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약 
 

역전도 문제는 열 과 열  물질  전도하는 층  도  측정하  

곤란한 많  적 고 실 적  야에  생한다. 에 라 그러한 

문제들  하고 역  열  정하  한  개 하는 것  

필수적  과제가 고 다. Bayesian estimation technique  역 

(inverse input)과 택적  가  칼만 필 (adaptively weighted 

Kalman filter)  열(bank)  는 state estimator  만들어 다. 

Adaptive state estimator 는 런 Bayesian estimation technique 과 

semi-Markovian concept  조합 함  얻  수 는   하나 다. 

본 연 는 정 체  접근 가능한 (accessible faces)에  도가 

측정 는 동안 한 쪽 끝에  열  주 고 다  든 들  단열  3 차원 

열전도 문제  다룬다. 런 접근 가능한 (accessible faces)에  측정  

도는 정 알고리 (estimation algorithm)에 고  열 (input 

heat flux)과 시스  각 점들에 한 도가 계산 다. 

정 알고리 (estimation algorithm)  robustness  실제 

야에  사 가능  검 하  해 사 파  열 (sinusoidal 

input flux)과 적  변하는 사각  조합(combination of 

rectangular)등 다양한  열  시나리  시험한다. 또한 러한 

에  estimator  능 한계  시험하고, 정 알고리  실제적  

가능  평가하  해 각 과  차(error)도 비 하 다. 

 수  치   하  해 다   수  치  다 게 

하여 시험한다. 많  측정  치하는 것  비경제적 고 비 적  

과정 므  적   수  치  결정하는 것  하다. 

적  차 한계(tolerable error limitation)  동시에 계산적  

복 하지 않  에  적  격 크 (mesh size)  얻  해 역 

정(inverse estimation)과정 전에 시스  지 정식  한 계산에 

한 종합적  격  민감도 (mesh sensitivity analysis)  수행한다. 
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SUMMARY 

Inverse heat conduction problems occur in many theoretical and practical 

applications where it is difficult or practically impossible to measure the input heat 

flux and the temperature of the layer conducting the heat flux to the body. Thus it 

becomes imperative to devise some means to cater for such a problem and estimate 

the heat flux inversely. Adaptive State Estimator is one such technique which works 

by incorporating the semi-Markovian concept into a Bayesian estimation technique 

thereby developing an inverse input and state estimator consisting of a bank of 

parallel adaptively weighted Kalman filters. The problem presented in this study deals 

with a three dimensional system of a cube with one end conducting heat flux and all 

the other sides are insulated while the temperatures are measured on the accessible 

faces of the cube. The measurements taken on these accessible faces are fed into the 

estimation algorithm and the input heat flux and the temperature distribution at each 

point in the system is calculated.  

A variety of input heat flux scenarios have been examined to underwrite the 

robustness of the estimation algorithm and hence insure its usability in practical 

applications. These include sinusoidal input flux, a combination of rectangular, 

linearly changing and sinusoidal input flux and finally a step changing input flux. The 

estimator’s performance limitations have been examined in these input set-ups and 

error associated with each set-up is compared to conclude the realistic application of 

the estimation algorithm in such scenarios. Different sensor arrangements, that is 

different sensor numbers and their locations are also examined to impress upon the 

importance of number of measurements and their location i.e. close or farther from 

the input area. Since practically it is both economically and physically tedious to 

install more number of measurement sensors, hence optimized number and location is 

very important to determine for making the study more application oriented. 

Before the inverse estimation, a comprehensive mesh sensitivity analysis is 

given for the system’s governing equation finite difference calculations to get an 

optimized mesh size for the forward and inverse analysis to be correct and within the 

tolerable error limits and computationally undemanding at the same time.  



 3 

I. INTRODUCTION 

1. Background – Inverse Problems 

Inverse problems in engineering disciplines have always been an alluring area of 

interest for the researchers as it considerably simplifies the system identification and 

on the other hand is sufficiently accurate in estimating the parameters which are very 

difficult or impossible to measure due to system complexity, intricate geometry or 

many other technological or financial constraints and hence obtained data is the only 

source of obtaining the model parameters. A very simple representation of the inverse 

problem can be given as in Fig. 1 below. 

 

 

Fig. 1 A representation of the general inverse problem solution 

 

The transformation from data to model parameters is a result of the interaction 

of a physical system. Inverse problems arise for example in heat conduction problems, 

geophysics, medical imaging (such as electrical impedance/resistance/capacitance 

tomography), remote sensing, ocean acoustic tomography, nondestructive testing, and 

astronomy, etc. 

Inverse problems are typically ill posed, as opposed to the well-posed problems 

and are more typical when modeling physical situations where the model parameters 

or material properties are known. Of the three conditions for a well-posed problem, i.e. 

existence, uniqueness and stability of the solution or solutions, the condition of 

stability is most often violated. In the sense of functional analysis, the inverse 

problem is represented by a mapping between metric spaces. While inverse problems 

are often formulated in infinite dimensional spaces, limitations to a finite number of 

measurements, and the practical consideration of recovering only a finite number of 

unknown parameters, may lead to the problems being recast in discrete form. In this 

case the inverse problem will typically be ill-conditioned. In these cases, 

regularization may be used to introduce mild assumptions on the solution and prevent 

overfitting.  



