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< Abstract >

ZERO-TERM RANK PRESERVERS
OF NONNEGATIVE INTEGER MATRICES

There are many papers on the ranks of matrices and their preservers.
They gave us the motivation to research on the zero-term rank of matrices and
its preserver. Recently, Beasley, Song and Lee obtained characterizations of
the linear operators that preserve zero-term rank of Boolean matrices in ([3]).
The zero-term rank of a matrix over algebraic structures is the minimum
number of lines (rows or columns) needed to cover all the zero entries of
the given matrix. In this thesis, we extend their results to the matrices
over nonnegative integers. Namely we characterize the linear operators that

preserve the zero-term rank of the m x n matrices over nonnegative integers.



1. Introduction

A semiring consists of a set S, and two binary operations on S, addition(+)

and multiplication(-), such that

(1) (S.+) is an Abelian monoid under addition (identity denoted by 0);
(2) (S,-) is a monoid under multiplication (identity denoted by 1);

(3) multiplication distributes over addition ;

(4) sO = 0s =0 for all s € S ; and

(5) 0#1.

Usually S denotes both the semiring and the set. The set of nonnegative
integers with usual addition and multiplication, binary Boolean algebra and
fuzzv sets are important example of semirings in the combinatorial mathe-

matics.
Here are some examples of semirings which occur in combinatorics. Let

B be any Boolean algebra; then (B, U, N) is an semiring. Let C be any chain
with lower bound 0 and upper bound 1; then (C ,max, min) is a semiring
(a chain semiring). In particular, if F is the real unit interval [0, 1], then F
is a semiring with max for + and min for x. This (F, max, min) is called
a fuzzy semiring. If P is a subring of the reals R(under real addition and
multiplication) and P* denotes the nonnegative members of P, then P is a

semiring. In particular Z*, the nonnegative integers, is a semiring,.



There is much literature on the study of those linear operators on matrices
that leave certain properties or subsets invariant. Boolean matrices also
have been the subject of research by many authors. Beasley and Pullman
characterized those linear operators that preserve Boolean rank in ([1]) and
term rank of matrices over semirings in ([3]). But there are few papers on
the linear operators that preserve zero-term rank of the matrices. Recently
Beasley, Song, and Lee obtained characterizations of the linear operators that
preserve zero-term rank of Boolean matrices in ([4]).

In this thesis, we investigate the zero-term rank of nonnegative integers.
We obtain characterizations of linear operators that preserve zero-term rank
of the m x n matrices over Z7. This results extend the results in ([4]) over
nonnegative integer matrices.

In Chapter 2, we introduce the definitions, notations, and well-known

fact.
In Chapter 3, we study the rank-1-preserving operators over binary Boolean

matrices.
In Chapter 4, we study the Boolean rank preservers and review the charac-

terizations of the linear operators that preserve the rank of Boolean matrices
which is studied in ([3]).
In Chapter 5, we give some characterizations of linear operators that

preserve zero-term rank of the m x n matrices over Z™.



2. Preliminaries

We introduce some definitions and notations that we shall use in this
thesis. Let M, ,(B) denote the set of all m x n matrices with entries in
B = {0,1}, the binary Boolean algebra. Arithmetic in B follows the usual
rules except that 1+1=1. The usual definition for adding and multiplying

matrices over fields are applied to Boolean matrices as well.

Definition 2.1 . Let A be a nonzero m x n Boolean matrix. If there is
the least integer k for which there exist m x k and k x n Boolean matrices
B and C' with A = BC', then we call that A has Boolean rank k and denote
b(A) = k.

Definition 2.2 . An m xn Boolean matrix 4 is called a singular if Ax =0
for some nonzero x in M, 1(B). And A is called a nonsingular matrix if it is

not singular.

Trivially A is nonsingular if and only if A has no zero column.

Definition 2.3 . An n x n Boolean matrix A is said to be invertible if
there exists some X € M, ,(B) such that AX = XA = [, where I, is the

n X n identity matrix.

It is well-known that the permutation matrices are the only invertible
matrices in M, ,(B) and A~! = A* when A is invertible. Moreover invertible

matrices are all nonsingular.

Definition 2.4 . A Boolean vector space is any subset of B™[= M, ;(B)]

containing 0 which is closed under addition.



Definition 2.5 . For any x,y € B™, if y; = 0 whenever r; = 0, for all

1 < i<, then we say x absorbs y, which is defined by x >y, .

Definition 2.6 . If V,W are vector space with V.C W/ then V is called
a subspace of W.

