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< Abstract >

WEYL AND BROWDER SPECTRA OF

A LINEAR OPERATOR ON A BANACH SPACE

In this thesis, we study several properties of Weyl operator, Browder operator

and their spectra on an infinite dimensional Banach space and investigate the sys-

tematic relations between Weyl’s(a-Weyl’s) theorem and Browder’s(a-Browder’s)

theorem, respectively. The followings are the main results of this thesis.

(1) Fredholm, Weyl and Browder operators are stable under compact perturba-

tion and open with the norm topology. Also we give equivalent conditions

of Weyl and Browder operator, respectively.

(2) The essential spectrum, Weyl spectrum and Browder spectrum are upper

semi-continuous and their spectral radius are also upper semi-continuous.

Also these spectra are invariant under similarity.

(3) The spectral mapping theorem holds for the Browder spectrum of a bounded

linear operator. Also we extends this result as follows : If T ∈ L(X)

and f is a holomorphic function defined in a neighborhood of σ(T ), then

f(σb(T )) = σb(f(T )).

(4) We show that a-Weyl’s theorem implies Weyl’s theorem and Weyl’s theorem

implies Browder’s theorem for bounded linear operators. Also we obtain

that a-Weyl’s theorem implies a-Browder’s theorem, and that a-Browder’s

theorem implies Browder’s theorem for bounded linear operators.



1 Introduction

Let X be an infinite-dimensional Banach space and let L(X) be the set of all

bounded linear operators on X andK(X) the set of all compact operators on X. If

T ∈ L(X), we shall write N(T )(= ker(T )) and R(T ) for the null space and range

of T , respectively. We note that X/R(T ) = N(T ∗). Also α(T ) = dim N(T ) =

dim ker(T ) and β(T ) = dimN(T ∗) = dim(X/R(T )). Here X∗ denotes the dual

space of X and T ∗ ∈ L(X∗) is the adjoint operator of T .

In this paper, we will study several properties of Fredholm, Weyl and Browder

operators and the inclusion relations between Weyl spectrum, Browder spectrum

and other spectra.

The organization of this thesis is as follows:

In section 2, we introduce topological properties(openness, the stability under

compact perturbation, etc) of Fredholm, Weyl and Browder operators on an

infinite-dimensional Banach space X.

In section 3, we introduce various spectra(essential spectrum, Weyl spectrum,

Browder spectrum, etc) of a bounded linear operator on X and the inclusion

relations among them. Also we study the upper semi-continuities of various

spectra and their spectral radius. In particular we show that these spectra are

invariant under similarity, and that the spectral mapping theorem does not hold

for the Weyl spectrum of a bounded linear operator in general. But the spectral

mapping theorem hold for the Browder spectrum of a bounded linear operator.

1



In section 4, we determine whether T obeys Weyl’s theorem, Browder’s the-

orem, a-Weyl’s theorem and a-Browder’s theorem respectively. We study the re-

lations between Weyl’s(a-weyl’s) theorem and Browder’s(a-Browder’s) theorem.

Also we give necessary and sufficient conditions of Weyl’s theorem and Browder’s

theorem.
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2 Fredholm, Weyl and Browder operators

Definition 2.1. An operator T ∈ L(X) is called a Fredholm operator if N(T ) =

ker(T ) is finite dimensional, R(T ) is closed and N(T ∗) is finite dimensional.

The following properties of compact operators are well-known([1],[2]): For all

K, K ′ ∈ K(X), T ∈ L(X) and λ ∈ C

(1) K + K ′ ∈ K(X), λK ∈ K(X) and so K(X) is a linear space over C.

(2) TK, KT ∈ K(X) and so K(X) becomes an ideal in L(X).

(3) If Tn → T in the norm and Tn ∈ K(X), then T ∈ K(X) and so K(X) is

closed in L(X).

From (1), (2) and (3), the quotient algebra L(X)/K(X) is a C∗−algebra

since L(X) is a C∗−algebra. We call this quotient algebra the Calkin algebra

of X. Let π : L(X) −→ L(X)/K(X) denote the natural projection of L(X) by

T 7−→ π(T ) = T̂ = T +K(X).

Theorem 2.2. (Atkinson’s theorem [1]) An operator T ∈ L(X) is a Fredholm

operator if and only if π(T ) is an invertible operator in L(X)/K(X).

Proof. Suppose that T̂ is invertible. There is an operator S ∈ L(X) such that

Ŝ = T̂−1. Then T̂ Ŝ = I and ŜT̂ = I and so there exist K1,K2 ∈ K(X) such that

I−ST = K1 and I−TS = K2. We have to show that N(T ) is finite dimensional

and that R(T ) is a closed subspace of finite codimension. Since ST = I − K1,
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N(T ) ⊆ N(ST ) = N(I − K1). Since N(I − K1) is finite dimensional, N(T ) is

finite dimensional. Consider R(T ). Since TS = I−K2, we have R(T ) ⊇ R(TS) =

R(I−K2), and R(I−K2) is a closed subspace of X of finite codimension. We can

make an obvious inductive argument to find a finite set of vectors v1, v2, · · · , vr

such that R(T ) = R(I −K2) + [v1, v2, · · · , vr]. Thus R(T ) is a closed subspace

of finite codimension in X.

Conversely, suppose that T ∈ Φ(X). Then N(T ) is finite dimensional and

R(T ) is a closed subspace of finite codimension. There exist projections P, Q ∈

L(X) such that P 2 = P, Q2 = Q, R(P ) = N(T ) and R(Q) = R(T ). Since P and

I −Q are finite-rank, there exists S ∈ L(X) such that

ST = I − P, TS = Q = I − (I −Q)

Thus ŜT̂ = I = T̂ Ŝ in L(X)/K(X). 2

Corollary 2.3. (Atkinson’s theorem [1]) The following conditions are equivalent:

(1) T is a Fredholm operator.

(2) There is an operator S ∈ L(X) such that I − ST and I − TS are compact.

(3) There is an operator S ∈ L(X) such that I−ST and I−TS are finite-rank

operators.

Definition 2.4. An operator T ∈ L(X) is called a left(right)-Fredholm operator

if π(T ) = T̂ is left(right)-invertible in L(X)/K(X). T is called a Fredholm opera-

tor if π(T ) = T̂ is invertible in L(X)/K(X). Let Φl(X),Φr(X) and Φ(X) denote
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the set of all left-Fredholm, right-Fredholm and Fredholm operators respectively.

Operators in the set SΦ(X) = Φl(X) ∪ Φr(X) are said to be semi-Fredholm.

By the definition, we see that Φ(X) = Φl(X) ∩ Φr(X).

Definition 2.5. The index of T ∈ Φ(X), denoted by i(T ), is defined by i(T ) =

α(T )− β(T ) = dim N(T )− dim N(T ∗).

For examples, if T is normal operator(i.e., T ∗T = TT ∗) then i(T ) = 0, because

N(T ) = N(T ∗). And if T is hyponormal(i.e., T ∗T ≥ TT ∗) then i(T ) ≤ 0, because

N(T ) ≤ N(T ∗) and so dim N(T ) ≤ N(T ∗).

Lemma 2.6. ([1]) Let T ∈ K(X) be any compact operator. Then i(I − T ) = 0,

i.e., dim N(I − T ) = dim N((I − T )∗).

Proof. Let us assume that T is of finite-rank. Then there are closed subspaces

M and Z of X such that M is finite-dimensional, X = M ⊕ Z, TM ⊂ M and

TZ = {0}. Let (I − T )|M be the restriction of I − T to M . Then R(I − T ) =

R((I − T )|M )⊕ Z and N(I − T ) = N((I − T )|M ).

For all x ∈ X there are u ∈ M and z ∈ Z such that x = u + z. Hence

(I − T )x = (I − T )(u + z) = (I − T )u + (I − T )z = (I − T )u + z

and (I − T )u ∈ M .

If (I − T )x = 0, then z = Tu − u = −u + Tu ∈ M ∩ Z = {0} and so z = 0.

Then x = u ∈ M . Thus (I − T )x = (I − T )|Mx.

Since (I − T )|M ∈ L(X) and M is finite-dimensional,
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∞ > dim N(I − T ) = dim N((I − T )|M )

= codimR((I − T )|M ) = codimR(I − T ) = dim N(I − T )∗

Thus i(I − T ) = 0. Since dim R((I − T )|M ) < ∞ and Z is closed, R(I − T ) is

closed. 2

Lemma 2.7. If T ∈ L(X) is invertible, then T is a Fredholm operator in X and

i(T ) = 0.

Proof. Since T is invertible, N(T ) = {0} and so α(T ) = dim N(T ) = 0 < ∞.