 4 

Out of the various inverse problems involved in engineering disciplines, one of 

the most important is that of the inverse heat conduction problem, IHCP. It has been 

widely used in practical engineering problems involving the estimation of surface 

conditions or initial conditions as well as thermal properties of a body from known 

information like temperatures measured at the prescribed positions. It is sometimes 

necessary to calculate the transient surface heat flux and the surface temperature from 

a temperature measured at some location inside or outside the body. For example the 

case of a gun-barrel or nuclear reactor where heat flux is generated at a point which is 

virtually un-accessible and only the surface temperature can be measured. Keeping in 

view of the geometry of the body this IHCP problem can be solved using the inverse 

estimation techniques; however these problems are known to be severely ill-posed. 

Similarly IHC problems can arise in a variety of situations and there are many 

applications where such techniques are working wonders and are playing their role in 

the successful and reliable instrumentation and designing. Some of the common areas 

where IHC problems occur are as follows: 

 

· Heat production and dissipation in micro-electronics where micro- devices 

produce heat and are covered with fins and other devices in contact. 

· Heat production in nuclear reactors where the fuel is clothed in many layers of 

cladding and it is impossible to reach to the fuel surface. 

· Designing of heat resistant materials and hence canopies of jets and rockets 

where it is practically impossible to install sensors on the inside and only outer 

surface temperatures can be measured.  

· Determination of the heat transfer coefficient and outer surface conditions in 

the re-entry of a space vehicle. 

· Designing of heat resistant gun-barrels. 

· Designing of refractories and furnaces. 

· Air-conditioning and refrigeration. 
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2. Related Work 

Although a lot of work has been carried by different researchers in the field of 

IHCP, most of that is usually confined to 2D problems only and we do not see much 

of the work carried out for a 3D domains involving IHCP. Many techniques and 

inverse algorithms have been proposed, applied and inspected by various investigators 

in the field of inverse problems in engineering. There exist many methods to solve the 

IHCP and the majority of researchers use the approaches where the unknowns are 

determined to minimize the sum of squares of the differences between the measured 

and the computed temperatures at the selected spatial and/or temporal points. In 

general, the approaches adopt the iterative scheme and the regularizations are 

implemented to mitigate the ill-posedness of IHCP.  Zheng and Murio [1] proposed a 

stable algorithm for 3D IHCP problem on a slab and then they [2] developed a 

numerical solution for the three-dimensional inverse heat conduction problem on a 

finite cube by applying a mollification procedure. A fully explicit space-marching 

finite-difference scheme was developed and numerical simulations were provided 

with excellent accuracy between estimated and exact solutions. Scarpa and Milano [3] 

estimated the time-dependent surface heat flux at one boundary of a one-dimensional 

system by using the Kalman smoothing technique, given the initial temperature 

distribution and the time-temperature history at an interior location. The numerical 

results show appreciable performance of the proposed technique, which provides a 

comprehensive way for using future temperature measurements. Kaipio and 

Somersalo [4] used a regularized version of Kalman filter and inverse boundary value 

problem was considered for a non-stationary object, i.e. those properties of the object 

were considered that change as a function of time during the measurement sequence. 

In recent years, many applications appeared in which Kalman filter has been used in 

conjunction with recursive-least square algorithm (RLSA), for example the work of 

Tuan et al. [5–12], deals with one-dimensional and two-dimensional problems. 

Extending that work, recently, Jang et al. [13] has attempted to use a RLSA based on 

the Kalman filter to estimate the boundary heat flux varying impulsively with time by 

employing the finite-element scheme to discretize the problem in space, allowing 

multidimensional problems of various geometries to be treated successfully.  

Kalman [14] filter has been the governing filter for most of the techniques 

proposed in these studies, however for the higher dimension problems, the straight 
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forward implementation of the Kalman filter becomes difficult as the size of 

covariance equation increases. Therefore, one of the most important prerequisites for 

the successful implementation of a Kalman filter for the purpose of real-time 

estimation is the development of a reliable low dimensional model, hence, dimension 

reduction techniques like Karhunen-Love Galerkin procedure is used with Kalman 

filter by Park and Jung [15] for solving multidimensional heat conduction problems. 

For the case of nonlinear IHCP, extended version of discrete Kalman filter has been 

used by Daouas and Radhouani [16, 17] to estimate surface heat flux density. Huang 

and Tsai [18] solved the IHCP using the conjugate gradient method. Boundary 

Element Method (BEM)-based inverse algorithm utilizing the iterative regularization 

method was successfully used to solve the IHCP for estimating the unknown transient 

boundary heat flux in a 2D domain with different arbitrary geometries.  

An important parameter in solving the inverse problems is that of stability 

because of the prohibitive ill-posedness of the problem. As the IHCP finds wide 

applications in many thermal-related industries, it is of great practical importance to 

study the various effects on the stability of the inverse solutions. Surprisingly, despite 

so many existing inverse techniques, systematic study of the stability of the inverse 

solutions has not been pursued by many researchers. Most of the techniques do not 

give a quantitative method for determining the computed errors due to noise in 

temperature measurements. The reason for a lack of studies on the stability of the 

solution of the inverse problem is simple. The IHCP is already very difficult and its 

solution instability analysis is even more. One such study has been carried out by 

Ling and Atluri [19]. Two matrix algebraic tools are provided for studying the 

solution-stabilities of inverse heat conduction problems. The propagations of the 

computed temperature errors, as caused by noise in temperature measurements are 

given and the spectral norm analysis reflects the effect of the computational time steps, 

the sensor locations and the number of future temperatures on the computed error 

levels. Hsu [20] presented an account of the inverse estimation of the boundary 

conditions in a 3D inverse hyperbolic heat conduction problem. Finite-difference 

methods were employed to discretize the problem domain, and then a linear inverse 

model was constructed to identify the unknown boundary condition. 