Definition 2.7. Let V be a Boolean vector space. If S is a subset of V|,
then

(1) The intersection of all subspaces of V containing S becomes a sub-
space of V. This subspace is called the subspace generated by S and is

denoted by (S).

(2) 1If S = {s1,82,.... 5p}, then (S) = {37 | x;s, : ; € B} is the set of all

linear combinations of the elements in S. In particular, (¢) = {0}.

Definition 2.8. The dimension of V, written as dim(V), is the minimum
of the cardinalities of all subsets S of V generating V. We call a generating

set S of cardinality equal to dim(V) by a basts of V.

And it is well known that every Boolean vector space V has only one

basis([1]).

Definition 2.9. A subset I of V is called independent if none of its
members is a linear combination of the others. And a subset J of V is called

dependent if it is not independent.

Evidently every basis is independent. The following Lemma proves the
uniqueness of the basis and establishes the fact that every independent set

is the basis for the space it generates.



Lemma 2.1 . If S is an independent subset of the Boolean vector space

V. then S is contained in every subset of V generating (S).

Proof. We may assume that S # ¢. Suppose (T') = (S) and T C V. Let
c € S; then c is a linear combination of members of T, each of which is a
linear combination of members of S. But S is independent, so ¢ > b > ¢ for

some b € T. Therefore ¢ € T. Hence S C T. O

In contrast with vector spaces over fields, a Boolean vector space V' may
have several subspaces with the same dimension as V. For example, let
x = [0,1,1],y = [1,1,0] and z = [1,1,1]. Let V = (x, y); then (x, z) and
(y, z) are two-dimensional subspaces of V, neither of which equals V.

Even more disconcerting, V can have subspaces whose dimensions exceed
dim(V). For example, let V be the subspace of B* generated by the set S of
six vectors x having exactly two entries equal to 0. Then dim(V)=6 because
S is independent, even though V is subspace of a 4-dimensional space.

As with vector spaces over a field, the intersection of two subspaces U, W
of a Boolean vector space is always a subspace, but union seldom is. However,
if W absorbs U (that is, w > u for all nonzero w in W and all u in U),

then it’s easy to verify that U U W is a Boolean vector space.

Lemma 2.2 . If U, W are subspaces of the same Boolean vector space

with W > U and UN'W = {0}, then
dim(U U W) = dim(U) + dim(W).

Proof. Let C,D be the bases of U and W respectively, and B = CUD.
Then B is independent and generates U U W, so B is a basis for U U W by
Lemma 2.1. O

[S3}



Definition 2.10 .  If V,W are Boolean vector spaces, a mapping
T :V — W which preserves sums and 0 is said to be a (Boolean) linear
transformation. If V.= W the word operator is used instead of ”transfor-

mation”.

Evidently, when T is linear, its behavior on the basis of V determines its
behavior completely. As with transformations of vector spaces over fields, by
ordering the bases of V and W, we can represent T' by an m X n matrix [t;;]
in an analogous way. But the t;;’s are not uniquely defined by Boolean T
in general, so T may have several matrix representations for the same bases
orderings.

A matrix A € M,, ,(B) determines a linear transformation T4 of B" into
B™ by

Ti(x) = Ax

for all x € B"
The image T(V) of V in W is generated by the image T (B) of the basis
B of V.

Lemma 2.3 . For every linear Boolean transformation T,
dim(T'(V)) < dim(V).

Proof. Let dim(V) = k. Then there are k vectors v, vy, -+ . vy in V.,
which constitute a basis of V. For any vector w in T(V), there exist a vector
v in V such that T(v) = w. Since v € V| v is spanned by v, vy, -+ vi.
That is. there are a; € B such that v = a ;v +ayve+- -+, +axve. Hence w =
T(v)=T(ovi+aavy+--- +apvi) = ayT(vi) + T (vy) 4+, T(vy),
which shows that w is spanned by k vectors T'(vy), T'(vy), -+ , T(vg) in T(v).
Therefore dimT(V) < k. 0



Lemma 2.4. If the Boolean linear transformation 7 : V. — W is
injective, then dim(V)=dim(7(V)) and T maps the basis of V onto the
basis of T(V).

Proof. In the proof of Lemma 2.3, we have shown that {T'(v,), T(v2),- -,
T(vi)} spans T(V). Since T is injective, T(vy), T(vy), -+, T(vi) are linearly
independent, and hence it is a basis for T(V). Thus dimT(V) = k and T
maps the basis vi, vy, -+, v of V onto the basis {T(vy), T(va). -+ . T(vk)}
of T(V). 0

Proposition 2.1. A transformation T : V. — W is invertible if and only
if T is injective and T(V)=W.

