have
ZE (X anw+ZE E, Vx¥=1= qu E.)E,-D,¥.
By the properties of the Clifford multiplication, we have
Vx¥ + %w(X) D, ¥ =0.

This implies that ¥ is a transversal W-twistor spinor. O

Theorem 3.14 Let (M, gpr, F) be a compact Riemannian manifold with
an isoparametric transverse spin foliation F and a bundle-like metric gu
such that 6k = 0. Then every transversal W-twistor spinor ¥ € KerP;,

satisfies

D2y = —3 5V, 3.24
tr 4((] _ 1) ( )

VD, ¥ = —2 7 a(X)-p (m(X))}¥  (3.25)

forall X e ITM.
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Proof. Let z € M and choose an orthonormal basic frame {E,} with
the property that (VE,), = 0 for all a. From (3.22), we have at z that

for any transversal W-twistor spinor ¥

1
> Ve Ve ¥+ aD{f\IJ =0. (3.26)
On the other hand, from (3.14), (3,15) and (3.16) we have
1
DRy = — Z Ve VeV + Zo"\y. (3.27)

From (3.26) and (3.27), the first equation (3.24) is proved.
Next, let X be a local vector field arising from a vector in T, M by parallel
displacement along transversal geodesics. Then we have from (3.15) that

at z,

1
VEOVX\I’ + E?T(X) . VEGD;,\I’ = 0.
Therefore, we have
RS(X, E,)¥ — %{W(X) V5. DU~ E,-VyD, U}. (3.28)

Since i(X)RS = 0 for X € 'L, if ¥ € I'3S(F), then D, ¥ € I'gS(F).
From (3.10) and (3.28), we have

oV (n(X))- ¥ = _2ZE,, -R5(X,E,)¥
- _2 3" E,- {n(X)- V5, Dy¥ — E, - Vx D}, ¥}

2 '
= —5{((1 ~2)VxD, ¥ - n(X) - Dy ¥}.

From the above equation with (3.24), we obtain the second equation. O
Now we prove a further condition for ¥ being the transversal W-twistor

spinor.
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Definition 3.15 We define the bundle map K : TM — Q by

O.V
K(X) = {ampmX) - "@ (). 629)

From (3.25), it is trivial that for any transversal W-twistor spinor ¥
VD, ¥ = %K(X) 3 (3.30)

We consider the bundle E = S(F) & S(F) and the covariant derivative
VE in E defined by

® Vx®+ in(X) ¥
vE _ [ Vx®H ) . (3.31)
¥ Vx¥ - 1K(X)-®
Then we have the following theorem.

Theorem 3.16 Let (M, gy, F) be a compact Riemannian manifold with
an isoparametric transverse spin foliation F and a bundle-like metric gp

such that §xk = 0. Then every transversal W-twistor spinor ® satisfies

vE ® =0.
D, &

Conversely, if € I'gE 1is VE-parallel, then ® is a transversal
W-twistor spinor and ¥ = D, ®.

Proof. Let ® € KerP,, be a transversal W-twistor spinor. From (3.31),

ve @\ _ [ Vx@+ir(X) Do )
D, & VD, ® - {K(X)-®
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From (3.22) and (3.30), we have

o
D, ®

VE'

I
e

¢
Conversely, let € I'gE be a VEZ_parallel section:
v

Then by definition of VZ, we have
1
Vx®+ EW(X)-‘I’ =0 forany X € TM

and then
1
E Ea-VEa<I>+E EEa~Ea-\I'=0,

where {E,} is an orthonormal baisc frame of Q. Hence D;, & = ¥. This

implies that ® is a solution of the transversal W-twistor equation. O

Remark. By Theorem 3.16, the transversal W-twistor spinors corre-

spond to the VE-parallel basic sections of the bundle E. Hence the

transversal W-twistor spinor ® is defined by its values ®(zo), D}, ®(z0o)

at some point zg € M. So the dimension of the space of the transversal

W-twistor spinors is less than or equal to 2[81+1 Moreover, if ® is the

transversal W-twistor spinor on M such that ® and D; ® vanish at some

point o € M, then @ is trivial, i.e,, ® = 0.
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3.4 Transversal Killing spinor

Definition 3.17 For a basic function f, the spinor field ¥ € I'S(F)
satisfies the transversal Killing equation if for any X € TM

Vil = Vx¥+ fr(X)- ¥ =0. (3.32)

In this case, ¥ is called a transversal Killing spinor on F.

Lemma 3.18 If ¥ is a transversal Killing spinor, then the associate

vector field Xy defined by
Xy=i) (V,E,-V)E,
is a transversal Killing vector field, i.e., 0(Xy)gg = 0.
Proof. Generally, we have that for any Y, Z € T'Q
(0(X)9Q)(Y, Z) = go(Vy7(X), Z) + go(¥, V27 (X)).