Since X is closed and R(T ) = X, β(T ) = dim N(T ∗) = dim(X/R(T )) = 0 < ∞.

Thus T ∈ Φ(X) and i(T ) = α(T )− β(T ) = 0. 2

Let I(X) be the set of all invertible operators. Then I(X) ⊆ Φ(X) by the

above Lemma 2.7.

Theorem 2.8. (The index product theorem [1]) Let T, S be a Fredholm operator.

Then TS is also a Fredholm operator and i(TS) = i(T ) + i(S).

Proof. Since T and S are Fredholm, π(T ) and π(S) are invertible. Then

π(T )π(T )−1 = π(T )−1π(T ) = I and π(S)π(S)−1 = π(S)−1π(S) = I. Thus

π(TS)[π(TS)]−1 = π(TS)[π(TS)−1] = π(TS)π(S−1T−1)

= π(T )π(S)[π(S)]−1[π(T )]−1 = I.

Similarly [π(TS)]−1π(TS) = I. Therefore π(TS) is invertible and hence TS is

Fredholm. 2
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Theorem 2.9. If T, S ∈ L(X) with TS = ST and if ST is Fredholm, then S

and T are Fredholm.

Proof. Since N(T ) ∪N(S) ⊂ N(TS) , we have dim N(T ) ≤ dim N(TS) < ∞

and dim N(S) ≤ dim N(TS) < ∞. Similarly,

N(T ∗) ∪N(S∗) ⊂ N(T ∗S∗) = N((ST )∗) = N((TS)∗).

Then dimN(T ∗) ≤ dim N((TS)∗) < ∞ and dim N(S∗) ≤ dim N((TS)∗) < ∞.

Finally, we show that R(T ) and R(S) are closed. If R(T ) is not closed, then there

is z ∈ X such that z = lim
n→∞

zn, zn ∈ R(T ) and z /∈ R(T ). Since zn ∈ R(T ),

Szn ∈ S(R(T )) = R(ST ). Since S is continuous, Sz = S( lim
n→∞

zn) = lim
n→∞

Szn

and Szn ∈ R(ST ). Thus z ∈ R(T ). This is a contradiction. Hence R(T ) is

closed. Similarly, R(S) is closed. 2

Theorem 2.10. ([2]) If T ∈ Φ(X), then T ∗ ∈ Φ(X∗) and i(T ∗) = −i(T ).

Theorem 2.11. (The stability under compact perturbation) If T is a Fredholm

operator and K is a compact operator, then T+K is also Fredholm and i(T+K) =

i(T ).

Proof. By Atkinson’s theorem, there exists S ∈ L(X) such that ST = I −K1

and TS = I −K2 where K1,K2 ∈ K(X). Thus

S(T + K) = ST + SK = I −K1 + SK = I − (K1 − SK) = I − F1,

(T + K)S = TS + KS = I −K2 + KS = I − (K2 −KS) = I − F2

where F1, F2 ∈ K(X). Hence T + K ∈ Φ(X) by Atkinson’s theorem.
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By Lemma 2.6, i(I −K1) = 0 = i(I −F1) and so i(ST ) = i(S(T + K)). Thus

i(S) + i(T + K) = i(S(T + K)) = i(ST ) = i(S) + i(T ) and so i(T + K) = i(T ).

The proof is complete. 2

Theorem 2.12. ([17]) Let T be a Fredholm operator. Then there is an η > 0

such that T +S ∈ Φ(X) and i(T +S) = i(T ) for any S ∈ L(X) satisfying ‖S‖ < η.

Hence Φ(X) is open in L(X) with the norm topology.

Proof. By Atkinson’s theorem, there exists T1 ∈ L(X) such that T1T = I−K1

and TT1 = I − K2 where K1,K2 ∈ K(X). Let S be any operator in L(X)

satisfying ‖S‖ < η. Then

T1(T + S) = T1T + T1S = I −K1 + T1S ,

(T + S)T1 = TT1 + ST1 = I −K2 + ST1 .

Take η = 1
‖T1‖ . Then ‖T1S‖ ≤ ‖T1‖‖S‖ = ‖S‖

η < 1. Similarly ‖ST1‖ < 1. Thus

I + T1S and I + ST1 have bounded inverse. Consequently

(I + T1S)−1T1(T + S) = (I + T1S)−1(I + T1S −K1) = I − (I + T1S)−1K1 ,

(T + S)T1(I + ST1)−1 = (I + ST1 −K2)(I + ST1)−1 = I −K2(I + ST1)−1 .

Hence T + S ∈ Φ(X). Moreover

i((I + T1S)−1) + i(T1) + i(T + S) = i(I − (I + T1S)−1K1) = 0

Since i((I + T1S)−1) = 0 and i(T1) + i(T ) = i(T1T ) = i(I − K1) = 0, we have

i(T + S) = −i(T1) = i(T ). 2
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Corollary 2.13. ([1]) Let T be a Fredholm operator and let {Tn} be a sequence

in L(X) that converges to T in norm topology, i.e., lim
n→∞

‖Tn − T‖ = 0. There is

a positive integer n0 such that for any positive integer n ≥ n0, Tn ∈ Φ(X) with

i(Tn) = i(T ).

Theorem 2.14. The sets Φl(X),Φr(X) and Φ(X) are all open in L(X) with the

norm, and T ∈ Φl(X) if and only if T ∗ ∈ Φr(X).

Proof. If Ĝ = { π(T ) : π(T ) is invertible} ⊆ L(X)/K(X), then Ĝ is open

since the set of all invertible operators is open in L(X). Since the natural

projection π : L(X) −→ L(X)/K(X) is continuous and onto, π−1(Ĝ) is open.

Thus Φ(X) = { T : π(T ) is invertible} = { T : T ∈ π−1(Ĝ)} = π−1(Ĝ)

and so Φ(X) is open. Similarly, Ĝl = {π(T ) : π(T ) is left-invertible} and

Ĝr = {π(T ) : π(T ) is right-invertible} are open. Then π−1(Ĝl) and π−1(Ĝr)

are open. Thus Φl(X) = {T : T ∈ π−1(Ĝl)} = π−1(Ĝl) and Φr(X) = π−1(Ĝr)
are open.

Since T ∈ Φl(X), there is S ∈ L(X) such that ST = I. Then I = I∗ =

(ST )∗ = T ∗S∗, i.e., T ∗S∗ = I. Hence T ∗ ∈ Φr(X). 2

Definition 2.15. An operator T ∈ L(X) is called a Weyl operator if T is

Fredholm and i(T ) = 0.

We write Φ0(X) = {T ∈ L(X) : T ∈ Φ(X) and i(T ) = 0} for the set of all

Weyl operators. Clearly I(X) ⊆ Φ0(X) ⊆ Φ(X) by Lemma 2.7.

Theorem 2.16. If K is compact, then I −K is a Weyl operator.
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Theorem 2.17. If T is a Weyl operator, then there exists K ∈ L(X) of finite-

rank such that T + K is invertible.

Proof. Since T ∈ Φ0(X), i(T ) = 0 and dim N(T ) = dim N(T ∗) < ∞. Since

X = (X/N(T ))⊕N(T ) = (X/R(T ))⊕R(T ), there exists an invertible operator

F0 : N(T ) → N(T ∗) defined by F = F0(I − P ) where P is projection of X

onto X/N(T ). Then F is finite-rank. First we show that T + F is injective,

i.e., (T + F )x = 0 implies x = 0. If x ∈ N(T ) then 0 = (T + F )x = Fx.

Since Fx = F0(I − P )x = F0(x − Px) = F0x = 0 and F0 is injective, x = 0. If

x ∈ X/N(T ) then Fx = F0(I−P )x = F0(x−Px) = F0(x−x) = F0(0) = 0. Thus

0 = (T + F )x = Tx + Fx = Tx, i.e., x ∈ N(T ). Since N(T ) ∩X/N(T ) = {0},

x = 0.

Secondly we show that T + F is onto. If x ∈ X, then there are u ∈ R(T ) and

v ∈ X/R(T ) such that x = u+v. Then u = Tp for some p ∈ X/N(T ) and v = F0q

for some q ∈ N(T ). Thus x = u+v = Tp+F0q. Put h = p+q ∈ X/N(T )⊕N(T ) =

X. Then Fq = F0(I − P )q = F0q, Fp = F0(I − P )p = F0(p − p) = F0(0) = 0

and so Fh = Fp+Fq = F0q. Thus x = Tp+F0q = Th+Fh = (T +F )h. Hence

T + F is onto and hence T + F is invertible. 2

Theorem 2.18. If T is Weyl and K is compact, then T + K is a Weyl operator.