It is obvious that the inverse T} of a Boolean linear transformation 7T is

also linear.

Lemma 2.5 . If T:V — W is a surjective Boolean linear transforma-
tion, then T is invertible if and only if T preserves the dimension of every

subspace of V.

Proof. If T is not injective, then for some x # y, T reduces the dimension
of (x,y). Conversely, if T is invertible, then the conclusion follows by Lemma

2.4. .

Corollary 2.5.1 If T is a Boolean linear operator on V, then the following

statements are equivalent:
(a) T is invertible ;

(b) T is injective ;



(¢) T is a surjective ;
(d) T permutes the basis of V;

(b) T preserves the dimension of every subspace of V.

Proposition 2.2.  Suppose that T is a linear operator on V. Then the

following statement are equivalent :
(1) T, is invertible;
(2) A is invertible;

(3) A is a permutation matrix.

Let’s use the following notions:
(1) App ={(,))1<i<m, 1 <5 <n}.

(2) ETY" be the m x n matrix whose (i, j)th entry is 1 and whose other

entries are all 0.

(3) gm‘n:{E:’nj‘n : (’L,]) € Am,n}'

Corollary 2.5.2.  The linear operator T on M (B) is invertible if and only

if T permutes & if and only if T preserves the dimension of every subspace

()f ‘\I(B) .

We can describe any operator T on M(B) by expressing (T(X));; as
a scalar-valued function of X for all (i,j) € A. The operator T will be

linear if and only if each component function t;; : X — (T(X)),; is a linear



transformation of M (B) onto B. Applying corollary 2.5.2, we see that the
operator T on M(B) is invertible if and only if there exist a permutation 7

of A such that T'([z;;]) = [z;) for all X in M(B).

Proposition2.3.  Let A be a Boolean matrix with rank 1 in M,, ,(B).

(1) If A = xy'is a factorization of A, then the vectors x and y are uniquely
determined by A. We call x and y the left factor and the right factor

of A, respectively.

(2) There are exactly (2™ — 1)(2" — 1) rank-1 m x n Boolean matrices.
Definition 2.11. Let A,B € M, ,(B). We define 4 < B if a;; = 0

whenever b,; = 0. Equivalently A < B if and only if A+ B = B.

Definition 2.12.  For any vector x, let |x| be the number of nonzero
entries in x. If 4 = ab! is not zero, then we define perimeter of A as |a]+ |b|,

and we denote the perimeter of A by p(A) .

Lemma 2.5. If A < B and b(A) = b(B) = 1, then p(A) < p(B) unless
A=B.

Definition 2.13 . A subspace of M,,,(B) whose nonzero members have

Boolean rank 1 is defined by a rank-1 space .

Lemma 2.6 . If A, B, and A+ B are rank-1 matrices and neither A < B

nor B < A, then A, B, and A + B have a common factor.

Proof. Let A =ax!, B = by’ and C = A+ B = cz' be the factorizations



of A, B, and Crespectively. We have for all i, j
a;x + by = ¢;z and z;a+ y;b = z5c.

If a g band b £ a, then for some ¢, j, x = ¢;z and y = ¢;z. But x # 0 and
y # 0,50 x =y = z. Thus A, B,C have a common right factor. If a < b,
then x £ y (as A € B). Therefore a = b and A, B,and C have a common
left factor. A parallel argument holds if b < a. a

10



3. Linear operators that preserve

Boolean rank 1

Definition 3.1.  Suppose that T is a linear operator on M which is the

set of the m x n matrices over semirings S. Say that T is a

(1) (U,V)-operator if there exist invertible matrices U and V' such that
T(A)=UAV forall Ain M, or m =n and T(A) = UA'V for all A in
M.

(2) rank preserver if rank(T(A))=rank(A) for all A in M.

(3) rank-1 preserver if rank(7T(A)) = 1 whenever rank(4)=1 for all A in
M.

Marcus, Moyls, and Westwick([5]) showed that if T is a linear operator on
M, . (F)(F algebraically closed field) and 7" maps rank-1 matrices to rank-
1 matrices(i.e. T preserves rank-1 matrices), then (and only then) T is a
(U, V)-operator. This result does not hold for the Boolean case. All of the
contents of this chapter are due to Beasly and Pullman in ([1]). The following
example shows that not all rank-1-preserving operators T are of the form
T(X)=UXV or T(X) = UX"'V for some nonsingular U, V', contrary to the
situation for algebraically closed fields. Since invertible Boolean matrices
are nonsingular, it also shows that not all rank-1-preserving operators T are

(U, V)-operators.