Let z € M and choose an orthonormal basic frame {E,} with the prop-
erty that (VE,), = 0 for all a. Then we have at z that for any transversal
Killing spinor ¥ with Vx¥ = — fr(X) - ¥

VyXy = iy Y(V,E,-V)E,
= iy {(Vy¥, E,- V) +(V,E, - VyU)}E,

= —if > {{Y -V, E-¥)+(V,E, Y ¥)}E,
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Therefore, we have

9(VyXw,Z) = —if{ge(}_((Y-¥,E,-V)E,,2)

a

+Y) (¥, B, Y - V)E,, 2))}

—if{(Y -0, Z-0) 4+ (¥, Z-Y -V}

Similarly,
9o(Y,VzXy) = —if{{Z-0,Y - ¥)+ (VY - Z - ¥)}.
Therefore, we have
(0(Xe)gQ)(Y, Z) = go(Vy Xv, Z) + gq(Y, V2 Xy) = 0.
This implies that Xy is a transversal Killing vector field. O
Lemma 3.19 If ¥ is a transversal Killing spinor, then |¥|? is constant.

Proof. Let ¥ be a transversal Killing spinor, i.e., for some basic function
f, Vx¥ =—fr(X) V. Forany X € TM
X|U)? = (Vx¥,¥) + (¥, Vi)
= 0.

So |¥|? is constant. O

Theorem 3.20 ([13]) If M admits a non-vanishing transversal Killing
spinor ¥ with VL ¥ = 0, then
. 2 _ aV
(1) f is constant and f* = rrFEEyE
(2) F is transversally Einsteinian with constant transversal scalar

curvature a¥ > 0.
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Proof. By a direct calculation, we have
1
> B Rip, ¥ = ~5p"(X) ¥+2(g-1) X - ¥—qX (f)¥~grady(f) X ¥

for X € T'Q. Since V/¥ = 0, we have
1
0= —EpV(X)-\IH-Q(q—1)f2X~\II—qX(f)\IJ—gradv(f)-X-\Il. (3.33)
If we put X = grady(f), then

—%pV(X)-\II+2(q—1)f2X"I’ = glgrady(f)[¥ — |grady(f))P¥

= (g-1)|grade(f)*¥.

Therefore, we have
1
(—§pV(X) W+ 2(g— 1)f°X -9, ¥) = (g — 1)|grade(f)I|¥]*. (3.34)

Since the left hand side is pure imaginary and right hand side is real, we

have

lgradv(f)| = 0.

Since f is a basic function, f is constant. Hence from (3.33) we have
1
—§pV(X) U 4+2(q-1)f2X-¥=0.

Therefore, we have

pY(X) =4(¢g-1)f°X.

Thus there exists f2 = ~Z— such that p¥(X) = LoVX. This implies
4¢(q-1) q

that JF is transversally Einsteinian. From (2.8), we have oV = 4q(g—1) f2.
O



Theorem 3.21 If V is a transversal Killing spinor with V{,‘I’ =0, then

1 gq
|Dy ¥|? = Z(E——l V4 &) 0P, (3.35)

1
Re(Dy¥, k- W) = —2 |w[*|¥[% (3.36)

Proof. Let ¥ be a transversal Killing spinor with V&\I! = 0. From
(3.32), we have

> E,-Vg¥=-f) E,-E,-V,

ie., D,V = fqU. Thus

1
Dt,-\I’ = fq\I’ - §I€ . ‘I’, (337)
where f2 = Tq%' From (3.37), we get
1 1
(Dtr‘pa Dtrq’> = <qu’ - §K’ -, fq\I’ - 5"-’ ) ‘I’)

1
= (g + R, ).
Therefore, we have
1 g
2 _ 1 v 2y |2
Dt = (0% + Ik,
From (3.37), we get
(Dp¥,6-0) = (fq¥— %n- U k- ¥)

1
= fa(¥,x ¥~ S IR,
Since (¥, k - ¥) is pure imaginary,

Re(Dy¥, - ) = —%|n|2|\1:|2. o
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Corollary 3.22 If there exists an eigenspinor ¥V of D, with V{r\Il =0,

then F is minimal.

Proof. From (3.37),
1
Dy¥ = fq¥ — 5:{-\11.
There exists an eigenvalue A such that Dy¥ = A¥. Put A = fq. Then

1
—55'\1":0,

i.e. kK =0. Thus F is minimal. O

Corollary 3.23 On the minimal foliation F, every transversal Killing

spinor is an eigenspinor of Dy.

Proof. Let ¥ be the transversal Killing spinor. From (3.37), if F is
minimal, then

DU = fqU.

From Theorem 3.20, f is constant. Hence ¥ is an eigenspinor. O
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4 Transversally conformal change

Let (M, gar, F) be a Riemannian manifold with a transverse spin foliation
F and a bundle-like metric gp;. Now, we consider, for any real basic
function u on M, the transversally conformal metric go = €**gqg. Let
P,,(F) be the principal bundle of gq -orthogonal frames. Locally, the
section 5 of P,,(F) corresponding a section s = (Ey, -+, E,) of Ps,(F)
is 5 = (B, ,E,), where B, = ¢e™E, (a = 1,---,q). This isometry
will be denoted by I,. Thanks to the isomorphism I, one can define a

transverse spin structure Py, (F) on F in such a way that the diagram

commutes.

Let S(F) be the foliated spinor bundles associated with Py, (F). For
any section ¥ of S(F), we write ¥ = I, 0. If (-,-),, and (-,-)5, denote
respectively the natural Hermitian metrics on S(F) and S(F), then for
any &, ¥ € I'S(F)

(P, U)gq = (2, V)gq (4.1)
and the Clifford multiplication in S(F) is given by

X" ¥=X ¥ for X elQ. (4.2)

Let V be the metric and torsion free connection corresponding to gg.