Proof. Since T ∈ Φ0(X), i(T ) = 0 and T ∈ Φ(X). Then T + K ∈ Φ(X) and

i(T +K) = i(T ) by Theorem 2.11. Thus T +K ∈ Φ(X) and i(T +K) = 0. Hence

T + K ∈ Φ0(X). 2

Corollary 2.19. If S is invertible and K is compact, then S + K is a Weyl

operator.
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Proof. If S is invertible, then S is Weyl. Since K is compact, by theorem

2.18, S + K is Weyl. 2

Corollary 2.20. Let T ∈ L(X) be any operator. The following conditions are

equivalent:

(1) T is a Weyl operator

(2) T = S + F with S invertible and F finite-rank

(3) T = S + K with S invertible and K compact

Proof. (1)⇒ (2) : From Theorem 2.17, if T ∈ Φ0(X) then there is K of

finite-rank such that T +K is invertible. So T = (T +K)−K = (T +K)+(−K).

If we take T + K = S and −K = F , then T = S + F .

(2) ⇒ (3) : All finite-rank operator is compact.

(3) ⇒ (1) : It is clear from Corollary 2.19. 2

Recall that a(T )(d(T ) respectively), the ascent(descent respectively) of T ,

is the smallest non-negative integer n such that N(Tn) = N(Tn+1)(R(Tn) =

R(Tn+1) respectively ). If no such n exists, then a(T ) = ∞ and d(T ) = ∞. If

a(T ) < ∞ and d(T ) < ∞, then a(T ) = d(T )([5]).

Example. If T is invertible, then a(T ) = 1.

Proof. If T is invertible, then T is injective and so N(T ) = {0}. Clearly

N(T ) ⊂ N(T 2). We show that N(T 2) ⊂ N(T ). If x ∈ N(T 2) then T 2x = 0.

Since T is invertible, there exists T−1. Then T−1T 2x = 0 and so Tx = 0. Hence

x ∈ N(T ) and so N(T ) = N(T 2). Thus a(T ) = 1.
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Definition 2.21. An operator T is called upper semi-Browder if T ∈ Φl(X)

and a(T ) < ∞. An operator T is called lower semi-Browder if T ∈ Φr(X) and

d(T ) < ∞. An operator T is called Browder if T is both upper semi-Browder

and lower semi-Browder.

Let B+(X),B−(X) and B(X) denote the set of all upper semi-Browder, lower

semi-Browder and Browder operators, respectively.

Clearly, B(X) = B+(X) ∩ B−(X).

Remark 2.1. ([3]) The following conditions are equivalent:

(1) T is a Browder operator.

(2) T is Fredholm of finite ascent and descent.

(3) T is Fredholm and T − λ is invertible for sufficiently small λ 6= 0 in C.

Theorem 2.22. ([5]) The sets B+(X),B−(X) and B(X) are open subsets of

L(X).

Theorem 2.23. ([13]) If S, T ∈ B(X) and ST = TS, then ST ∈ B(X).

Theorem 2.24. ([13]) If T ∈ L(X), K ∈ K(X) and TK = KT , then T ∈ B(X)

implies T + K ∈ B(X).
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3 Properties of several spectra

Definition 3.1. ([2],[8]) For any T ∈ L(X), we define various spectra as follows:

(1) σ(T ) = {λ ∈ C : T − λ is not invertible } is called the spectrum of T .

(2) σp(T ) = {λ ∈ C : T − λ is not injective } = {λ ∈ C : N(T − λ) 6= {0}} is

called the point spectrum of T .

(3) σcom(T ) = {λ ∈ C : R(T − λ) is not dense in X } is called the compression

spectrum of T .

(4) σap(T ) = {λ ∈ C : there exists a sequence {xn} in X with ‖xn‖ = 1 for all

n, such that ‖(T − λ)xn‖ → 0} is called an approximate spectrum of T .

We recall that σ(T ) is a non-empty compact subset of C. Also if T is self-

adjoint operator then σ(T ) ⊆ R. In particular, if T ∈ K(X), then 0 ∈ σ(T ), each

nonzero point of σ(T ) is an eigenvalue of T whose eigenspace is finite dimensional.

Also σ(T ) is either a finite set or it is a sequence which converges to zero ([2]).

The spectral radius of T , r(T ), is defined by r(T ) = sup{|λ| : λ ∈ σ(T )}.

Lemma 3.2. ([2]) For any T ∈ L(X), we have the following properties:

(1) |λ| ≤ ‖T‖ for any λ ∈ σ(T ).

(2) σp(T ) ⊂ σ(T ) and σcom(T ) ⊂ σ(T ).

(3) σap(T ) is a nonempty closed compact subset of σ(T ).

(4) σp(T ) ⊂ σap(T ) ⊂ σ(T ) and ∂σ(T ) ⊂ σap(T ).
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Remark 3.1. σp(T ) need not a non-empty.

For example, if T is a unilateral shift operator on l2, then σp(T ) = φ. For,

suppose that x = (x1, x2, · · · ) ∈ l2. If Tx = λx with λ 6= 0, then

T (x1, x2, · · · ) = (0, x1, x2, · · · ) = λx = (λx1, λx2, · · · ).

Then 0 = λx1, x1 = λx2, x2 = λx3, · · · . Since λ 6= 0, x1 = 0, x2 = 0, · · · .

Thus N(T − λ) = {0}. If λ = 0, then Tx = (0, x1, x2, · · · ) = (0, 0, · · · ). Then

x1 = x2 = · · · = 0 and so x = (0, 0, · · · ) = 0. Hence λ = 0 /∈ σp(T ), i.e.,

σp(T ) = φ.

Definition 3.3. For any T ∈ L(X), σe(T ) = σ(π(T )) = {λ ∈ C : T −λ /∈ Φ(X)}

is called the essential spectrum of T . Similarly, σle(T ) = σl(π(T )) and σre(T ) =

σr(π(T )) are called the right and left essential spectrum of T , respectively.

Theorem 3.4. ([1]) For any T ∈ L(X), σe(T ) is a non-empty compact subset of

σ(T ) and σe(T ) ⊆ ∩{σ(T + K) : K ∈ K(X)}.

Proof. If λ ∈ σe(T ), then T − λ /∈ Φ(X) and so T − λ /∈ I(X) since I(X) ⊂

Φ(X). Thus λ ∈ σ(T ) and hence σe(T ) ⊂ σ(T ). Since σe(T ) = σ(π(T )) and the

spectrum of every operator is a non-empty compact subset of C, σe(T ) is a non-

empty compact subset of σ(T ). Moreover, if λ /∈ σ(T + K) for any K ∈ K(X),

then (T + K) − λ is invertible. Since I(X) ⊂ Φ(X), (T + K) − λ ∈ Φ(X). By

the stability under compact perturbation of a Fredholm operator, T − λ ∈ Φ(X)

and so λ /∈ σe(T ). Hence σe(T ) ⊆
⋂

K∈K(X)

σ(T + K). 2
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Theorem 3.5. ([2]) For any T ∈ L(X), we have the following properties:

(1) σle(T ) ∪ σre(T ) = σe(T ) and σle(T ) = σre(T ∗)∗.

(2) σle(T ) ⊆ σl(T ), σre(T ) ⊆ σr(T ) and σe(T ) ⊆ σ(T )

(3) If K ∈ K(X) then σle(T ) = σle(T + K), σre(T ) = σre(T + K) and σe(T ) =

σe(T + K)

Proof. (1) Note that

λ ∈ σe(T ) ⇔ T − λ /∈ Φ(X) ⇔ T − λ /∈ Φl(X) or T − λ /∈ Φr(X)

⇔ λ ∈ σle(T ) or λ ∈ σre(T )

⇔ λ ∈ σle(T ) ∪ σre(T ).

Similarly, we have

λ ∈ σle(T ) ⇔ λ ∈ σl(π(T )) ⇔ π(T − λ) is not left invertible

⇔ π(T ∗ − λ) is not right invertible ⇔ λ ∈ σr(π(T ∗))∗

⇔ λ ∈ σre(T ∗)∗.

(2) If λ /∈ σl(T ), then T − λ is left invertible and so there is S ∈ L(X) such

that S(T − λ) = I. Thus I = π(I) = π(S(T − λ)) = π(S)π(T − λ). Therefore

π(T ) − λ is left invertible, i.e., λ /∈ σl(π(T )) = σle(T ). Hence σle(T ) ⊆ σl(T ).

Similarly, σre(T ) ⊆ σr(T ).