Example. Let



Here, T is a linear operator and b(T(X)) = 1 whenever b(X) = 1 (in
fact whenever X # 0). If there existed nonsingular U and V' such that
T(X)=UXV forall X € My3(B), then for j = 1,2,3, we have T(E};) = uvz,

where u is the first column of U and v; is the jth column of V. But

T(E,) = [H“’O’O] and T(E)y) = [ } ] 1,1, 1],

and hence

which is a contradiction. g

Suppose that U and V' are nonsingular member of M, ,(B)and M, ,,(B)
respectively, and T is the operator on M, ,(B) defined by T(X) = UXV
for all X. Clearly T is linear. Moreover T(.XX) has rank 1 whenever X has
rank 1. For, suppose X has rank 1, so that X = ab’ wherea # 0, b # 0
. Then T(X) = Uab!V = (Ua)(V'b)!, and since U and V" are nonsingular,
neither Ua nor Vb is 0, so T(X) has rank 1. It follows that all Boolean

(U. V)-operators are rank-1 preservers.

Example. Suppose that C is a fixed rank-1 member of M,, ,(B), and T is
the operator defined by T(X) = C' if X # 0 and T(0) = 0. Then T preserves

Boolean rank 1. But T is not a (U, V')-operator. u

This example shows that for each k(1 < k < n) there is a linear operator

T that preserves the Boolean rank of every rank-k m x n matrix but is not

12



a (U, V)-operator when k > 1. [Just take C to be fixed rank-k matrix]

Beasley ([6]) showed that for most £ < n, each operator on field-valued
matrices preserves the rank of rank-k matrices if and only if it is a (U, V)-
operator.

They were unable to find a condition necessary and sufficient for a Boolean
operator to preserve the rank of all rank-1 matrices. They have, however,
found two conditions, one necessary (but not sufficient), and the other suf-
ficient (but not necessary), which are of some help in constructing example.
These are described in the next few paragraphs.

Suppose that T is a linear operator on M, ,(B). Let R; = {T(E) :1 <
k<n}and C; = {T(Ey;):1<k<m}forl1<i<mand1<j<n

Lemma 3.1. 7 preserves the rank of all rank-1 matrices only if there exist
rank-1 spaces R; and C; such that R; C Ry and C; € C; for 1 <7 < m and
1<) <n.

Proof. Suppose T preserves the rank of all Boolean rank-1 matrices. Then
as {E,, : 1 < j < n} is in the rank-1 space V; of all A € M,,,(B) whose
nonzero entries all lie in its ith row, it follows that R; C T(V;). But T(V;)
is also a rank-1 space. Therefore, T(V;) will serve for R; of the conclusion.

Similarly for C;. O

Lemma 3.2. T preserves the rank of all rank-1 matrices if there is a

rank-1 spaces V such that
i) U, R:CV or

1=1

(i) Ul,C, C V.

13



Proof. (1) o If b(JX’) = 1, then T(X) = Z;H:IZ?:I ‘T'iij(Eij) =

S a2y T(Ey)] = 307, @ M;, where M, is in (R;). Thercfore T'(X)

i=1 i
is a sum of members of V and hence has rank 1. The proof of (ii) is similar.

g

The identity operator I on M, ,(B) provides an example of a rank-1-
preserving operator for which neither (i) nor (ii) of Lemma 3.2 holds. Thus
those conditions are sufficient, but not necessary.

If we add the hypothesis that T preserves the dimension of any rank-1
space (unlike matrices over fields, for which this is always true of rank-1
preservers), then the conclusion is much more restrictive, as we shall see in

Theorem 3.1.

Lemma 3.3. If T is a linear operator on M, ,(B) that preserves the
dimension of all rank-1 spaces, then the restriction of T  to the rank-1 matrices

is injective or T reduces the rank of some rank-2 matrix to 1.

Proof. Let M!' = {A € M, ,(B) : b(A) = 1} and W = {0} U {X €
M' : T(X) = T(B)} for each B € M'. If W is a rank-1 space, then
dim(W) = dim(T(W)) = 1, so W = (B). Thus T is injective. Otherwise
there are X,Y in W such that b(X +Y) = 2. O
Corollary 3.3. If T is a linear operator on M,, ,(B) that

(i) preserves the ranks of all rank-1 and rank-2 matrices and

(ii) preserves the dimension of all rank-1 spaces.

then

(a) T is invertible and

14



(b) T7! satisfies (i) and (ii).