Then we have the following lemma.
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Lemma 4.1 ([17]) Let V and V be the transversal Levi-Civita connec-

tions of gg and gg = €**gg on Q, respectively. Then for any X,Y € TM
Vxm(Y) = Vxr(Y)+ X (u)r(Y)+Y (u)7(X) - go(n(X), 7(Y))grade (u),

where grady(u) = 3., E.(u)E, is a transversal gradient of u and X (u)

is the Lie derivative of the function u in the direction of X.

Proof. Since V is the metric and torsion free connection with respect

to go on (), we have

200(Vxs,t) = Xgg(s,t) + Ygo(n(X),t) — Zge(r(X), s)

+ Go(r[X, Yi),1) + Go(n(Zi, X, 8) — Go(n[Ys, ZJ, m(X)),
where 7(Y;) = s and n(Z;) = t. From this formula, the proof is com-
pleted. O

The transversal Ricci curvature pv of go = €**gg and the transversal
scalar curvature oV of gg are related to the transversal Ricci curvature

p¥ of go and the transversal scalar curvature oV of gg by the following

lemma.

Lemma 4.2 On a Riemannian foliation F, we have that for any X € Q,

e®p¥ (X) =p¥(X) + (2 — q)Vxgrady(u) + (2 — g)lgradv(u)|*X 3)
+ (g - 2) X (u)grady(u) + {Apu — k(u)} X,

0¥ =07 + (¢ 1)(2 - g)lgradv(u)]® + 2(¢ — 1){Apu — x(u)}. (4.4)

Proof. Let z € M and choose an orthonormal basic frame {E,} with
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the property that (VE,), = 0 for all a. Then

p'(X) = ) RY(X,E,)E,

S AV F - Y Ve VxEa— 3 Ve

By a direct calculation, we have

e vaVEaEa = (1-¢){Vxgrady(u) + |grady(u)|*X

a —2X (u)grady(u)} + ZVXVE.,Ea-

Similarly,
e Vg VxE, = Y Ve VxE,+ Y E.E,(u)X

+V grady (w) X — Z 9(VEe X, E,)grady(u)

—Vxgrady(u) — |grady(u)]?X — X (u)grady(u),
and

e Z VixzgEa = Z Vix,g.)Ea + X (u)(g — 1)grady(u)

—Vgradv (u)X + Z g(VEa X7 Ea)gradv (u)

Since Agu = dpdpu = — Y, EE,(u) + i(k)dpu, the above equations
give (4.3). On the other hand,
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From (4.3), we have
0¥ = Y go(e*p" (L), E)
- oy (2-9) Y 90(VE,grady(u), E.)
+e-1)(2- qa)lgradv(U)Iz +¢{Apu — (u)}.

Since 3_, 9o(VE.grady(u), Eo) = 3, EqEq(u) = —Apu+ x(u), we have

e oV =0V 4+ (¢g—1)(2 - q)|gradv(u)|2 +2(q — 1){Apu — k(u)},

which proves (4.4). O
On the other hand, for ¢ > 3, if we choose the positive function h by

u= quz In A, then we have

Apu = q—f—z{h‘zlgradv(h)lg +h~'Agh}, (4.5)

jgradg () = (—h~*lgrads (). (46)

Proposition 4.3 ([17]) The connection V and V acting repectively on
the sections of S(F) and S(F), are related, for any vector field X and
any spinor field ¥ by

R s %W(X) “grada(u) W — %gq(gradv(u),n(X))\il. (4.7)

Proof. Let {E,} be an orthonormal basis of @ and denote by w and @,
the connection forms corresponding to go and gg. That is, for any vector

field X € TM,
VxEy =Y wie(n(X))E., VxEy=)  ane(n(X))E.. (4.8)

31



From Lemma 4.1, we have
De(M(X)) = whe(m(X)) +90(7(X), Ec) Ep(u) —go(m(X), Ep) Ec(u). (4.9)

Let {¥4}(A = 1,---,2]) be a local frame field of S(F). Then the
spinor covariant derivative of ¥4 is given ([14]) by
1
Vx¥a= gwbc(w(X))Eb E.- W, (4.10)

With respect to gg, we have

_ 1 _ -
Vx¥,u4 = = G}bC(N(X))EbTECT\IJA
2

= % Z{wbc(w(X)) + go(n(X), Ec) Ep(u)

b<c

—gQ(ﬂ'(X), Eb)Ec(U)}EbTE_‘CT\i’A

—— 1 - - =
= Vx¥a—3 > 9o(m(X), Eo)Ey(u) EF By 4
b#c

— g 1
= VxV¥,u-— §7r(X) - grady(u) - ¥4 — qu(gradv(u),w(X))\IlA.

a
Let D,, be the transversal Dirac operator associated with the metric
go = €®gq and acting on the sections of the foliated spinor bundle S(F).
Let {E,} be a local frame of P,,(F) and {E,} a local frame of P,o(F).
Locally, D,, is expressed by

Dtr\il = D;r‘i’ - K;g B ‘I’, (411)

N | =

where D), W =" E,* Vz ¥ and &; is the mean curvature form associ-

ated with go.
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Lemma 4.4 The mean curvature forms k; and k with respect to go =

e*gq and gg, respectively, are related by k; = e™%“k.