(3) Note that

λ /∈ σe(T ) ⇔ T − λ ∈ Φ(X)

⇔ (T − λ) + K ∈ Φ(X) where K ∈ K(X) by Theorem 2.11.

⇔ (T + K)− λ ∈ Φ(X) ⇔ λ /∈ σe(T + K).
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Hence σe(T ) = σe(T + K).

Similarly, σle(T ) = σle(T + K) and σre(T ) = σre(T + K). 2

Definition 3.6. For each T ∈ L(X), σw(T ) = {λ ∈ C : T −λ /∈ Φ0(X)} is called

the Weyl spectrum of T .

Theorem 3.7. Let T ∈ L(X) be any operator. Then

(1) σw(T ) =
⋂

K∈K(X)

σ(T + K)

(2) σw(T ) is a non-empty compact subset of σ(T ) and σe(T ) ⊆ σw(T ).

(3) σw(T + K) = σw(T ) for any K ∈ K(X).

(4) σw(T ) = σe(T ) if T is normal.

(5) ∂σw(T ) ⊂ σe(T ).

Proof. (1) If λ /∈ σw(T ), then T − λ is a Weyl operator. By Theorem 2.19,

there exists a compact operator K such that T − λ + K is invertible and so

λ /∈ σ(T + K) for some K ∈ K(X). Thus λ /∈
⋂

K∈K(X)

σ(T + K).

Conversely, if λ /∈
⋂

K∈K(X)

σ(T + K), then T + K − λ is invertible and so

(T + K − λ)−K = T − λ is a Weyl operator by Theorem 2.19. Thus λ /∈ σw(T ).

(2) If λ ∈ σw(T ), then T − λ /∈ Φ0(X). Since I(X) ⊂ Φ0(X), T − λ /∈ I(X).

Then λ ∈ σ(T ). Thus σw(T ) ⊆ σ(T ) and so σw(T ) is bounded. Since σ(T +K) is

bounded and closed for any K ∈ K(X),
⋂

K∈K(X)

σ(T +K) is closed. Thus σw(T ) is

a compact. Since Φ0(X) ⊂ Φ(X), σe(T ) ⊂ σw(T ). Hence σw(T ) is a non-empty.
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(3) Since K, K ′ ∈ K(X), K + K ′ ∈ K(X). Then

σw(T + K) =
⋂

K′∈K(X)

σ(T + K + K ′) =
⋂

K∈K(X)

σ(T + K) = σw(T ).

(4) If T is normal, then T −λ is also normal for any λ ∈ C, i.e., for any λ ∈ C,

‖(T − λ)x‖ = ‖(T − λ)∗x‖ for any x ∈ X, and so N(T − λ) = N(T − λ)∗. Thus

i(T − λ) = 0 and so {λ ∈ C : T − λ ∈ Φ(X) and i(T − λ) 6= 0} = φ. If λ /∈ σe(T ),

then T −λ ∈ Φ(X). Since i(T −λ) = 0, T −λ ∈ Φ0(X) and so λ /∈ σw(T ). Hence

σw(T ) ⊂ σe(T ). Therefore σw(T ) = σe(T ).

(5) Suppose that λ ∈ ∂σw(T )− σe(T ), then λ /∈ σe(T ) and so T − λ ∈ Φ(X).

Also λ ∈ ∂σw(T ), there is a sequence {λn} in σw(T )c such that λn → λ and

T − λn ∈ Φ0(X) for all n. By the continuity of the index, T − λ ∈ Φ0(X) and so

λ /∈ σw(T ). But σw(T ) is closed since σw(T ) is compact. Then λ ∈ σw(T ). This is

contradiction. Hence λ /∈ ∂σw(T )−σe(T ) for any λ ∈ C. Then ∂σw(T )−σe(T ) =

φ. Hence ∂σw(T ) ⊂ σe(T ). 2

Definition 3.8. ([5]) Let T ∈ L(X) be any operator. σb(T ) = {λ ∈ C : T − λ /∈

B(X)} = ∩{σ(T + K) : TK = KT, K ∈ K(X)} is called the Browder spectrum

of T where B(X) the set of all Browder operators.

Let accK denote the set of all accumulation points of K ⊆ C. Then σb(T ) =

σe(T ) ∪ accσ(T ) ([3],[4]).

For example, let Sr be the unilateral shift operator on l2. Then σe(Sr) =

{λ ∈ C : |λ| = 1}, σw(Sr) = {λ ∈ C : |λ| ≤ 1} and σb(Sr) = {λ ∈ C : |λ| ≤ 1}.
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Theorem 3.9. For any T ∈ L(X), we have the following properties:

(1) σw(T ) ⊆ σb(T ), and hence σb(T ) 6= φ.

(2) σb(T ) is a compact subset of σ(T ).

(3) σb(T + K) = σb(T ) for any K ∈ K(X) with TK = KT .

Proof. (1) If λ /∈ σb(T ), then T −λ ∈ B(X), i.e., T −λ ∈ Φ(X) and a(T −λ) =

d(T − λ) < ∞ where a(T )= ascent T and d(T )= descent T . Say a(T − λ) =

d(T − λ) = n. Thus

0 ≤ i(T − λ) = dim N(T − λ)− dim(X/R(T − λ))

≤ dim N(T − λ)n − dim(X/R(T − λ)n) = 0

and so T − λ ∈ Φ0(X). Hence λ /∈ σw(T ).

(2) Since σb(T ) = σe(T ) ∪ accσ(T ), σe(T ) is closed and accσ(T ) is closed.

Hence σb(T ) is also closed. And since σb(T ) ⊂ σ(T ), σb(T ) is bounded. Thus

σb(T ) is a compact subset of σ(T ).

(3) If λ /∈ σb(T ), then T − λ ∈ B(X) and

(T − λ)K = TK − λK = KT −Kλ = K(T − λ)

for any K ∈ K(X) with TK = KT . Thus by Theorem 2.24, (T −λ)+K ∈ B(X),

i.e., (T + K)− λ ∈ B(X). Thus λ /∈ σb(T + K). Hence σb(T + K) ⊆ σb(T ).

If λ /∈ σb(T +K) for any K ∈ K(X) with TK = KT , then (T +K)−λ ∈ B(X)

and

{(T + K)− λ}(−K) = (T + K)(−K)− λ(−K) = − TK −KK + λK

= −KT + (−K)K − (−K)λ = (−K)(T + K − λ).
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Thus by Theorem 2.24, (T + K − λ) + (−K) ∈ B(X), i.e., T − λ ∈ B(X). Thus

λ /∈ σb(T ). Hence σb(T ) ⊆ σb(T + K). Therefore σb(T + K) = σb(T ). 2

A mapping p, defined on L(X), whose values are compact subsets of C, is said

to be upper (respectively lower) semi-continuous at T , provided that if Tn → T

then lim sup p(Tn) ⊂ p(T )(respectively p(T ) ⊂ lim inf p(Tn)). If p is both upper

and lower semi-continuous at T , then it is said to be continuous at T and in this

case lim p(Tn) = p(T ) ([11]).

Theorem 3.10. Let T ∈ L(X) be any operator.

(1) The mapping T → σ(T ) is upper semi-continuous ([8]).

(2) The mapping T → σe(T ) is upper semi-continuous.

(3) The mapping T → σw(T ) is upper semi-continuous.

(4) The mapping T → σb(T ) is upper semi-continuous.

Proof. (1) Let A be the set of all singular operators(=non-invertible operators)

and let ϕ(λ) = d(T − λ, A) for any T ∈ L(X). Then ϕ is continuous. If Λ0 is

an open set containing σ(T ), if ∆ = B1+‖T‖(0) is a closed ball with center 0 and

radius 1+ ‖T‖ and if λ ∈ ∆−Λ0, then λ /∈ σ(T ) and so T −λ is invertible. Then

T−λ /∈ A. Since A is closed, ϕ(λ) > 0. Since ∆−Λ0 = ∆∩Λc
0 is a closed subset of

∆ and ∆ is compact, ∆−Λ0 is compact. Since ϕ(λ) is continuous on ∆−Λ0 and

ϕ(λ) > 0 for all λ ∈ ∆−Λ0, there exists ε > 0 such that ϕ(λ) ≥ ε. Suppose that

‖T−S‖ < ε < 1. If λ ∈ ∆−Λ0, then ‖(T−λ)−(S−λ)‖ < ε ≤ ϕ(λ) = d(T−λ, A).
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Thus S − λ /∈ A, i.e., S − λ is invertible. Then λ /∈ σ(S), i.e., if λ ∈ ∆−Λ0 then

λ /∈ σ(S). If λ ∈ σ(S), then

|λ| ≤ ‖S‖ = ‖ − S‖ = ‖T − S − T‖ ≤ ‖T − S‖+ ‖T‖ < 1 + ‖T‖

and so λ ∈ ∆. Thus σ(S) ⊂ ∆. Hence σ(S) ⊂ Λ0.