Proof. Part (a): Let £ be the basis of M, ,(B), as in chapter 2. According
to Corollary 2.5.1(d), T is invertible if it permutes £. Lemma 3.3 implies that
T permutes M'. But M! D £, so it suffices to show that T(€) D £. Let
E € £ ; then E = T(C) for some C € M'. Since C # 0, we have C > F
for some F in the basis £. Therefore E > T(F). Then £ = T(F) by Lemma
2.5, completing the proof of part (a). Part (b) follows directly. O

Lemma 3.4. Let T is an invertible linear operator on M,, ,(B) that pre-
serves the rank of every rank-1 matrix and 7 is the permutation of A repre-
senting 7. Then there exist permutation «. 3 of {1,2,....m} and {1,2, ....n}

respectively such that
(a) 7(i.j) = (a(2),3(9)) for all (1,j) € A or

(b) m=nand 7(i,j) = (3()), (7)) for all (i,j) € A.

Lemma 3.5. If 7 satisfies the conclusion of Lemma 3.4, then T is a (U, V7)-

()[)0rat()r.

Theorem 3.1. If T is a linear operator on M,,,,(B), then the following

statements are equivalent:
(a) T is invertible and preserves the rank of all rank-1 matrices;

(b) T preserves the ranks of all rank-1 matrices and rank-2 matrices and

preserves the dimension of all rank-1 spaces;

(¢) T is a (U, V)-operator.



Proof. Lemmas 3.4 and 3.5 show that (a) implies (¢). Statement (b)
implies (a) by corollary 3.3. So it sufficies to show that (c) implies (b). Any
operator T that satisfies (c¢) is invertible; in fact T-'(A) = U~'AV~! or
T-'(A) = U 'A'V . Such operators are clearly rank-1 preservers. The rest

is implied by Lemma 2.4. O

16



4. Linear operators that preserve the

Boolean rank

In this chapter, we reviewed the linear operators that preserve Boolean

rank.

Lemma 4.1. For A, B are in M,,,(B)(m > 1), A # B, if p(A4) > p(B),
and b(A) = b(B) = 1. then there exists C in M, ,(B) such that b(A+C) =1
and b(B + () = 2.

Proof. If (A + B) = 2, then the conclusion is obtained by letting €' = A.
So we may assume that b(A + B) = 1. we define Ep, as in Chapter 2.

Factoring A, B, and E,,, we have A = ax', B = by’. and E,, = e,f,. By
our hvpotheses and Lemma 2.5, 4 € B. Therefore, Lemma 2.6 implies that
there are three cases; (i) a = b and x # y, or (ii) x =y and a # b, or
(i) b<a, b#a, y<x,andy # x. In any case, there exist k,[ such that
by =y, = 1, because B # 0.

Case(i): We have x £ y because a = b and A £ B. So we can select
J < nsothat x; =1 and y; = 0. Since m > 1, we can choose 1 < m so that
i # k. Now b(E,, + Ex) = 2, because k # i and | # j. Let C = (a + e;)x".
Then B+ C > E;; + Ey. Thus b(B + C) = 2. On the other hand, A < C,
sob(A+C)=b(C)=1.

The case (ii),(iii) are proved similarly. O

Lemma 4.2. If T is a linear operator on M,,,(B) with m > 1, and T
is not invertible but preserves the rank of rank-1 matrices, then T decreases

the rank of some rank-2 matrix.

17



Proof. By the proof of Corollary 3.3, T is not injective on M!' = {4 €
My (B) © b(A) =1} so T(X) = T(Y) for some X,Y in M' with X # Y.
Without loss of generality we may suppose that p(X) > p(Y). By Lemma
4.1, there is some matrix D such that b(X + D) = 2 while (Y + D) = 1.
However, T(X + D) =T(X)+T(D) =T(Y + D). O

Theorem 4.1. Suppose that T is a linear operator on M, ,(B) with

m > 1. Then T is a rank preserver if and only if T is a (U, V")-operator.

Proof. Theorem 3.1 and Lemma 4.2 prove the necessity of the condition
given for rank preservation. To prove the sufficiency, we note that b(A) is the
least integer & for which k rank-1 matrices whose sum is A4 exist. Therefore
b(L(A)) < b(A) whenever L is a linear rank-1 preserver. Now each (U 17)-
operator and its inverse are rank-1 preservers, so such operators preserves all

ranks. O

Theorem 4.2.  Suppose that T is a linear operator on M, ,(B). Then
T is a rank preserver if and only if T preserves the ranks of all rank-1 and

rank-2 matrices.