It is noteworthy that Tuan et al. [5] developed the RLSA based on the Kalman 

filter for two-dimensional IHCP to estimate the boundary heat flux varying 

impulsively with time. Their approach gives good estimates for estimating unknown 



 7 

heat sources or heat flux inputs on the boundaries. They have proposed improvement 

in Kalman filter with RLSA approach by having RLSA weighted by forgetting factor 

to robustly extract the unknowns. The maximum likelihood type estimator combined 

with Huber psi-function is used to construct the weighting forgetting factor. In the 

context of forgetting factor, Wang et al. [21] proposed extended Kalman filter with 

RLSA weighted by forgetting factor to estimate nonlinear heat conduction problems.  

 

3. Kalman Filtering and Present Problem 

Right from its inception in 1959 by R. E. Kalman [14], there have been many 

modifications, additions and developments proposed in the Kalman filter and it has 

been proved as a building block for many revolutionary estimation techniques. The 

modifications to Kalman filter are in hundreds of thousands and the break-through 

which it has provided in the field of numerical analysis is invaluable and far-reaching 

as well. The main contribution of Kalman filter is in the field of inverse problems and 

state estimation in particular. Thereby deploying the Kalman filter, Moose et al. [22] 

proposed an Adaptive State Estimator (ASE) for passive underwater tracking of 

maneuvering targets. The state estimator is designed specifically for a system 

containing independent unknown or randomly switching input and measurement 

biases. In modeling the stochastic system, it is assumed that the bias sequence 

dynamics for both input and measurement can be modeled by a semi-Markov process. 

By incorporating the semi-Markovian concept into a Bayesian estimation technique, 

an estimator consisting of a bank of parallel adaptively weighted Kalman filters was 

developed. Despite the large and randomly varying biases, the proposed estimator 

provides a reasonable estimate of the system states. The Bayesian computational 

technique has many advantages as it is able to quantify system uncertainty and 

random data error, to derive a probabilistic description of the inverse solution, to 

provide extensive spatial/temporal regularization to the ill-posedness of the inverse 

problem, and to allow adaptive sequential estimation. Wang and Zabaras in [23–26] 

developed a computational framework that integrates computational mathematics, 

Bayesian statistics, statistical computation, and reduced-order modeling to address 

data-driven inverse heat and mass transfer problems.  

In the context of above mentioned filtering and estimation technique the present 

work deals with the input heat flux and the temperature distribution in a 3D heat 
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conduction domain using the ASE based on Kalman filter. It is worth mentioning here 

that Kim et al. [27] deployed ASE to one-dimensional IHCP for estimation of input 

heat flux and then carrying their work forward and considering measurement bias into 

account, Ijaz et al. [28] have focused their research on a typical 2D inverse heat 

conduction problem. Their study shows that ASE consisting of Kalman filters 

connected in parallel gives good performance in the presence of measurement bias 

also  

Traditionally, inverse problems are divided into two sequential stages: analysis 

and optimization. In the analysis stage, the values of unknown states are initially 

assumed, and then a numerical method (e.g. the finite-difference method or the finite-

element method) is used to obtain the exact solution. In the optimization stage, the 

measurements data are compared with the results predicted in the previous stage, and 

are then compounded to form a non-linear problem. An optimization and filtering 

process is then employed to derive the optimal estimated solution. We have used the 

finite difference method for the discretization of the domain and a 4th-order Runge-

Kutta method is deployed to get the numerical solution of the problem. ASE is 

deployed then for the estimation of input flux used in the previous stage to get the 

numerical solution and then state estimation i.e. temperature distribution estimation is 

obtained finally. Different types of boundary conditions are used for the verification 

of results and different sensor arrangements, with respect to number and location, are 

also analyzed to get the knowledge of estimator’s dependence on measurement 

numbers and measurement locations. A comprehensive mesh sensitivity analysis is 

provided to cater for the inaccuracy and error involved in the estimation.  

II. Forward Problem 

1. Problem Description and Finite Difference Solution 

Let us consider a three-dimensional cube, initially at temperature 

( , , ,0) 0T x y z = . For times 0t ³ , all the faces of the cube are kept insulated except the 

face ( , , ) ( ,0 ,0 )x y z L y W z H= £ £ £ £  which is conducting a heat flux ( )q t  to the 

cube. Fig. 2 illustrates the heat conduction problem. The governing equation of this 

problem in dimensional form is given as 
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2 2 2

2 2 2

( , , , ) ( , , , ) ( , , , ) ( , , , )
( ),

0 ,0 ,0 , 0

T x y z t T x y z t T x y z t T x y z t

t x y z

x L y W z H t

a
¶ ¶ ¶ ¶

= + +
¶ ¶ ¶ ¶

£ £ £ £ £ £ >

   (1) 

where , , andx y z t  are space and time coordinates respectively, a  is the thermal 

diffusivity and , andL W H  are the length, width and height of the cube respectively. 