(2) Suppose that λ /∈ σe(T ) then T −λ ∈ Φ(X). Then there exists ε > 0 such

that ‖(T − λ)−S‖ < ε → S ∈ SΦ(X) and i(S) = i(T − λ). Since T − λ ∈ Φ(X),

α(T − λ) < ∞ and β(T − λ) < ∞. Since i(S) = i(T − λ), α(S) − β(S) =

α(T − λ) − β(T − λ). Then α(S) < ∞ and β(S) < ∞. Also R(S) is closed.

Thus S ∈ Φ(X). Therefore we have shown that ‖(T − λ)− S‖ < ε → S ∈ Φ(X).

Since Tn → T , there is N > 0 such that for all n ≥ N → ‖Tn − T‖ < ε
2 . For all

µ ∈ B ε
2
(λ) with |µ− λ| < ε

2 and for all n ≥ N ,

‖(λ− T )− (µ− Tn)‖ ≤ ‖(λ− µ)I‖+ ‖Tn − T‖

= |λ− µ|+ ‖Tn − T‖ ≤ ε

2
+

ε

2
= ε.

Then µ − Tn ∈ Φ(X). Thus µ /∈ σe(Tn) for all n ≥ N for all µ ∈ B ε
2
(λ).

Hence λ /∈ lim supσe(Tn) and so lim sup σe(Tn) ⊂ σe(T ), i.e., σe(T ) is upper

semi-continuous.

(3) Let λ /∈ σw(T ) so that T − λ ∈ Φ0(X). There exists an ε > 0 such that if

S ∈ L(X) and ‖(T − λ) − S‖ < ε, then S ∈ Φ0(X). Since Tn → T , there exists

an integer N such that for any n ≥ N

‖(Tn − λ)− (T − λ)‖ <
ε

2
.
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Let V be an open ε
2 -neighborhood of λ. We have for all µ ∈ V and n ≥ N ,

‖(Tn − µ)− (T − λ)‖ = ‖(Tn − µ)− (T − λ) + (Tn − λ)− (Tn − λ)‖

≤ ‖(Tn − λ)− (T − λ)‖+ ‖(Tn − µ)− (Tn − λ)‖

= ‖Tn − T‖+ ‖λ− µ‖

= ‖Tn − T‖+ |λ− µ| ≤ ε

2
+

ε

2

= ε

Thus Tn− µ ∈ Φ0(X), i.e., µ /∈ σw(Tn) for all n ≥ N and for all µ ∈ V . Thus

V ∩ σw(Tn) = φ. Hence λ /∈ lim supσw(Tn) and so lim supσw(Tn) ⊆ σw(T ).

(4) Let Tn → T , we show that lim supσb(Tn) ⊂ σb(T ). Suppose that λ /∈

σb(T ). If λ /∈ σ(T ), then lim supσb(Tn) ⊂ lim supσ(Tn) ⊂ σ(T ) and so λ /∈

lim supσb(Tn). Let λ ∈ σ(T )\σb(T ). Then λ /∈ σe(T ) and λ /∈ accσ(T ). Thus

T − λ ∈ Φ(X) and λ is an isolated point of σ(T ). Then there exists ε1 > 0 such

that

‖(T − λ)− S‖ < ε1 ⇒ S ∈ Φ(X)

Since Tn → T , there is N1 such that n ≥ N, ‖Tn − T‖ < ε1. Then

‖Tn − T‖ = ‖(Tn − λ)− (T − λ)‖ < ε1, for all n ≥ N1

Thus Tn − λ ∈ Φ(X), for all n ≥ N1. Since λ is an isolated point of σ(T ), there

is ε2 > 0 such that σ(T ) ∩ {µ : |µ − λ| < ε2} = {λ}. Put ε = min{ε1, ε2},

for all µ with |µ − λ| < ε, µ /∈ σ(T ). Then µ /∈ lim supσ(Tn) =
∞⋂

n=1

∞⋃
k=n

σ(Tk)

and so µ /∈
∞⋃

k=m

σ(Tk) for some m, i.e., µ /∈ σ(Tk) for all k ≥ m. Let N =
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max{m, N1}. If λ /∈ lim supσ(Tn), then λ /∈ lim supσb(Tn). If λ ∈ lim supσ(Tn),

then λ ∈
∞⋃

k=n

σ(Tk), for all n. Thus λ ∈
∞⋃

k=N

σ(Tk) and so λ ∈ σ(Tk1) for some

k1 ≥ N . And λ ∈
∞⋃

k=N+1

σ(Tk), then λ ∈ σ(Tk2) for some k2 ≥ k1 ≥ N . There is

a sequence {kn} such that λ ∈ σ(Tkn) for all n, kn ≥ N . Thus Tkn − λ ∈ Φ(X)

and λ is an isolated point of σ(Tkn) for all n. Hence λ /∈ σb(Tkn) for all n and so

λ /∈ lim supσb(Tn). Therefore lim supσb(Tn) ⊂ σb(T ). 2

Corollary 3.11.

(1) The spectral radius r(T ) is upper semi-continuous, i.e., for each T ∈ L(X)

and for all ε > 0 there exists δ > 0 such that ‖T − S‖ < δ implies r(S) <

r(T ) + ε.

(2) The essential spectral radius re(T ), the Weyl spectral radius rw(T ) and

the Browder spectral radius rb(T ) are upper semi-continuous, i.e., for each

T ∈ L(X) and for all ε > 0 there exists δ > 0 such that ‖T −S‖ < δ implies

ri(S) < ri(T ) + ε for i = e, w, b.

Proof. (1) Let ε > 0 and let rε = r(T ) + ε. If λ ∈ σ(T ), then |λ| ≤ r(T )

and so |λ| ≤ r(T ) + ε = rε. Thus λ ∈ Brε(0), i.e., σ(T ) ⊂ Brε(0). Since σ(T )

is semi-continuous, there is δ > 0 such that ‖S − T‖ < δ implies σ(S) ⊂ Brε(0).

For all λ ∈ σ(S), |λ| < rε. Thus r(S) ≤ r(T ) + ε.

(2) Let ε > 0 be given and let rε = ri(T ) + ε > ri(T ) for i = e, w, b. For

all λ ∈ σi(T ), |λ| ≤ ri(T ) < ri(T ) + ε. Then λ ∈ Brε(0). Thus σi(T ) ⊂ Brε(0).

Since σi(T ) is upper semi-continuous, there is δ > 0 such that ‖S − T‖ < δ
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implies σi(S) ⊂ Brε(0). For all λ ∈ σi(S), |λ| < rε, i.e., |λ| < ri(T ) + ε. Thus

sup{|λ| : λ ∈ σi(S)} ≤ ri(T ) + ε. Hence ri(S) ≤ ri(T ) + ε. 2

Theorem 3.12. ([11]) Let Tn → T . If lim σe(Tn) = σe(T ), then lim σw(Tn) =

σw(T ).

Proof. By Theorem 3.10.(3), lim supσw(Tn) ⊆ σw(T ). It is sufficient to

show that σw(T ) ⊆ lim inf σw(Tn). Suppose that λ /∈ lim inf σw(Tn). Then

there is a neighborhood V of λ that does not intersect infinitely many σw(Tn).

Since σe(Tn) ⊂ σw(Tn), V does not intersect infinitely many σe(Tn). Then λ /∈

lim σe(Tn) = σe(T ). Thus T − λ ∈ Φ(X). Also λ does not belong to σw(Tn) for

infinitely many n and so Tn − λ ∈ Φ0(T ). Then i(Tn − λ) = 0. By the index of

Fredholm is continuous and Tn → T , i(T − λ) = 0. Thus T − λ ∈ Φ0(X). Hence

λ /∈ σw(T ) and so σw(T ) ⊆ lim inf σw(Tn). 2

We recall that a space in which all components are one-point sets is called

totally disconnected. A space X is totally disconnected if and only if, for any two

elements x and y of X, there exist disjoint open neighborhoods U of x and V of

y such that X is the union of U and V ([2]).

Corollary 3.13. ([11]) Let Tn → T . Then lim σw(Tn) = σw(T ) in each one of

the following cases holds.

(1) TnT = TTn for all n.

(2) σ(T ) is totally disconnected.

(3) Tn and T are normal operators.
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Corollary 3.14. Let Tn → T and σw(Tn) = σe(Tn) for all n. Then σw(T ) =

σe(T ) if one of the following cases holds.