Proof. We may assume that m > 1. If T preserves ranks 1 and 2, then T
is invertible(by Lemma 4.2) and hence a rank-preserver by Theorem 3.1 and

4.1. 0

18



5. Zero-term rank preserver of matrices over

nonnegative integer

In this chapter, we obtain the properties of zero-term rank of matrices
over nonnegative integers and also have the characterizations of the lincar
operators that preserve the zero-term rank of the matrices. We extend the
results over Boolean matrices of Beasley, Song and Lee([3]) to matrices over
nonnegative integer.

We let M,,,.(Z*) denote the set of all m x n matrices with entries in

Z* = {0,1,2,3...}, the nonnegative integers.

Definition 5.1.

(1) Let E;; be the m x n matrix, whose (7. j)th entry is 1 and whose other

entries are all zero, which is called a cell.

(2) Let J denote the m x n matrix all of whose entries are 1,
A={E; |1<i<m, 1<;j< n} denote the set of cells, and

E={(:j) | 1 <i<m, 1<j<n} denote the set of indices.

Definition 5.2.  The zero-term rank of a matrix X, z(X'), is the minimum

number of lines (rows or columns) needed to cover all zero entries of X.

Definition 5.3.  The term rank of X, t(X), is the minimum number of

lines (rows or columns) needed to cover all the nonzero entries of X.

Definition 5.4. For any A, B € M,, ,(Z"), we say A dominates B (writ-
ten A > Bor B <A)ifa; > b;; foralli,j.

19



Then we obtain the following Lemma for the zero-term rank.

Lemma 5.1 . For any A, B € M,,,(Z"), A > B implies that z(A) <
2(B).

Proof . If 2(B) = k, then there are k lines which cover all zero entries in
B. Since A > B, this k lines can also cover all zero entries in A. Hence

2(A) < k = 2(B). O

Definition 5.5. A function T mapping M,,,(Z") into itself is called a
linear operator if T satisfies T(a A+ 3B) = aT(A)+ 3T (B) foralla, € Z~
and for A, B € M, .(Z").

From now on we will assume that 2 < m < n for all m x n matrices, and

a mapping T will denote a linear operator on M, ,,(Z").

Definition 5.6.  If 2(T(X)) = k whenever 2(X) = k, we say T preserves
zero-term rank k. If T preserves zero-term rank k for every k < min{m,n},

then we say T preserves zero-term rank.

Definition 5.7.  If t{(T(X)) = k whenever t(X) = k, we say T preserves
term rank k. If T preserves term rank k for every k < min{m,n}, then we

say T preserves term rank.

Consider the semiring Z*. Which linear operators on M, ,(Z") pre-
serve zero-term rank? The operations of (1) permuting rows, (2) permuting
columns, and (3)(if m = n ) transposing the matrices in M, ,(Z") are all
linear operators that preserve zero-term rank of the matrices on M, ,(Z™).

If we take a fixed m x n matrix B in My, ,(Z"), then its Schur product is
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defined by B o X = [b;;z;5] for all X € My, ,(Z7).

Proposition 5.1. Suppose that T is an operator on M, ,(Z") such that
T(X)= Bo X, where B is fixed in M, ,(Z"). Then T is linear.

Proof. Foralla,3€Z", A B€ M,,(Z"),
T(aX + 8Y) = Bo (aX + 8Y) = Bo (aX) + Bo (8Y)
—a(BoX)+B(BoY) = aT(X)+ BT(Y). =

Proposition 5.2. Suppose that T is a linear operator on M, ,(Z*) such
that T(X) = Bo X, where B is fixed in M,, ,(Z"), none of entries is zero in

Z*. Then T preserves zero-term rank.
Proof. It follows the definition of Schur product. O

Definition 5.8. Let P and @ be m x m and n x n permutation matrices
and B is an m x n matrix over Z™ with none of whose entries is zero. Then

T is a (P, Q, B)-operator if
(1) T(X) = P(Bo X)Q for all X in Myn(Z%) or

(2) m=mn, and T(X) = P(Bo X"Q for all X in M, ,(Z7).

Definition 5.9. Let £ = {(i,j) : 1 < ¢ < m,1 < j < n}. That is,
£ is the set of indices. Define " : € — € by T'(i,j) = (u,v) whenever
T(El]) == bijEuv-

Now we have some Lemmas which are need to obtain the main Theorem.
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Lemma 5.2. Suppose that T preserves zero-term rank 1 and T'(J) > J.
Then T maps a cell onto a cell with a scalar multiple and hence 7" is a

bijection on £.