If some non-dimensional parameters are defined as  

, , , ,
in

2
o in

x y z t T T
x y z t T

L L L T TL

a -
= = = = =

-
 

and substituted in Eq. (1), then the dimensionless form of Eq. (1) is given as: 

2 2 2

2 2 2

( , , , ) ( , , , ) ( , , , ) ( , , , )
,

0 1,0 1,0 1, 0

T x y z t T x y z t T x y z t T x y z t

t x y z

x y z t

¶ ¶ ¶ ¶
= + +

¶ ¶ ¶ ¶

£ £ £ £ £ £ >

   (2) 

with the following boundary and initial condition 

(0, , , )
0, 0 1,0 1, 0

T y z t
y z t

x

¶
= £ £ £ £ >

¶
      (3) 

(1, , , )
( ), 0 1,0 1, 0

T y z t
q t y z t

x

¶
= £ £ £ £ >

¶
      (4) 

( ,0, , )
0, 0 1,0 1, 0

T x z t
x z t

y

¶
= £ £ £ £ >

¶
      (5) 

( ,1, , )
0, 0 1,0 1, 0

T x z t
x z t

y

¶
= £ £ £ £ >

¶
      (6) 

( , ,0, )
0, 0 1,0 1, 0

T x y t
x y t

z

¶
= £ £ £ £ >

¶
      (7) 

( , ,1, )
0, 0 1,0 1, 0

T x y t
x y t

z

¶
= £ £ £ £ >

¶
      (8) 

( , , ,0) 0, 0 1,0 1,0 1T x y z x y z= £ £ £ £ £ £       (9) 
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Fig. 2 Meshed representative diagram of the 3D cube 

 

In the above equations, T  is the dimensionless temperature and , ,x y z  and t  are 

the dimensionless space and time coordinates, respectively while q  is the input heat 

flux. 

Now applying the Central Finite Difference method on Eq. (2) implies that  

, , 1, , , 1, , , 1 , ,2 2 2 2 2 2

1, , , 1, , , 12 2 2

1 1 1 1 1 1
[ ] [ ] [ ] 2[ ]

1 1 1
[ ] [ ] [ ]

i j k i j k i j k i j k i j k

i j k i j k i j k

T T T T T
x y z x y z

T T T
x y z

+ + +

- - -

= + + - + + +
D D D D D D

+ +
D D D

&

 (10)  

for 1,2,3,..........,i M= , 1, 2,3,............, ,j N=  and 1, 2,3,............,k O= , and 

M,N,O > 1 , where ,M N and O are the total number of spatial nodes for , ,x y z  

directions, respectively, and 1/ ( 1)x MD = - , 1/ ( 1)y ND = -  and 1/ ( 1)z OD = -  are 

the space intervals. Application of the Central Finite Difference method on the 

boundary conditions, Eqs. (3) through (8) gives  

0, , 2, , ,j k j kT T=          (11)  

1, , 1, , 2 ( ),M j k M j kT T xq t+ -= + D        (12)  

,0, ,2, ,i k i kT T=          (13)  

, 1, , 1, ,i N k i N kT T+ -=         (14)  

, ,0 , ,2 ,i j i jT T=          (15)  

and 
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, , 1 , , 1.i j O i j OT T+ -=         (16)  

From Eq. (10) 

2

1
a

x
=
D

, 
2

1
b

y
=
D

, 
2

1
c

z
=
D

 and 
2 2 2

1 1 1
2[ ]d

x y z
= - + +

D D D
. 

 
Therefore Eq. (10) can be re-written as  

1, , , 1, , , 1 , , 1, , , 1, , , 1i j k i j k i j k i j k i j k i j k i j kT aT bT cT dT aT bT cT+ + + - - -= + + + + + +&   (17)  

From Eqs. (12) through (17) and associated with fictitious process noise inputs [29], 

the continuous-time state equation can be written as 

( ) ( ) [ ( ) ( )]T t T t q t w t= Y +W +&        (18)  

here 

1,1,1 1,1,2 1,1, 2,1,1 2,1,2 2,1, ,1, 1,2,1 1,2,2 ,2, , ,( )
T

O O M O M O M N OT t T T T T T T T T T T Té ù= ë ûL L L L L

          (19) 

and all , ,i j kT  are continuous w.r.t. time t .  

The coefficient matrix  ( ) ( )MNO MNO´YÎ  is given by 

1

1

1

1

1

1

2

2

Y ¡ Æ Æ Æ Æé ù
ê ú¡ Y ¡ Æ Æ Æ
ê ú
ê úÆ ¡ Y ¡ Æ Æ
ê ú
ê ú
ê úY =
ê ú
ê ú
ê úÆ Æ ¡ Y ¡ Æ
ê ú
Æ Æ Æ ¡ Y ¡ê ú

ê úÆ Æ Æ Æ ¡ Yë û

L

L

L

M O O O O O M

L

L

L

 

 

where 
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1

A C

B A B

B A B

B A B

B A B

C A

Q Q Q Qé ù
ê úQ Q Qê ú
ê úQ Q Q
ê ú
ê ú
ê úY =
ê ú
ê ú
ê úQ Q Q
ê ú
Q Q Qê ú
ê úQ Q Q Që û

L

L

L

M O O O O O M

L

L

L

  and     

D

D

D

D

D

D

Q Q Q Q Qé ù
ê úQ Q Q Q Qê ú
ê úQ Q Q Q Q
ê ú
ê ú
ê ú¡ =
ê ú
ê ú
ê úQ Q Q Q Q
ê ú
Q Q Q Q Qê ú
ê úQ Q Q Q Që û

L

L

L

M O O O O O M

L

L

L

 

 

in which 

2 0 0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0 0 2

d c

c d c

c d c

A

c d c

c d c

c d

é ù
ê ú
ê ú
ê ú
ê ú

= ê ú
ê ú
ê ú
ê ú
ê ú
ë û

L

L

L

M O O O O O M

L

L

L

           

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

a

a

a

B

a

a

a

é ù
ê ú
ê ú
ê ú
ê ú

= ê ú
ê ú
ê ú
ê ú
ê ú
ë û

L

L

L

M O O O O O M

L

L

L

      

 