Proof. Let {E;} be an orthonormal basis of L. Then we have
gM(K,ﬂ,X) :gM(VEiE,‘,X), X € FQ

Using the fact that gy(X,Y) =0for X € L, Y € Q and g, = g, we
have
.(—]M('_fu,X) = gM(vE.EhX)
1
= i{E,-gM(E,-, X) + Eigu(X, Ei) — Xgu(E;, Ey)
—gm([Ei, X), Ei) — gm((Ei, X1, E3) + gu([Ei, Ei, X)}
= gu(VEE;, X) = gu(x', X).
Since gu(R!, X) = e*go(R*, X) = go(k', X), we have that &f = e™2/x".
]
Using (4.7), we have that for any ¥,

D, v =e*{D,¥ + g grady(u) - ¥}. (4.12)

Now, for any function f, we have D;.(f¥) = e “grady(f) - ¥V + fD,, V.

Hence we have
D, (f¥) = e “grady(f) - ¥ + fD, V. (4.13)

It is well known [14] that the transverse Dirac operators D, and D,

satisfy

Dy (e T40) = e 4D, ¥ (4.14)

for any spinor field ¥ € S(F). From (4.11) and (4.14), we have the

following proposition.
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Proposition 4.5 Let F be the transverse spin foliation of codimension

q. Then we have that for any spinor field ¥ € S(F)

D (e T"F) = e D V. (4.15)
From (4.14) and Proposition 4.5, we have the following proposition.

Corollary 4.6 On the transverse spin foliation F, the dimensions of the

kernel of Dy, and D, are transversally conformal invariant, respectively.

Let P/ be the transversal W-twistor operator of gy = g1 @ gg, where

Jo = €®*gg. Then we have the following theorem.
Q Q

Theorem 4.7 For any spinor field ¥ € T'gS(F), we have

P! (e3¥) =e 2P V. (4.16)

In particular, ¥ € T'gS(F) is a transversal W-twistor spinor on (M, gum)

iff ez € TS is a transversal W-twistor spinor on (M, gar).

Proof. From (3.19), (4.7), (4.13), we have

<
=1
+

P;;a(e%\il) =

4]
o
by
&
(=]
+ L]
e
<Q
o]
=1
+

|
wle

NI N =
®

- u 1
E,(u)¥ +e 2{Vg ¥ — EE" - grady(u) - ¥

N e

- 1 _.
E,(u)V} + -2—qe"fEa - grady(u) - ¥

A U T

“ -1
+e_7{%Ea - DLW+ TEG - grady(u) - ¥}

= e iPp V.
The second statement is trivial from (4.16). O
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5 The transversal Weyl conformal curva-
ture tensor

Let (M, gm,F,S(F)) be a Riemannian manifold with a transverse spin

foliation F, a bundle-like metric g and a foliated spinor bundle S(F).

Definition 5.1 For any vectors X,Y € TM and s € ['Q, the transversal

Weyl conformal curvature tensor WV is defined by
WY(X,Y)s = RY(X,Y)s (5.1)
1
+q_—2{9Q(PV(7T(X), s)n(Y) — go(p” (7 (Y), )m(X)

+90(m(X), 5)p" (n(Y)) = go(m(Y), 8)p" (m(X))}

O.V

_m{gq(ﬂ'(X), $)n(Y) — gq(n(Y), s)m(X)}.

By a direct calculation, the transversal Weyl conformal curvature tensor
WV vanishes identically for ¢ = 3, where ¢ = codimF. Moreover, we

have the following theorem.

Theorem 5.2 Let (M, g, F) be a Riemannian manifold with e folia-
tion F and a bundle-like metric gps with respect to F. Then the transver-
sal Weyl conformal curvature tensor is invariant under any transversal

conformal change of gu.
Proof. By (5.1), we have
WY(X,Y)s = RY(X,Y)s

-+
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For any vector X,Y € TM, we get from Lemma 4.1

VxVys = VxVys + X (u)Vys + (Vys)(w)m(X)
— go(m(X), Vys)grady(u) + (VxY (u))s + ¥ (u)Vxs
+ X ()Y (u)s + Y (u)s(u)r(X) — go(r(X), Y (u)s)grady(u)
+ s(u)X(Wr(Y) + s(u)VxY + X (u)s(u)m(Y) + s(u)Y (u)7(X)
— go(m(X), s(u)n(Y))gradv(u) — go(VxY, s)grady(u)
= 9o(m(Y), Vxs)grady(u) — go(m(Y), s)Vxgrady (u)
X (u)go(n(Y), s)grady(u) — go(n(Y), s)|grady (u)*r(X)
+ go(n(Y), )X (u)grady(u).