Proof. If T(F;;) = 0 for some Ej; € A, then we can choose mn — 1 cells

E\.E,, ..., Epu_1 which are different from E;;. Thus we have

mn—1
J<T() = T(E,+Y Ey)

mn—1

= T(Ey) +T(Z Ey)

k=1

mn—1
= 0+T() ~ Ei)

_ T(Z:':"l_lEk).

But z(J) = 0 and 2(3f"'Ex) = 1. Since T preserves zero-term rank

1, we have z(T(S 7" 7" Ey)) = 1. Since J < T(J) = T( "ol Ey), we

I

have 0 = z(J) > 2(T(X7" ' Ex)) = 1 by Lemma 5.1. Then we have a
contradiction. Therefore T(E;;) dominates at least one cell with a scalar
multiple.

For some cell E;; € A, suppose T(E;;) dominates two cells, that is,
T(Ey) 2 bi;Exit+b Eyy. Foreach cell E,, except for both Ey, and E,,, we can
choose one cell Ej such that T(E}) dominates E,, because T(J) > J. Since
the number of cells except for both Fy; and E,, is mn-2, there exist at most

mn-1 cells E,, Ey, ..., E,,, containing E;; such that T(E;";’fl Ep)) > J.

Since T preserves zero-term rank 1, we have z(T(307 " En)) = (X0 Ey) =
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1. But 1 = 2(3"", ' E4) < 2(J) = 0 by Lemma 5.1. Thus we have a contra-
diction. Hence T(E;;) dominates only one cell with a scalar multiple. That
is, T maps a cell into a cell with a scalar multiple.

Now, we show that T" is a bijection on £. If T'(7,5) = T'(k,l) = (u, v) for
some distinct pairs (7,7), (k, 1), then we have T(E;;) = a;;Ey and T(Ey) =
by Eyy. Thus we have

J<TWJ) = T
=T

J = ) + (Eij + Ext))
J = ) + T(Eij) + T(En)
J —(Ey + Ex)) + aij By + b By,
J = (Eij + Ex)) + (ai; + brt) Eue

E,']' + Ek[
Eij + Fy

Il
Dﬂ

(
(
(
= T(

But we have

(B Lol )
(T(J = (Ei; + En)) + aijEw)
= 2(T(J - (Ey; + En)) + T(Ey))
(T(J—( )
(T'(

z Ei; + En)) + (a;; + br) Evy)

=il uy

T(J — Eij + Ey) + E,]))
= z(T(J - Ekl))

= Z

Since T preserves zero-term rank 1 and z(J — Ey) = 1,2(T(J — E) = 1.
Since J < T(J — (Eij + Ex)) + (aij + bit) Eyy we have 0 = 2(J) > 2(T(J —
(E,; + Ext)) + (@i + b)) Ewy) = 2(T(J — Ext) = 1. This is a contradiction.

Therefore T” is an injection on £ and hence a bijection on £. O

Lemma 5.3. If T preserves zero-term rank 1 and T(J) > J, then T

preserves term rank 1.

Proof. Suppose that T does not preserve term rank 1. Then there exist

some cells E;; and Ey on the same row(or column) such that T(E;; + E,) =
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T(E;)+T(Ey) = bijEpg+byE,s with p # r and ¢ # s, where T"(7, j) = (p,q)
and T'(i,1) = (r,s). Since T preserves zero-term rank 1 and T'(J) > J,
we have that T’ is a bijection on £ by Lemma 5.2. Thus we have T'(J) =
B = (byy)mxn, for some B € M, ,(Z") with b, > 1. Since T preserve
zero-term rank 1 and z(J — E;j — Ey) = 1 we have 2(T(J — Ey; — E; )) = 1.
But T(J — E;; — Ey) has zeros in the (p,q) and (r,s) positions because
T(E;; + Eu) = byEp + buErs. Then 2(T(J — Ej; — Ey)) = 2. This is

impossible. Hence T preserves term rank 1. a

Lemma 5.4. If T preserves zero-term rank 1 and T'(J) > J, then T maps

a row of a matrix onto a row with a scalar multiple(or column if m=n).

Proof. Suppose that T does not map a row into a row with a scalar mul-
tiple(or column if m=n). Then T does not preserve term rank 1. This
contradicts to Lemma 5.3. Hence T maps a row into a row with a scalar
multiple(or column if m=n). Lemma 5.2 implies that 7" is a bijection on €.
Then the bijectivity of T’ implies that T maps a row onto a row with a scalar

multiple(or may be a column if m=n). a

Lemma 5.5. For the case m=n, suppose T preserves zero-term rank 1 and
T(J) > J. If T maps a row onto a row(or column) with a scalar multiple, then
all rows of a matrix must be mapped some rows(or columns, respectively)

with scalar multiple.