 2=C B  

 

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

b

b

b

D

b

b

b

é ù
ê ú
ê ú
ê ú
ê ú

= ê ú
ê ú
ê ú
ê ú
ê ú
ë û

L

L

L

M O O O O O M

L

L

L
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The matrices 1,Y Æ  and M O´¡Î  while the sub-matrices A , B , C , D  and 

Q are O O´ , where Q  is a null sub-matrix. The input matrix ( ) 1MNO ´WÎ  is given by 

1,1,1 1,1,2 1,1, 2,1,1 2,1,2 2,1, ,1, 1,2,1 1,2,2 ,2, , ,2
T

O O M O M O M N Ox w w w w w w w w w w wé ùW = D ë ûL L L L L

          (20) 

and all , ,i j kw  are continuous w.r.t. time. The elements of W  will be all zero except at 

the nodes where heat is being applied i.e. all , ,M j kw  will be 1 and all the other 

elements will be zero.  

Eq. (18) is the reference equation for inverse estimation results. It should be 

solved numerically for the acquisition of true results with whom the inverse solution 

should be compared. Keeping in view the complexity of the problem involved we 

have chosen to solve the equation with 4th-order Runge-Kutta method. The general 

algorithm of Runge-Kutta method used [30] is given as follows: 

* ** *( , ) ( , ) ( , ) ( , )1 1 1 1 1 1 1

2 2 2 2

1 1 1 1
T T t f T t f T t f T t f T t

6 3 3 6
t t t t t t

t t t t
D+ + +

+ + + +

æ ö
= + + + +ç ÷

è ø
 (21)  

where 

* ( , )1

2

t
T T f T t

2
t t t

t

D
+
= +        (22)  

** *( , )1 1 1

2 2 2

t
T T f T t

2
t

t t t

D
+ + +
= +        (23)  

* **( , )1 1 1

2 2

T T t f T tt t
t t

D+
+ +

= + ×        (24)  

 

2. Sensitivity Analysis 

A very important aspect of numerical solutions is that of mesh sensitivity 

analysis. The importance of choice of a reasonable time step and element numbers 

become all the more important when one needs to optimize the computational burden 

at one side and the accuracy requirements are stringent on the other side. Therefore a 

detailed mesh sensitivity analysis is the requirement before going further to the 

inverse estimation.  
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A constant heat flux value of 5 units is used on the right face of the cube in Fig. 

2 for carrying out sensitivity analysis. Fig. 3 represents the temperature distribution at 

three points in the domain i.e. ( , , ) ( , , ), ( . , . , . ) and ( . , . , . )x y z 0 0 0 0 5 0 5 0 5 1 0 1 0 1 0=  with 

a time step size of 0.01 and a spatial mesh of 11 nodes in x, y and z axis respectively. 

It means that there are 11 11 11 1331´ ´ =  mesh nodes in total in the cube. It is clear 

from the figure that after approximately 0.20 units time, the trend becomes linear 

everywhere in the domain. Therefore it is of interest to analyze the non-linear 

temperature distribution portion of time. Fig. 4 represents the temperature distribution 

at ( , , ) ( , , )x y z 1 1 1=  for 0.20 units total time with 11 11 11´ ´  mesh size. Fig. 5 

represents the temperature distribution at the same points with different mesh sizes.  

 

Fig. 3 Temperature distribution representation with 11 11 11´ ´  nodes at three points in the cube 

 

The objective of this analysis is the identification of a minimum mesh size 

which estimates this portion with reasonable accuracy. That mesh size will define the 

threshold that must at least be followed for acceptable numerical results. However we 

must have an authentic means with which we can compare the different mesh results 

and verify them. The best tool that we could have is the existence of analytical 

solution. Fortunately the problem we are dealing with can be considered as a 1D 

problem if we assume the material as homogenous and isotropic. In that case since all 

the faces other than the one conducting heat flux are insulated, therefore we can safely 

approximate the problem as 1D heat conduction problem. An analytical solution for 

such a problem is available [31] and is given as: 
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/( )
( , ) cos

2 2 2
2 2 n

Kn t l

2 2 2
n 1

qt ql 3x l 2 1 n x
T x t e

Cl K 6l n l
p p

r p

¥
-

=

ì ü- -
= + -í ý

î þ
å   (25)  

 

Fig. 4 Temperature distribution representation for non-linear portion of time at 

( , , ) ( , , )x y z 1 1 1=   

 

 

Fig. 5 Comparison of different mesh size results with analytical solution at ( , , ) ( , , )x y z 1 1 1=  
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where r  is the density, C  is the heat capacity, K  the thermal conductivity and l  the 

total length. To make the parameters consistent with our dimensionless model, we 

will take all of these parameters as unity and the solution will work for our problem. 

Table 1 summarizes the relative error associated with each mesh size when 

compared to the above given analytical solution, where relative error is given as 

2

2

( )

( )

analytical runge kutta

E

analytical

T T
R

T

--
=
å

å
      (26)  

As is evident from the table, when only 0.1 units time is analyzed, a coarse mesh 

gives a large error which goes on decreasing as the mesh size is reduced to finer 

values. However, as the mesh is made finer, the total computational time increases 

manifolds and it becomes practically useless to use a very fine mesh. An optimization 

compromise becomes therefore necessary and we have to choose a mesh size which 

gives sufficiently accurate results and is also computationally less tedious. Another 

aspect of the mesh-error analysis is that as the total analysis time is increased, even a 

coarse mesh gives appreciable results. The reason is that once the temperature 

distribution becomes linear w.r.t. time, the numerical solution starts working better 

than it does for a non-linear temperature distribution region. Hence the error is less 

when we increase the total analysis time. A reasonable mesh size can be one which 

gives less than 0.5% error when compared to the analytical solution. Hence making 

the same as our criteria a 9 9 9´ ´  mesh is chosen as the mesh structure which will 

also be used for the inverse estimation calculations. Although 7 7 7´ ´  mesh node 

structure will also give a reasonable result as the relative error involved with this 

mesh size is also less than 0.5%, but to be on the safe side and for the insurance of 

fairly accurate results, we will opt for a mesh finer than this one, that is the mesh with 