(1) TnT = TTn for all n.

(2) σ(T ) is totally disconnected.

We recall that two operators A and B are similar if there is an invertible

operator P such that P−1AP = B.

Theorem 3.15. Let S ∈ L(X) be similar to T ∈ L(X). Then

(1) σ(T ) = σ(S)

(2) σp(T ) = σp(S)

(3) σcom(T ) = σcom(S)

(4) σe(T ) = σe(S)

(5) σw(T ) = σw(S)

(6) σb(T ) = σb(S)

Proof. Since S and T are similar, there is an invertible operator U such that

U−1TU = S and T = USU−1.

(1) If λ /∈ σ(T ), then T − λ is invertible. Thus S − λ = U−1TU − λ =

U−1(T − λ)U is invertible and so λ /∈ σ(S). Hence σ(S) ⊆ σ(T ).

Similarly, we have σ(T ) ⊆ σ(S). Therefore σ(T ) = σ(S).
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(2) If λ ∈ σp(T ), then Tx = λx for any nonzero vector x ∈ X. Then

S(U−1x) = U−1TU(U−1x) = U−1(Tx) = U−1(λx) = λ(U−1x). Thus Sy = λy

for any nonzero vector y ∈ X, i.e., λ ∈ σp(S). Hence σp(T ) ⊆ σp(S).

Similarly, we have σp(S) ⊆ σp(T ). Therefore σp(T ) = σp(S).

(3) If λ ∈ σcom(T ), then R(T − λ) 6= X. Then there is x ∈ X such that x /∈

R(T − λ). And R(S−λ) = R(U−1TU−λ) = R(U−1(T−λ)U) ⊆ R(T−λ). Then

x /∈ R(S − λ). Thus R(S − λ) 6= X. So λ ∈ σcom(S). Hence σcom(T ) ⊆ σcom(S).

Similarly, we have σcom(S) ⊆ σcom(T ). Therefore σcom(S) = σcom(T ).

(4) If λ /∈ σe(T ), then T − λ ∈ Φ(X) and so π(T ) − λ is invertible. Then

π(S − λ) = π(U−1TU − λ) = π(U−1(T − λ)U) = π(U−1){π(T ) − λ}π(U) is

invertible. Thus S − λ ∈ Φ(X) and so λ /∈ σe(S). Hence σe(S) ⊆ σe(T ).

Similarly, we have σe(T ) ⊆ σe(S). Therefore σe(T ) = σe(S).

(5) If λ /∈ σw(T ), then T − λ ∈ Φ0(X). There is an invertible operator A

and a compact operator B such that T − λ = A + B by Corollary 2.20. Then

S − λ = U−1TU − λ = U−1(T − λ)U = U−1(A + B)U = U−1AU + U−1BU .

Here U−1AU is invertible and U−1BU is compact. Then S − λ ∈ Φ0(X). Thus

λ /∈ σw(S). Hence σw(S) ⊆ σw(T ).

Similarly, we have σw(T ) ⊆ σw(S). Therefore σw(T ) = σw(S).

(6) By (1) and (4), σe(T ) = σe(S) and σ(T ) = σ(S). Then σb(T ) = σe(T ) ∪

accσ(T ) = σe(S) ∪ accσ(S) = σb(S). 2

From the above theorem, several spectra are invariant under similarity. More-

over, the index of Fredholm is also invariant under similarity. For if there is

an invertible operator U such that T = USU−1 then i(T ) = i(USU−1) =
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i(U)+ i(S)+ i(U−1) = i(S) since i(TS) = i(T )+ i(S) and the index of invertible

is zero.

Theorem 3.16. ([2])(the spectral mapping theorem) If T ∈ L(X) and p is any

polynomial, then σ(p(T )) = p(σ(T )).

Proof. Let λ ∈ σ(T ). Then we show that p(λ) ∈ σ(p(T )), i.e., p(T )− p(λ) is

not invertible. We may write p(T )−p(λ) = (T −λ)q(T ) where q is a polynomial.

If p(λ) /∈ σ(p(T )), then p(T )− p(λ) is invertible. Then

I = (p(T )− p(λ))−1(T − λ)q(T ).

Thus T −λ is invertible. This is a contradiction to the fact that λ ∈ σ(T ). Hence

p(λ) ∈ σ(p(T )), i.e., p(σ(T )) ⊆ σ(p(T )).

Conversely, if µ /∈ p(σ(T )), then p(σ(T ))− µ 6= 0. Then

q(T ) = (p(T )− µ)−1

is polynomial and so q(T ){p(T ) − µ} = I, i.e., p(T ) − µ is invertible. Thus

µ /∈ σ(p(T )). Hence σ(p(T )) ⊆ p(σ(T )). 2

Theorem 3.17. For any operator T and for all polynomial p, σw(p(T )) is a

subset of p(σw(T )), i.e., σw(p(T )) ⊂ p(σw(T )).

Proof. Let µ /∈ p(σw(T )) and p(λ)− µ = a(λ− λ1)(λ− λ2) · · · (λ− λn). Then

p(T )−µI = a(T − λ1)(T − λ2) · · · (T − λn) and p(λj)−µ = 0 for j = 1, 2, · · · , n.

Thus µ = p(λj) /∈ p(σw(T )) and so λj /∈ σw(T ). Thus T − λj ∈ Φ0(X) for

j = 1, 2, · · · , n. By Theorem 2.8, (T − λ1)(T − λ2) · · · (T − λn) ∈ Φ0(X) and so

p(T )− µI ∈ Φ0(T ). Thus µ /∈ σw(p(T )). Hence σw(p(T )) ⊂ p(σw(T )). 2
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Remark 3.2. We give the following example of an operator T such that σw(p(T )) 6=

p(σw(T )).

For example, let H be a Hilbert space, let T = U ⊕ (U∗ + 2I) where U is the

unilateral shift operator and let p(λ) = λ(λ− 2). Then R(U) = {(0, x1, x1, · · · ) :

(x1, x2, x3, · · · ) ∈ l2} and so R(U) is closed. Then N(U) = {0} and X/R(U) =

{(x, 0, 0, · · · ) : x ∈ C}. Thus i(U) = 0 − 1 = −1. For all x = {xn}, y = {yn} in

H,

< Ux, y > = < (0, x1, x1, · · · ), (y1, y2, y3, · · · ) >= x1y2 + x2y3 + · · ·

= < (x1, x2, x3, · · · ), (y2, y3, y4, · · · ) >=< x, U∗y > .

Thus U∗(y1, y2, · · · ) = (y2, y3, · · · ). Also R(U∗) = l2, N(U∗) = {(x, 0, 0, · · · ) :

x ∈ C} and X/R(U∗) = {0}. Thus i(U∗) = 1 − 0 = 1. Since −2 /∈ σ(U∗) and

2 /∈ σ(U), U∗ + 2I and U − 2I are invertible and so i(U∗ + 2I) = 0 = i(U − 2I).

Since p(λ) = λ(λ− 2),

p(T ) = T (T − 2I) = [U ⊕ (U∗ + 2I)][U ⊕ (U∗ + 2I)− 2I]

= [U ⊕ (U∗ + 2I)][(U − 2I)⊕ U∗].

Note that i(T ⊕ S) = i(T ) + i(S) and i(TS) = i(T ) + i(S). Thus i(T ) =

i(U ⊕ (U∗+2I)) = −1+0 = −1, i(T − 2I) = i((U − 2I)⊕U∗) = 0+1 = 1. Then

i(p(T )) = i(T (T − 2I)) = i(T ) + i(T − 2I) = −1 + 1 = 0. Thus p(T ) ∈ Φ0(X)

and so 0 /∈ σw(p(T )). Since i(T ) = −1, T /∈ Φ0(X). Then 0 ∈ σw(T ). Hence

0 ∈ p(σw(T )).
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Theorem 3.18. If T is a normal operator. Then σw(f(T )) = f(σw(T )) for every

continuous complex-valued function f on σ(T ).

Proof. If T is normal, then T̂ is also normal in L(X)/K(X). Because T̂ T̂ ∗ =

π(T )π(T )∗ = π(T )π(T ∗) = π(TT ∗) = π(T ∗T ) = π(T ∗)π(T ) = π(T )∗π(T ) =

T̂ ∗T̂ . By the standard C∗-algebra theory, f(T̂ ) = f̂(T ). Since T is normal, f(T )

is normal. Note that if S is normal, then σw(S) = σe(S). We have σw(S) =

σe(S) = σ(π(S)) = σ(Ŝ), i.e., σw(S) = σ(Ŝ). Hence σw(f(T )) = σ(f̂(T )) =

σ(f(T̂ )) = f(σ(T̂ )) = f(σw(T )). 2

Theorem 3.19. Let T ∈ L(X) be any operator. Then for any polynomial p,

p(σb(T )) = σb(p(T )).