Proof. Lemma 5.2 implies that T" is a bijection on €. Let Ry = 377 Ey;

, ¢ =51 Ey fori.j=1,2,...,n. Suppose T maps a row, say R; , onto
an ith row R; with a scalar multiple B; and another row. say R, , onto a
jth column CY with a scalar multiple BY). That is, T(R,) = B; o R; and
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T(R;) = BY oCY. Then R, + R, has 2n cells but B;o R; + BY) o C9) has
2n — 1 cells. This contradicts to the bijectivity of 7/ on £. Hence all row

must be mapped some rows(or columns, respectively) with a scalar multiple.

O

Thus we have the following characterization theorem for zero-term rank

preserver on M, ,(Z7).

Theorem 5.1.  Suppose T is a linear operator on M, ,(Z*). Then the

following statements are equivalent:
(i) T is a (P, Q, B)-operator ;
(ii) T preserves zero-term rank ;

(iii) T preserves zero-term rank 1 and T'(J) > J.

Proof. (i)== (ii): Suppose T is a (P, @, B)-operator and X € M,, ,(Z").
Then T(X) = P(BoX)Q(or m = n, and T(X) = P(BoX")Q), where P and
() are m x m and n X n permutation matrices and B is an m X n matrix over
Z*, none of whose entries is zero. Hence 2(T(X)) = z(P(B o X)Q) = 2(X)
or z(T(X)) = z2(P(B o X")Q) = 2(X). Since X is arbitrary, T preserves
zero-term rank.

(il)== (iii): clearly.

(iii)== (i): Suppose T preserves zero-term rank 1 and T(J) > J. Lemmas
5.4 and 5.5 imply that T maps all rows of a matrix onto rows(or columns
if m=n) with a scalar multiple. Thus T is of the form T(X) = P(Bo X)Q
or T(X) = P(BoX")Q, where P and @ are permutation matrices and B is
a fixed m x n matrix over Z*, none of whose entries is zero. Hence T is a

(P, Q, B)-operator. )
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Lemma 5.6 . For A, B in M,,,(Z*), A > B implies T(A) > T(B).

Proof. By definition of A > B, we have a;; > b;; for all ¢, 5.
Using A=5", Z?:1 ai;E;; and B=31", Z;‘:] b;; Ei;, we have

T(A) = T Y a;Ey)

=1 j=1

- Zz::aw Ey)

3

v

M:

= T(Y_ Y _byEy) = T(B).

t=rin =1

g

Definition 5.10.  We say that a linear operator T strongly preserves zero-
term rank k provided that z(T(A)) = k if and only if 2(A) = k. And a linear
operator T strongly preserves term rank k provided that t(T'(A)) = k if and
only if t(A) = k.

Lemma 5.7. If T strongly preserves zero-term rank 1, then we have
T(J)>J.

Proof. Since T strongly preserves zero-term rank 1 and z(J) # 1. we have
2(T(J)) = 0 or 2(T(J)) > 2. Suppose 2(T(J)) > 2. Since J > J — Ej; for
any cell E;;in &, T(J) > T(J — E;;) by Lemma 5.6. But Lemma 5.1 implies
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2(T(J)) < 2(T(J — Ey;)). Since T strongly preserves zero-term rank 1 and
z(J — E;;) = 1, we have z(T(J — E;;)) = 1. This is a contradiction because
2(T(J)) > 2 and 2(T(J)) < 2(T(J — Ey;)) = 1. Thus 2(T(J)) = 0 and hence
T(J) > J. 0

Theorem 5.2.  Suppose that T is a linear operator on My, ,(Z"). Then
T preserves zero-term rank if and only if it strongly preserves zero-term rank

1.

Proof. Suppose that T strongly preserves zero-term rank 1. Then Lemma
5.7 implies that T(J) > J. By Theorem 5.1, T preserves zero term rank .
Conversely, suppose T preserves zero-term rank. If z(7(X)) = 1 and
2(X) # 1, then 2(X) = 0 or 2(X) > 2. If 2(X) = 0, then 2(T(X)) = 0
by assumption. If z(X) > 2, then z(7T(X)) > 2 by assumption. Those

contradict to z(T(X)) = 1. Hence T strongly preserves zero-term rank 1. U

Thus we have characterized the linear operators that preserve the zero-

term rank on M, ,.(Z"), which extend the results on Boolean case in ([3])
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