Therefore, we obtain
RY(X,Y)s = RV(X,Y)s
+ go(m(X), s)lgrady (u)|*1(Y) — go(n(Y), s)|grady (u)*m(X)
— s(u) X () (Y) + s(w)Y (u)m(X)
+ 9(Vxgradv(u), s)m(Y) — go(Vygrady(u), s)m(X)
+ go(m(X), s)Vygrady(u) — go(n(Y), s)V xgrady (u)
— 9o(7(X), )Y (u)grady (u) + go(7(Y), s) X (u)grady (u).
From (4.3), (4.4), we obtain
do(p? (r(X), )m(Y)
= ga(p” (m(X), 5)7(Y) — (¢ - 2)9o(V xgrady(u), s)n(Y)
— (7 — 2){gq(lgradv(v)|*n(X), s)7(Y) + go(X (u)grady (u), s)n(Y)}
- 90D EEa(w)m(X), s)m(Y),
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oV go(n(X),s)m(Y)
= 0go(n(X),8)m(Y) - (¢ - 1)(g — 2)|gradv(u)|29cz(7r(X), s)m(Y)
— 2(g — 1){gq(m ZE Eq(

From the above equations, WY = WV O

On the other hand, the Weyl tensor W5 on S(F) is similarly(cf.(3.7))
given by

WS(X,Y)¥ = %qu(WV(X, Y)E, E)E,-E,-¥  (5.2)
ab
for any X,Y € TM and ¥ € I'S(F).
Proposition 5.3 For any X,Y € TM and spinor ¥ € I'S(F),
W3(X,Y)¥ = RS(X,Y)¥ + %{K(Y) m(X) - K(X)-7(Y)}¥. (5.3)
Proof. From (3.1), (5.1) and (5.2), we have

WX, Y)¥ = iZgQ(RV(X,Y)Ea,Eb)Ea-E,,-\II
b

1
it gy 1T -7 (V) = o7 (1)) - ()
+7(X) - o7 (x(Y)) = 7(¥) - ¥ (r(X)))
v
{r(X) - 7(¥) = 7(Y) - 7(X)}

g

4(g-1)(g~2)
- RS (X Y)¥

{p"(1(X)) - 7(Y) = p¥ (n(Y)) - 7(X)

(2)

“4(g-1)(g-2)
= RS(X,Y)¥ + %{K(Y) (X)) - K(X)-#(Y)}¥. O

{r(X)-7(Y) = n(Y) - m(X)}
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Now we recall the covariant derivative VZ on E = S(F) @ S(F) which
is defined in (3.31). Then we have the following proposition.

Proposition 5.4 The curvature tensor RY on the vector bundle E =

S(F) ® S(F) is given by the following;

: e\ WS(X,Y)®
RE(X,Y) = .
v W3 (X, Y)¥ + H{(VyK)(X) — (VxK)(Y)}&

Proof. By definition (3.31) of VE, we have

d Vy® + in(Y) ¥
vive (2] vg (VPO T )W)
¥ Yyl — LK(Y) - @
_ Vx‘i) + %W(X) -\
Vx¥ - K(X)- &)
where = Vy® + .7(Y) - ¥ and ¥ = Vy¥ — LK(Y) - &.
On the other hand,

- 1
VXCI)+ l7'(()() -U = vayq)—f‘avX?T(Y) - ¥+ 17'('()/) VX\I’

q q
+ %(X) Yyl — %W(X) K(Y)- 9,
Vil — gK(X) P =VyVyl — g(VXK(Y)) - %K(Y) Vxd
- %K(X) Uy — %K(X) 7(Y) - 0.
From Proposition 5.3, the proof is completed. O

From Proposition 5.4, we obtain the following theorem.
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Theorem 5.5 For any transversal W-twistor spinor ¥ € I'gS(F), it
holds that for any vector X,Y and Z

WS(Y,Z)¥ = 0, (5.4)
WS(Y,Z)D,¥ = —2{(VzK)(Y) - (VyK)(2)} ¥,  (55)

(VxW(Y,2)¥ = =2n(X)-{(VzK)(Y) = (VyK)(2)} - ¥
+(WY(Y, Z)n(X)- D, V. (5.6)

Proof. Let ¥ € KerP;,. First two equations (5.4), (5.5) follow from the
Proposition 5.4 for the curvature tensor R®¥ and Theorem 3.16. From
(3.22) and (5.4), we have
(VxWS(Y,Z2)¥ = —W5(Y,Z)VxV¥
= WY, 2)(x(X) - D, ¥).
q

From (5.2) and the properties of the Clifford multiplication,

W3(Y, Z)(n(X)- D, ¥) = iqu(WV(X, Y)E,, E,)E, - Ey-n(X)- D, ¥
a,b
= 7(X)-W3(Y, Z) D, ¥ + (WY (Y, Z)n(X)) - D,, L.