9 9 9  729 ´ ´ =  mesh nodes. By taking a finer mesh size will be asking for more 

computational complexity, but of course the results will be close to accurate and less 

prone to failure and slip-up which must be the priority. 
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Table 1 Percent relative error for different mesh sizes and different simulation times 

 

III. INVERSE ESTIMATION  

1. Kalman Filtering 

In 1960, R.E. Kalman published his famous paper describing a recursive 

solution to the discrete data linear filtering problem [14]. Since that time, due in large 

part to advances in digital computing the Kalman filter has been the subject of 

extensive research and application, particularly in the area of autonomous or assisted 

navigation and inverse problems. The Kalman filter addresses the general problem of 

estimation of the state x of a discrete-time controlled process that is governed by the 

linear stochastic difference equation,  

1 1 1x Ax Bu wt t t t- - -= + +         (27)  

with a measurement szÎ  that is 

z Hx vt t t= +           (28)  

where A  and B  are state transition and input matrix respectively, u  the input bias, z  

the measurement sequence and H  is the measurement matrix and t  is the discretized 

No. of 

nodes 

3 3 3´ ´
 

5 5 5´ ´  7 7 7´ ´
 

9 9 9´ ´  11 11 11´ ´
 

13 13 13´ ´
 

15 15 15´ ´
 

17 17 17´ ´
 

.ft 0 1=

 
9.17 0.93 0.17 0.043 0.013 0.0065 0.0054 0.0073 

.ft 0 2=

 
3.46 0.27 0.048 0.011 0.0028 0.0016 0.0015 0.0022 

.ft 1 0=

 
0.18 0.011 0.0018 0.0004 0.00014 0.00012 0.00015 0.00008 

.ft 2 0=

 
0.041 0.0023 0.00033 0.000088 0.00006 0.00006 0.000087 0.00003 

.ft 5 0=

 
0.0052 0.00022 0.000035 0.000035 0.00004 0.00053 0.000059 0.00002 
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time index. The random variables w  and v  represent the process and measurement 

noise respectively and s  being total number of measurements. 

The Kalman filter estimates a process by using a form of feedback control: the 

filter estimates the process state at some time and then obtains feedback in the form of 

(noisy) measurements. As such, the equations for the Kalman filter fall into two 

groups: time update equations and measurement update equations. The time update 

equations are responsible for projecting forward (in time) the current state and error 

covariance estimates to obtain the a priori estimates for the next time step. The 

measurement update equations are responsible for the feedback—i.e. for 

incorporating a new measurement into the a priori estimate to obtain an improved a 

posteriori estimate.  

 

 

Fig. 6 The discrete Kalman filter cycle. The time update projects the current state estimate ahead 
in time. The measurement update adjusts the projected estimate by a measurement at that time 

 

The time update equations can also be thought of as predictor equations, while 

the measurement update equations can be thought of as corrector equations. Indeed 

the final estimation algorithm resembles that of a predictor-corrector algorithm for 

solving numerical problems as shown in Fig. 6.  
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The first task during the measurement update is to compute the Kalman gain K . 

The next step is to actually measure the process to obtain the measurement zt  using 

the measurement matrix H , and then to generate an a posteriori state estimate by 

incorporating the measurement. The final step is to obtain an a posteriori error 

covariance estimate Pt . Q  and R  being coefficient of process noise and coefficient 

of measurement noise respectively. After each time and measurement update pair, the 

process is repeated with the previous a posteriori estimates used to project or predict 

the new a priori estimates. This recursive nature is one of the very appealing features 

of the Kalman filter as it makes practical implementations much more feasible than 

many other algorithms. 

 

2. Adaptive State Estimation - ASE  

The Adaptive State Estimator, ASE, deals with the Bayesian state estimation 

technique which has been set up for the inverse problem to estimate the unknown 

input flux with white Gaussian noise associated in the state and measurement 

equations using a chain of parallely weighted Kalman filters. The input flux and bias 

terms are modeled as a semi-Markov process. The system analysis of semi-Markov 

processes is covered in detail by Howard [32]. A semi-Markov process, briefly, is the 

process that changes states according to a discrete time Markov Chain with finite 

number of states, and the time the system spends in each state is a random variable.  