Proof. Let µ ∈ σb(p(T )).

Case I. µ is not an isolated point of σ(p(T )) = p(σ(T )). Then there is a sequence

{λn} in σ(T ) such that µ = lim p(λn). Since σ(T ) is a compact subset of C, {λn}

has a convergent subsequence, say {λnk
}. Let lim λnk

= λ. Then λ ∈ σb(T ).

Since p(λ) = p(lim λnk
) = lim p(λnk

) = µ, p(λ) ∈ p(σb(T )). Thus µ ∈ p(σb(T )).

Case II. µ is an isolated point of σ(p(T )) = p(σ(T )). Then µ ∈ σe(p(T )) by

σb(T ) = σe(T ) ∪ accσ(T ), i.e., p(T )− µ = (T − λ1)(T − λ2) · · · (T − λn) /∈ Φ(X).

Then T−λk /∈ Φ(X) for some k. Thus λk ∈ σe(T ) and so µ = p(λk) ∈ p(σe(T )) ⊂

p(σb(T )). Hence σb(p(T )) ⊂ p(σb(T )). Let λ ∈ σb(T ). If λ is not an isolated point

of σ(T ), then p(λ) is also not an isolated point of σ(p(T )). Thus p(λ) ∈ σb(p(T )).

If λ is an isolated point of σ(T ), then λ ∈ σe(T ). Thus T − λ /∈ Φ(X) and so

p(T )− p(λI) = (T −λ1)(T −λ2) · · · (T −λn) /∈ Φ(X). Note that if TS = ST and

T /∈ Φ(X), then TS /∈ Φ(X). Hence p(λ) ∈ σe(p(T )) ⊂ σb(p(T )). 2
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4 Weyl’s theorem, Browder’s theorem, a-Weyl’s the-

orem and a-Browder’s theorem

Definition 4.1. Let T ∈ L(X) be any operator.

(1) If π00(T ) = σ(T )\σw(T ), then we say that Weyl’s theorem holds for T

where π00(T ) denotes the isolated points of σ(T ) that are eigenvalue of

finite multiplicity.

(2) If p00(T ) = σ(T )\σw(T ) then we say that Browder’s theorem holds for T

where p00(T ) = σ(T )\σb(T ) is the set of Riesz points of T .

Theorem 4.2. ([12]) Let T ∈ L(X) be any operator. Then for any polynomial

p, we have σ(p(T ))\π00(p(T )) ⊂ p(σ(T )\π00(T )).

Proof. Let λ ∈ σ(p(T ))\π00(p(T )) = p(σ(T ))\π00(p(T )).

Case I. λ is not an isolated point of p(σ(T )). Then there is a sequence {λn} in

p(σ(T )) such that λn → λ, and so there is a sequence {µn} in σ(T ) such that

p(µn) = λn → λ, i.e., lim p(µn) = λ. Then {p(µn)} is bounded and so {µn} is

bounded. Thus {µn} has a convergent subsequence, say {µn}. Let lim µn = µ0.

Then p(µ0) = p(lim µn) = lim p(µn) = λ. Since σ(T ) is closed, µ0 ∈ σ(T ). Since

µ0 ∈ σ(T )\π00(T ), λ ∈ p(σ(T )\π00(T )).

Case II. λ is an isolated point of σ(p(T )). Since λ /∈ π00(p(T )), either λ is not an

eigenvalue of p(T ) or it is an eigenvalue of infinite multiplicity. Let p(T )− λI =

a0(T − µ1I)(T − µ2I) · · · (T − µnI). If λ is not an eigenvalue of p(T ), then none
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of µ1, µ2, · · · , µn can be an eigenvalue of T . If µi /∈ σ(T ) for all i, then T − µi

is invertible and so p(T ) − λI is invertible. This is contradiction to the fact

that λ ∈ σ(p(T )). Thus for some k, µk ∈ σ(T ), µk is not an eigenvalue of T

and µk ∈ σ(T )\π00(T ). Since p(µk) − λ = 0, λ = p(µk) ∈ p(σ(T )\π00(T )). If

λ is an eigenvalue of infinite multiplicity, then N(p(T ) − λ) =
∞⋃

k=1

N(T − µk).

Since dim N(p(T ) − λ) = ∞, dim N(T − µk) = ∞ for some k. Thus µk is an

eigenvalue of T with infinite multiplicity. Hence µk ∈ σ(T )\π00(T ) and λ =

p(µk) ∈ p(σ(T )\π00(T )). 2

Recall that an operator T ∈ L(X) is said to be an isoloid if isolated points of

σ(T ) are eigenvalues of T .

Theorem 4.3. ([12]) If T is isoloid, then σ(p(T ))\π00(p(T )) = p(σ(T )\π00(T ))

for any polynomial p.

Proof. We show that p(σ(T )\π00(T )) ⊂ σ(p(T ))\π00(p(T )).

Let λ ∈ p(σ(T )\π00(T )). Then there is µ ∈ σ(T )\π00(T ) such that λ = p(µ)

and λ ∈ σ(p(T )). Suppose that λ ∈ π00(p(T )), i.e., λ is an isolated point of

σ(p(T )) and an eigenvalue of p(T ) of infinite multiplicity. Let p(T ) − λI =

a0(T −µ1I)(T −µ2I) · · · (T −µnI). Then µ = µk for some k. Since λ = p(µ) and

µ ∈ σ(T )\π00(T ), λ = p(µk) where µk ∈ σ(T )\π00(T ). Thus µk is an isolated

point of σ(T ). Hence µk is an eigenvalue since T is isoloid. Since N(T − µk) ⊂

N(p(T )−λ) and dim N(p(T )−λ) < ∞, dim N(T −µk) < ∞. Thus µk ∈ π00(T ).

This is contradiction to the fact that λ = p(µk) ∈ p(σ(T )\π00(T )). Hence λ =

p(µk) /∈ π00(p(T )) and λ ∈ σ(p(T ))\π00(p(T )). 2
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Theorem 4.4. ([12]) Let T be an isoloid operator and let Weyl’s theorem holds

for T . Then for any polynomial p, Weyl’s theorem holds for p(T ) if and only if

p(σw(T )) = σw(p(T )).

Proof. Suppose that Weyl’s theorem holds for p(T ). Then by hypothesis

σw(T ) = σ(T )\π00(T ) and σw(p(T )) = σ(p(T ))\π00(p(T )). Thus σw(p(T )) =

σ(p(T ))\π00(p(T )) = p(σ(T )\π00(T )) = p(σw(T )) by Theorem 4.3. Hence

σw(p(T )) = p(σw(T )).

Conversely, if Weyl’s theorem holds for T , then σw(T ) = σ(T )\π00(T ). Sup-

pose that p(σw(T )) = σw(p(T )) for any polynomial. Then σw(p(T )) = p(σw(T ))

= p(σ(T )\π00(T )) = σ(p(T ))\π00(p(T )) by Theorem 4.3. Thus σw(p(T )) =

σ(p(T ))\π00(p(T )). Hence Weyl’s theorem holds for p(T ). 2

Theorem 4.5. Let T ∈ L(X) be such that for any polynomial p then p(σw(T )) =

σw(p(T )). Then if f is a holomorphic function defined in a neighborhood of σ(T ),

then f(σw(T )) = σw(f(T )).

Proof. By Runge’s theorem, let pn be a sequence of polynomial converg-

ing uniformly in a neighborhood of σ(T ) to f so that pn(T ) → f(T ), i.e.,

lim
n→∞

pn(T ) = f(T ). By Theorem 3.12,

σw(f(T )) = σw(lim pn(T )) = lim σw(pn(T )) = lim pn(σw(T )) = f(σw(T )).

The proof is complete. 2

Theorem 4.6. Let T ∈ L(X) be an operator. If f is a holomorphic function

defined in a neighborhood of σ(T ), then f(σb(T )) = σb(f(T )).
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Proof. By Theorem 3.19, p(σb(T )) = σb(p(T )) for any polynomial p. By

Runge’s theorem, let pn be a sequence of polynomial converging uniformly in a

neighborhood of σ(T ) to f so that pn(T ) → f(T ). Then

σb(f(T )) = σb(lim pn(T )) = lim σb(pn(T )) = lim pn(σb(T )) = f(σb(T )).