From the second equation, the third equation holds. O

Definition 5.6 A Riemannian foliation F is called transversally con-

formally symmetric if

vWwY =o. (5.7)

Now we study the relation between the transversal Weyl conformal cur-

vature tensor WV and the tensor K.
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Proposition 5.7 For any X,Y € TM and Z € T'Q, we have

ZQQ (Ve,W XY)ZE)

= (¢ = 3{90((Va)K)(7(X)) = (Vxx)K)(n(Y)), Z)}-

Proof. From (5.1), we have

qu (Ve,WY)X,Y)Z, E,)
=Y 90((Ve.R")(X,Y)Z,E,)

+ —5{00((Txrp")(7(X)). 2) = 80((Te") (1), 2))
g—3

+ m(Y)(oV m(X),Z) —n(X)(o 7(Y), Z2)},
e =g T )aa(r(X), 2) = 7(X)(0)ga(x(¥), 2)}
where {F,} is an orthonormal basic frame of Q. Here we used the fact

that Y(oV) = 23, 90((Ve.p")(Y), E,) for any vector Y € I'Q. From

the secomd Bianchi identity, we have

qu Ve RY)(X,Y)Z, E,)
= {90(~Vax)RV)NY, Eo)Z, Eo) — 9o(Vav)RY)(Ea, X)Z, Ea)}

= 90((Vax)p")((Y)), Z) — 9o((V(r)p" ) (7(X)), Z).
Hence, we have that for any X, Y € TM and Z € I'Q

qu (VeWY)(X,Y)Z, E.)

= ‘qi_—Q{HQ((Vw(X)PV)(W(Y)), Z) = 9o((Varyp")(1(X)), 2)}
qg—3
+ 2(q _ 1)(q _ 2) {W(Y)(UV)QQ(W(X)’ Z) - 7r(‘X)(OP)QQ(”T(Y)’ Z)}

From the definition of the tensor K, the proof is completed. O

From (5.7), we have the following corollary.
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Corollary 5.8 Let F be a transversally conformally symmetric Rieman-

nian foliation of codimension ¢ > 3. Then the following equation
(Ve K)(7 (V) = (Var)K)(w(X)) =0, V X,Y €TQ
holds.

Proof. Since VWV = 0, the above equation holds. O

Theorem 5.9 Let F be a transversal conformal symmetric Riemannian
foliation with a non-trivial transversal W-twistor spinor ® and suppose
that D, ® vanishes on a discrete set only. Then F is a transversally
conformally flat space. i.e. WY = 0. In particular, if F is codimension 3
with a non-trivial transversal W-twistor spinor, then F is a transversally

conformally flat space.

Proof. Let ® be a non-trivial transversal W-twistor spinor. From The-
orem 5.5 and Theorem 5.8, we have that for any vector fields X,Y and
Zz

(VxWI)(Y, Z)¥ = WY(Y, Z)n(X) - D), V.

By a direct calculation, we have

1
(VxW)(Y, 2)¥ = 3 go(VxWY)(Y, 2)Ee, By)E, - By - ¥,
a,b

where {E, } is an orthonormal basic frame of Q. Hence VWV = 0 implies
WY(Y, Z)rn(X) - D,,¥ = 0. Since D; ® vanishes only on a discrete set,
this yields that WV = 0. If F is codimension ¢ = 3 with a non-trivial

transversal W-twistor spinor, then WV = 0. O
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6 The conformal relation between transver-
sal twistor and transversal Killing spinors

Let (M, gp, F) be a compact connected Riemannian manifold with an
isoparametric transverse spin foliation F and a bundle-like metric gas

such that 6« = 0.

Definition 6.1 On the vector space KerP),, a quadratic form C’ and a

form Q' are defined by

C'(¥) = (D,, ¥, ¥) = Re(D, ¥, ¥), (6.1)
Q(¥) = [¥]|D;, ¥|* - C'(¥)* - Y (D}, ¥, E, - ¥)%, (6.2)

a

where { E,} is an orthonormal basic frame on Q (see [6] for ordinary case).

Remark. Since (X -, ¥) is pure imaginary for any spinor ¥, it is trivial

that C'(¥) = (D, T, 7).

Lemma 6.2 For any transversal W-twistor spinor ¥ € I'gS(F), it holds
that
C'(e?¥) = C'(¥), Q'(e**T) =Q(¥). (6.3)

Proof. From (4.15), (6.1) and (6.2), we have

C’(€"/2\il = (D’ eu/2\Il ,eu/2\i/ — 6"‘”5’?1& eu/?@)
tr t
= (D, ¥, %) =C'(¥),
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Q'(e** )
= |29 | Dy, (/2T - C'(e**9)* = Y (D, (e*/2¥), E, - e*/2¥)?

a

= |e*? T e " DL — C'(¥)* - S (e’ D, ¥, E, - e*/2T)?
= ¥ D, 912 - C'(¥) - S (D, V,E, - ¥)’

a

=Q(¥). O
Hence, we have the following theorem.

Theorem 6.3 Let (M, gar, F) be a compact connected Riemannian man-
ifold with an isoparametric transverse spin foliation F and a bundle-like
metric gy such that 0k = 0. Then for any transversal W-twistor spinor
¥, C'(¥) and Q'(¥) are transversally conformal invariants with respect

to U — e*/2W. Moreover they are constant.

Proof. The first statement follows from (6.3). Next, if we differentiate

C’'(¥) with respect to X € I'TM, then
VxC'(¥) = (VxD, ¥, ¥) + (D, ¥, Vx¥).

From (3.22) and Theorem 3.14, we have
v
' qo
VxC'(¥) =
M = -

~—(D}, ¥, 7(X) - D}, V).