The state equation, Eq. (18), discretized over time intervals of length Dt  is 

given by 

( 1) ( ) ( ) ( )[ ]X X q wt t t t+ = F +G +        (29)  

where 

( ) 1,1,1 1,1,2 1,1, 2,1,1 2,1,2 2,1, ,1, 1,2,1 1,2,2 ,2, , ,

T

O O M O M O M N OX T T T T T T T T T T Tt é ù= ë ûL L L L L

          (30)  

and all the , ,i j kT  are discretized w.r.t. t . 

teYDF = ,         (31)  

( 1)

exp{ [( 1) ]}
t

t

t d
t

t

t q q
+ D

D

G = Y + D - Wò       (32)  
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Here ( )X t represents the state vector, F  is the state transition matrix, G  the 

input matrix, ( )q t the sequence of deterministic input, and ( )w t  the process noise 

vector, assumed to be zero mean and white Gaussian with variance 

( ) ( ){ }T
j jE w w Qt td=  where Q  is the coefficient of process noise and jtd  is the 

Kronecker delta. The measurement equation in matrix form can be described as  

( 1) ( 1) ( 1)Z HX vt t t+ + += +         (33)  

where ( )Z t  is the observation vector and ( )v t  represents the measurement noise vector 

assumed to be zero mean and white noise. The variance of ( )v t is given by 

{ ( ) ( )}T
jE v v j R tt d= . Here, 2R Is=  where s  and I  represent the standard deviation 

of measurement noise and identity matrix, respectively. 1 ( )MNOH ´Î  is the 

measurement matrix given as  

[ ]0 0 1 0 0 1 0 0H = L L L     (34)  

and the value of H  is 1 at the measurement node. The state and measurement 

equations are given as Eqs. (29) and (33) simultaneously. An independent semi-

Markov process governs the input ( )q t and it can independently take on any of the 

possible discrete vectors (1) (2) ( )[ ]nq q qL  for a random duration of time before a 

transition to a new bias occurs. Here n  represents the possible discrete values of input 

flux. The range of vector ( )q a , where , , , ,1 2 3 n= La , is modeled such that it spans 

the entire possible ranges of ( )q t . Since the adaptive estimator was developed by 

assuming that q can take on n  possible discrete values, it is recognized that this could 

lead to excessive computation if n  is large. Thus by assuming that q  is uniformly 

distributed between adjacent vectors ( )q a  and ( 1)q a+  [23] and incorporating this 

additional uncertainty as bQ  into the estimator gain, it becomes possible for the 

estimator to converge to an unbiased estimate of 1xt + . The optimal estimate of the 

state vector can be derived from the conditional mean by applying Bayesian 

conditional probability theory. The complete derivation of the adaptive state 

estimation and the background concept is given in [23] and the required state 

estimator equations are given below with the block diagram presented in Fig. 7. 
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( ) ( )
( 1) ( 1) ( 1)

1

n

X X Wa a
t t t

a
+ + +

=

=å
)

       (35)  

( ) ( )
( ) ( 1)

1

n

q q Wa a
t t+

a=

=å         (36)  

where 

( ) ( ) ( ) ( ) ( )
( 1) ( ) ( 1) ( 1) ( )[ ]X X q K Z H X H qa a a a a
t t t t tF G F G+ + += + + - -

) ) )
   (37)  

In the above equation 

1
( 1) ( 1) ( 1)[ ]T TK M H HM H Rt t t

-
+ + += +       (38)  

( 1) ( )
T T T

bM P Q Qt tF F G G G G+ = + +       (39)  

( 1) ( 1) ( 1)[ ]P I K H Mt t t+ + += -        (40)  

The weight matrix W  is defined as 

( ) ( ) ( )
( 1) ( ) ( )(1 )W W Wa a ab bt+ t t= + -

(
       (41)  

( ) ( ) ( )
( 1) ( 1) ( )

1

n

W C e Wa d a a
t t t

a

q-
+ +

=

= å
(

       (42)  

where 

( ) 1 0.95

1 n
aq

-
=

-
         (43)  

( ) 1 ( )
( 1) ( 1)

1
( ) [ ] [ ]

2
T

zZ z F Z za a
t td -
+ += - -       (44)  

in which 

( 1)
T

zF HM H Rt += +         (45)  

( ) ( ) ( )
( )z H X H qa a a
tG G= +

)
       (46)  

In Eq. (35), ( )
( 1)X a
t +

)
 is the conditional estimate of ( 1 )X t +  given that ( )

( 1)q q a
t+ =  

which is weighted by the probability ( )
( 1)W a
t + . This probability is obtained from Eqs. 

(41) and (42), where ( )aq  is the element of Markov transition matrix which according 

to [23] is taken as (43). ( 1)C t +  is the scale factor, which is determined at each iteration 
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such that ( )
( 1)

1

1
n

W a
t+

a=

=å . To minimize the effect of noise on the weighting terms, a first-

order low-pass filter b  is embedded and the final weighting equation is obtained as 

Eq. (41). Initial values for the weighting terms are assumed to be equal i.e. ( )
(0) 1W =a . 

The covariance matrix bQ  compensates for additional uncertainties such that q  may 

take any value between ( )q a  and ( 1)q +a . In the above equations, K  represents the 

Kalman gain, P  the error covariance of the estimated input vector, Q  the process 

noise covariance, R  the measurement noise covariance and bQ  the input covariance. 

 

 

Fig. 7 Block diagram of adaptive input and state estimator 

 

Now we can summarize the procedure to estimate the input forces using ASE in 

the following three steps: 

1. Identify a reasonable and justifiable range for the input flux according to the 

situation. 

2. Evaluate the Kalman gain using Eqs. (38) through (40). 
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3. Get the conditional estimate ( )
1X a

t +

)
and hence the estimated state and input flux 

using Eqs. (35), (36) and (41) through (46). 

IV. RESULTS 

The cube under consideration is investigated using three types of input fluxes to 

examine and prove the performance capabilities and deficiencies of the algorithm and 

its robustness to varying input. The different input fluxes are chosen keeping in mind 

the practical situations and the insurance of estimator’s capability to estimate even the 

very intricate input fluxes. Hence the three fluxes comprise of sinusoidal input heating 

the domain, a combination of triangular, rectangular and sinusoidal input heating the 

system and a step input first increasing and the decreasing step-wise heating the 

system.  