The proof is complete. 2

Definition 4.7. Let Φ−+(X) = {T ∈ L(X) : T ∈ Φ+(X) and i(T ) ≤ 0}. Then

σea(T ) = {λ ∈ C : T − λ /∈ Φ−+(X)} = ∩{σap(T + K) : K ∈ K(X)} is called

the essential approximate point spectrum and πa
00(T ) = {λ ∈ isoσap(T ) : 0 <

α(T − λ) < ∞} is called the set of eigenvalues of finite multiplicity which are

isolated in σap(T ). Let σab(T ) = ∩{σap(T + K) : TK = KT and K ∈ K(X)} be

the Browder essential approximate point spectrum.

Clearly σea(T ) ⊆ σab(T ) by the definition. In fact, σab(T ) = σea(T ) ∪

accσap(T )([14]).

Definition 4.8. If σea(T ) = σap(T )\πa
00(T ) then we say that a-Weyl’s theorem

holds for T ∈ L(X). If σea(T ) = σab(T ) then we say that a-Browder’s theorem

holds for T ∈ L(X).

Theorem 4.9.

(1) a-Weyl’s theorem =⇒ Weyl’s theorem =⇒ Browder’s theorem.

(2) a-Weyl’s theorem =⇒ a-Browder’s theorem =⇒ Browder’s theorem.
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Proof. (1)(i) If T does not hold Weyl’s theorem, then π00(T ) ( σ(T )\σw(T )

and then there exists λ ∈ σ(T ) such that λ /∈ (π00(T )∪ σw(T )). Thus λ /∈ σw(T )

and λ /∈ π00(T ). We have λ /∈ σea(T ) and λ /∈ πa
00(T ) since σea(T ) ⊆ σw(T ) and

πa
00(T ) ⊆ π00(T ). Since λ /∈ πa

00(T ), λ ∈ accσap(T ). By Theorem 3.2(3) σap(T )

is closed, λ ∈ σap(T ). This is a contradiction to the fact that σap(T )\σea(T ) =

πa
00(T ). Thus if a-Weyl’s theorem holds for T , then T obeys Weyl’s theorem.

(ii) If T does not hold Browder’s theorem, then p00(T ) = σ(T )\σb(T ) 6=

σ(T )\σw(T ), i.e., σb(T ) 6= σw(T ). We can take λ ∈ σb(T )\σw(T ). Since σb(T ) =

σe(T )∪accσ(T ), λ ∈ accσ(T ). But since T obeys Weyl’s theorem and λ /∈ σw(T ).

Then λ ∈ π00(T ). This is contradiction. Thus if Weyl’s theorem holds for T , then

T obeys Browder’s theorem.

(2)(i) If T holds a-Weyl’s theorem, then σea(T ) = σap(T )\ πa
00(T ). Since

acc σap(T )∩πa
00(T ) = φ, accσap(T ) ⊆ σea(T ). Then σab(T ) = σea(T )∪ acc σap(T )

= σea(T ). Hence if a-Weyl’s theorem holds for T , then T obeys a-Browder’s

theorem.

(ii) If T does not hold Browder’s theorem, then p00(T ) = σ(T )\σb(T ) 6=

σ(T )\σw(T ) and then σb(T ) 6= σw(T ), i.e., there exists λ ∈ C such that λ ∈

σb(T )\σw(T ). Then T − λ ∈ Φ0(X) and a(T − λ) = ∞, it follows from ([14])

that λ ∈ σab(T ). Since a-Browder’s theorem holds for T , σea(T ) = σab(T ). Then

λ ∈ σea(T ) ⊂ σab(T ). This is contradiction to λ /∈ σw(T ). Thus if a-Browder’s

theorem holds for T , then T obeys Browder’s theorem. 2

Theorem 4.10. ([9]) If Browder’s theorem holds for T ∈ L(X) and if p is a

polynomial. Then Browder’s theorem holds for p(T ) if and only if p(σw(T )) ⊆
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σw(p(T )).

Proof. If Browder’s theorem holds for p(T ), then σb(p(T )) = σw(p(T )), i.e.,

σb(p(T )) ⊆ σw(p(T )). Since Browder’s theorem holds for T , σb(T ) = σw(T ).

Thus by Theorem 3.19, p(σw(T )) ⊆ p(σb(T )) = σb(p(T )) ⊆ σw(p(T )).

Conversely, if p(σw(T )) ⊆ σw(p(T )) then by hypothesis and Theorem 3.19,

σb(p(T )) = p(σb(T )) ⊆ p(σw(T )) ⊆ σw(p(T )). Since σw(p(T )) ⊂ σb(p(T )),

σb(p(T )) = σw(p(T )). 2

From Theorem 3.17 and Theorem 4.10, if Browder’s theorem holds for T ∈

L(X) and if p is a polynomial. Then Browder’s theorem holds for p(T ) if and

only if p(σw(T )) = σw(p(T )).

Theorem 4.11. ([9]) Browder’s theorem holds for T if and only if accσ(T ) ⊆

σw(T ).

Proof. Suppose that accσ(T ) ⊆ σw(T ), then σ(T )\σw(T ) ⊆ isoσ(T ) and

then σ(T )\σw(T ) ⊆ isoσ(T )\σe(T ) = p00(T ). Since p00(T ) = σ(T )\σb(T ) ⊆

σ(T )\σw(T ), p00(T ) = σ(T )\σw(T ). Hence Browder’s theorem holds for T .

Conversely, if Browder’s theorem holds for T , then σb(T ) = σw(T ). Since

σb(T ) = σe(T ) ∪ accσ(T ), accσ(T ) ⊂ σb(T ) = σw(T ). 2

Theorem 4.12. Necessary and sufficient for Weyl’s theorem is Browder’s theo-

rem together with either of the following:

(1) σw(T ) ∩ π00(T ) = φ;

(2) π00(T ) ⊆ p00(T ).
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Proof. Notice that (2) always implies (1). First we show that Browder’s the-

orem together with (1) implies Weyl’s theorem. Since p00(T ) = σ(T )\σb(T ) =

isoσ(T )\σe(T ) ⊆ π00(T ) and Browder’s theorem holds for T , σ(T )\σw(T ) ⊆

π00(T ). By (1), π00(T ) ⊆ σ(T )\σw(T ). Then σ(T )\σw(T ) = π00(T ), i.e.,

Weyl’s theorem holds for T . Second we show that Weyl’s theorem implies (2).

If λ ∈ π00(T ), then λ ∈ isoσ(T ) and λ /∈ σw(T ) by Weyl’s theorem. Then

λ ∈ isoσ(T )\σw(T ) ⊆ isoσ(T )\σe(T ) = p00(T ). 2
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<국문 록>

바나하 공간 에서 선형작용소의 

바일과 라우더 스펙트럼에 한 연구

  본 논문에서는 무한차원의 바나하(Banach) 공간에서 유계 선형 작

용소인 바일(Weyl)작용소, 라우더(Browder)작용소와 그들의 스펙

트럼들에 한 여러 가지 성질을 연구하고 바일(a-바일) 정리와 

라우더(a- 라우더) 정리의 체계 인 계를 조사하 으며, 주요 연

구 결과는 다음과 같다.

 (1) 바일과 라우더 작용소의 집합은 열린집합이고 컴펙트 섭동

   (compact perturbation)하에서 안정 이다. 한 바일 작용소이기

   한 동치조건과 라우더 작용소이기 한 동치조건도 제시했다.

 (2) 진성, 바일, 라우더 스펙트럼은 로 반연속(upper semi-

   continuous) 함수이고 그들의 스펙트럼 반경도 로 반연속함수

   이다. 한 이 스펙트럼들은 닮음에 하여 불변하다.

 (3) 유계 선형 작용소들의 라우더 스펙트럼에 해 스펙트럼 사

   상정리가 만족한다. 한 이 결과를 다음과 같이 확장했다. 만약 

   가 선형 작용소이고 가 의 스펙트럼근방에서 정의된 정칙

   함수(holomorphic function) 일 때         이다.

 (4) 유계 선형 작용소에 해 a-바일 정리가 성립하면 바일 정리가 

   성립하고, 바일 정리가 성립하면 라우더 정리가 성립한다. 한 

   유계 선형 작용소에 해 a-바일 정리가 성립하면 a- 라우더 

   정리가 성립하며, a- 라우더 정리가 성립하면 라우더 정리가 

   성립한다.
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어 곁에서 지켜 주는 친구들과 선배님들 후배들에게도 고마움을 

하고 싶고 힘든 시기가 닥칠 때마다 격려와 사랑으로 나를 있게 해

주신 부모님과 가족들께도 사랑의 말을 하고 싶습니다. 앞으로도 

이 모든 사람들의 기 에 어 나지 않는 사람이 되도록 노력하겠습

니다.

                                                 

2004년 12월
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