("(X) 9, 9) = 52 (07 (n(X)) - 2, )

Since (X - ¥, ¥) is pure imaginary for any X € I'Q, we know that
VxC'(¥) = 0. That is, C'(¥) is constant. Since C'(¥) is constant,
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we have from (3.22)
VxQ(¥) = 2(Vx¥,¥)|D;, ¥|? +2|¥|*(Vx D, ¥, D, ¥)
—22 (D}, ¥, E, - 9)(VxD, ¥, E, - ¥)
——Z D,V E, - V)(E,- D, ¥,n(X) - D, V).
Since (X -¥,Y-¥) = go(X,Y)|¥|? for X,Y € I'Q, Theorem 3.14 implies
Vx@Q'(¥)=0.0
Definition 6.4 For any spinor ¥, we define the associated vector field

TY by
= 22 V,E,- D, ¥ (6.4)
Proposition 6.5 Any non-vamshzng transversal W-twistor spinor ¥ sat-
i1sfies
(1) TY = —q gradyw,
2) |C(¥)¥ — wDi b + g-gmde SUJ? = wQ (),
where w = |¥|2.

Proof. The equation (1) is trivial from (6.4). Now we prove the second

equation (2). By a direct calculation, we have

IC'(9)¥ — wD, U — %T‘I’ P2

= wC'(¥)? - 20C'(¥)? + w?| D, ¥ —w Y (D, ¥, E, - ¥).
Therefore, we have
IC'(¥)¥ — wDl, ¥ — %T"’ U = wQ(T). O
From Proposition 6.5 (2), we have the following corollary.
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Corollary 6.6 If V¥ is a non-vanishing transversal W-twistor spinor such

that C'(¥) = Q'(¥) = 0, then we have
wD, ¥ = %gradv(w) -

Theorem 6.7 Under the same condition as in Theorem 6.3, if M admits
a non-vanishing transversal W-twistor spinor ¥ such that C'(¥) =0 =
Q'(¥), then F is transversally conformally equivalent to a transversally

Ricci-flat foliation on (M, gp) with parallel basic spinor.

Proof. Consider the metric ga = g1 +§g, where go = e*gg, u = — Inw.
From Proposition 4.3, we have

Vx(w3T) = Vy(wi0) - %w‘%w(X) grade(n) ¥ — %w‘%X(u)\Tl.

Since grady(u) = —1grady(w), the above equation is the following:
- 1= = 1
Vx(w™2¥) = X(w’%)‘ll +w iV U+ §w_%7r(X) - grady(w) - ¥
+%w‘%X(w)\il

= wE(Vy¥+ %W(X) - grady(w) - ¥)

for X € 'TM. From (3.22) and Corollary 6.6, it follows that

Vx(w™

L

) =0.

That is, ® = w2l is a parallel basic spinor with respect to the metric
gm. From (3,10), p¥(n(X))"® = 3, E,"RS(X,E,)® = 0. Hence, the

foliation F on (M, gyps) is transversally Ricci-flat. O

Now, we study the relation between the transversal W-twistor spinor

and transversal Killing spinor.
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Proposition 6.8 Under the same condition as in Theorem 6.3, every

transversal W-twistor spinor ¥ satisfies
IAGIUP = —3 oYW+ Se2[ WP - [D,UP. (65)
2 4g-1) 4
Proof. By (2.13) and (2.14), we have
Ap|¥|* = 6pdp| ¥ = =) Vg, Ve [¥?+ Va[¥%  (6.6)
This equation with (3.14), (3.15) and (3.22) gives
-2) V5V ¥,¥) + AV ¥, )
=2(-VE, Ve U+ Ve, ¥) - 2) (Vg ¥, V5 T)
= VIV, T — §|D;3\1:|2
= DY - (07 + s, ¥) - 2 IDEUF,
By (3.13), (3.16) and (3.22), we have

Ap|¥|? = 1

2 vig2 . ez 2 2
—— 0" V| + —|k|°|¥|* — -|D,,¥|*. O

Proposition 6.9 Under the same condition as in Theorem 6.3, every
non-vanishing transversal W-twistor spinor ¥ satisfies the following equa-

tion

where w = |¥|2.
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Proof. Let (0 #)¥ € KerP;, be a transversal W-twistor spinor. From
(6.2), we have

1
Q' (¥) = w| D, ¥* - C'(¥)” - Z|T“’|2. (6.7)
Since Ap(lnw) = J|gradvw|? + L Apw, Proposition 6.5 implies
Ap(l - v ! A
B( IlLU) = W'T | + Z)_ BW. (68)
On the other hand, we have
(k- D, ¥, U)+(¥, k- D, ¥)
= —Q{<V,cﬂq’, ‘I’) + (\I”’ Vnﬂ\p)}
= —gr'(w)

and thus

1 q
Dy = | D U + Ik — JRH(w). (6.9)

From (6.5), (6.8), (6.9), we have

_ 1
2(g—1)

which completes the proof by using Proposition 6.5 and (6.10). O

_ 1 g v, Loy 2
Ap(lnw) = q2w2|T |“ + o+~ (w) qw|Dtr\II| , (6.10)

Definition 6.10 Any spinor field ¥ is transversally conformally equiva-
lent to a transversal Killing spinor if there ezxists a transversally confor-
mal change of the metric ga = g1, + e*gg such that e2 ¥ is a transversal

Killing spinor with respect to gy Equivalently, for any X € TM
Vx(e? ) + aﬂ(X)T(e%‘il) =0, (6.11)

where a # 0 is a real number.
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Then we have the following theorem.

!

Theorem 6.11 Let F be a transverse spin foliation and ¥ € KerP,, a
non-vanishing transversal W-twistor spinor. Then U is transversally con-
formally equivalent to a transversal Killing spinor if and only if C'(\¥) #
0and Q'(¥)=0

Proof. Let ¥ € KerP,. be transversally conformally equivalent to a

transversal Killing spinor with respect to go = e**gg. Since

|
4
[o—ry

Vx(ei®) = ZerX(u)¥ +e2Vx¥

— N

= = §X(u)\il + e%{VX\II — %W(X) - grady(u) - ¥

[}

1 -

u 1
= e2{VxVU - 57r(X) - grady(u) - ¥},
the equation (6.11) is equivalent to
Vx¥ = %W(X) -gradyu - ¥ — aenm(X) - ¥ (6.12)

for X € I'TM, where a(# 0) is a real number. Now if we choose u =
—Inw, then (6.12) implies

1 1
Engr\Il = §grade U+ aVl. (6.13)
Since (X - ¥, ¥) is pure imaginary, from (6.1) and (6.13) we have

C'(¥) = Re(D., U, V)
a
= Re(% grady(w) - ¥ + % -0, W)

1
= qaa|\ll|2 = qa. (6.14)
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This implies that C'(¥) # 0 for any a # 0. On the other hand, from
(6.13) we have

2
w|D, ¥|? = %lgmdel2 + ¢*a®. (6.15)

From (6.2), (6.14), (6.15) and Proposition 6.5, we obtain Q'(¥) = 0.
Conversely, we assume C'(¥) # 0 and Q'(¥) = 0. From Proposition 6.5,
we have

C'(1)¥ — wD), ¥ + %grade ¥ =0, (6.16)
If we choose u satisfying w = ﬂ;aﬂe‘", then we have

1 _, 1
W(X)-\P—q—ae W(X)-DZT\IJ—%e 7(X) - grady(u) - ¥ =0.

Therefore, we have

Vil = %W(X) . grady(u) - ¥ — ae*n(X) - V.

This means that e? ¥ is a transversal Killing spinor with respect to
Jo = €2*gg. So ¥ is transversally conformally equivalent to a transversal

Killing spinor. O
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7 Eigenvalue estimates

Let (M, g, F) be a closed connected Riemannian manifold with a trans-
verse spin foliation F and a bundle-like metric gps such that the mean
curvature form k satisfies Agk = 0. The existence of a bundle-like gps
for (M, F) such that k € QL (F) is proved in [22]. Moreover it is assured
[23] that there exists another bundle-like metric whose mean curvature
form is basic harmonic, i.e., Agpk = 0. For any spinor field ¥ € I'S(F),
we have from (3.19)

|PLYP = ) (PR, PgY¥)

1 1

> (Ve ¥+ 2 D, ¥, Vg ¥+ EEG . D, W)
1

= |Va¥f® - E<Ea - Vg, ¥, D, V)

1 1
—5<D;,\If, E, Vg V) + ElD:,\I’l“’

1
= [Ve¥* = ZID, 9. (7.1)
By integrating (7.1) together with (3.14), we have
JCATEY MR TR A T
M M 4 q
Since D, ¥ = D, ¥ — 1k - ¥, we have
1
D ¥[? = | D, [~ 2| - Re(Dy¥, - ). (7.3)
From (7.2) and (7.3), we have
-1 q 1
PLY? = q———/ Dy U2 - K° + =|x[?)| [
Mlt | 7 M{I Y| 4(q—1)( qll)l "}
+/ Re(Dy, ¥,k - ). (7.4)
M
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Let D, ¥ = AV. Since (¥, k- ¥) is pure imaginary, we have

' 2_D 2 _ q o llﬁ2 2
[ =12 [ - e ety (19

Thus we have the following theorem.

Theorem 7.1 Let (M, gp, F) be a closed connected Riemannian mani-
fold with a transverse spin foliation F of codimension ¢ > 2 and bundle-
like metric gy such that Agpk = 0. Then any eigenvalue A of the basic

Dirac operator D, satisfies

1
A2> —4 inf(KT + =|x]?). 76
> gy K+ Il (76)

In the limiting case, F is minimal and transversally Einsteianian with

constant transversal scalar curvature oV .

Proof. The inequality (7.6) is trivial from (7.5). Now we study the
limiting case. Let Dy¥ = A\¥ with \? = ‘“—q‘l_—ﬁ infp (K7 + %|n|2). From
(7.5), we see P, ¥ = 0. Since D, ¥ = A¥ + 1x - ¥. we have from (3.22)

A 1
VX\Ilz—EW(X)-\II—%ﬂ(X)-n-\II. (7.7)

for X € I'TM. From (3.16) and (3.24) we have that

Va¥ = DV - D2V - %|n|2\11

r

1
= A0 - —% Yy ZikPw.
A Hq-1)° 1

Therefore, we have

(9 oV a2 TF e = A

=1 e . v, (7.8)
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It follows from (7.8) that F is minimal. Hence (7.7) implies that ¥
is transversal Killing spinor. From Theorem 3.20, the foliation F is
transversally Einsteinian with constant transversal scalar curvature oV >

0. O
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