Let us first discuss the estimation of sinusoidal heat flux input. The applied heat 

flux is given as 

( )
3

1+sin( ), 0 f

f

t
q t t t

t

p
= £ £        (47)  

tD  is taken as 0.01 and total simulation time 20ft =  units. The true flux 

distribution and the resulting temperature distribution along the x-axis with 

( , ) ( . , . )y z 0 5 0 5=  and the estimated flux and temperature distribution are presented in 

Fig. 7. R  is taken as ( . )20 03 I  while coefficient of process noise Q  is assumed as 

0210-  which is a sufficient noise level for input estimation problems and not many 

estimators are able to work in such stringent noise levels [11].  Mesh structure is 

chosen as 9 9 9´ ´  mesh nodes.  

As clear from Fig. 8, the results are quite outstanding especially the state 

estimation has been excellent. There is a characteristic offset in input flux estimation 

with respect to both magnitude and time. However such an offset does not undermine 

the usability and effectiveness of the filter and the results can be regarded as 

satisfactory and depict the might of ASE in noisy and changing flux regimes. It is of 

interest to investigate the performance of the estimation filter with different sensor 

arrangements. As of the above mentioned results, 5 sensors were used as follows: 
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Fig. 8 (a) True flux distribution along the z-axis at ( , ) ( , . )x y 1 0 5=  w.r.t time (b) estimated 

input flux (c) temperature distribution along x-axis at ( , ) ( . , . )y z 0 5 0 5= w.r.t time (d) estimated 

temperature distribution, for 5 sensors. 

 

1st sensor: ( , , ) ( , . , . )x y z 0 0 5 0 5=  

2nd sensor: ( , , ) ( . , . , )x y z 0 5 0 5 0=  

3rd sensor: ( , , ) ( , . , . )x y z 0 0 5 1 0=  

4th sensor: ( , , ) ( . , , . )x y z 0 5 0 0 5=  

5th sensor: ( , , ) ( , . , . )x y z 0 1 0 0 5=  

The error associated with this sensor arrangement is recorded in Table 2. The error is 

within the tolerance especially when estimating the temperature distribution. The 

error is defined as: 

2

2

( )

( )

true estimated

E

true

R
-

=
å

å
       (48)  

where  is the property of interest i.e. flux or temperature. Fig. 9 represent the 

simulation results with only one sensor installed on the center of the left face i.e. at 

( , , ) ( , . , . )x y z 0 0 5 0 5= . As expected the results are deteriorated but still presentable and 

satisfactory. The reason of altered results is that since now the distance between the 
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input and sensor has increased and these are at two extremes in the domain, therefore 

the time for the information to reach the sensor has increased, that’s why the offset 

between the true input flux and the estimated one has increased and also the 

 

Fig. 9 (a) True flux distribution along the z-axis at ( , ) ( , . )x y 1 0 5=  w.r.t time (b) estimated 

input flux (c) temperature distribution along x-axis at ( , ) ( . , . )y z 0 5 0 5= w.r.t time (d) estimated 

temperature distribution, for 1 sensor. 

 

estimated magnitude is effected. However the state i.e. the temperature distribution is 

estimated excellently. As given in Table 2, the overall error associated in this scenario 

has increased especially for input flux.  

An optimized performance, with respect to sensor number and error associated, 

should be expected for 3 sensors located at  

1st sensor: ( , , ) ( , . , . )x y z 0 0 5 0 5=  

2nd sensor: ( , , ) ( . , . , )x y z 0 5 0 5 0=  

3rd sensor: ( , , ) ( , . , . )x y z 0 0 5 1 0=  

Fig. 10 represents the estimation results with this sensor arrangement. The results 

have been considerably improved and as shown in Table 2, the error associated with 

this sensor arrangement is adequate and the estimation performance is established. It 

is worth mentioning that if somehow it is possible to install the sensors on the surface 

conducting heat flux in to the domain, the estimation results would be close to perfect. 
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But since this situation is not practical hence it is ineffectual to conduct analysis with 

such a sensor arrangement. 

 

Fig. 10 (a) True flux distribution along the z-axis at ( , ) ( , . )x y 1 0 5=  w.r.t time (b) estimated 

input flux (c) temperature distribution along x-axis at ( , ) ( . , . )y z 0 5 0 5= w.r.t time (d) estimated 

temperature distribution, for 3 sensors. 

 

Table 2 Error table for different sensor arrangements for first scenario 

 Error in input estimation (%) Error in state estimation (%) 

1 sensor 18.51 1.04 

3 sensors 11.37 0.79 

5 sensors 9.66 0.33 

 

The inverse estimation filter has proved its worth in the case of a smoothly 

changing sinusoidal flux. However, sometimes the change of heat flux is not smooth. 

In this section a scenario has been presented when there is abrupt increase in the input 

flux, then a linear decrease and then a half sine-wave representation. The scenario 

poses a tedious job to the ASE algorithm as all the above changes are happening in 

tandem and the estimator is not given time to stabilize. The applied heat flux can be 

represented as below: 
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Again all the three sensor arrangements are analyzed and the associated errors 

are recorded in Table 3. One thing common in all the three sensor arrangement results 

is the undefined glitch for the first portion of input i.e. when the input flux is equal to 

zero. This phenomenon is called the ‘transient time’ of the filter which actually is the 

time required for an estimation filter to start estimating the parameter correctly. Same 

kind of behavior is present in the sinusoidal input case but it is more pronounced in 

this scenario. Every estimation filter has this deficiency incorporated in it, however 

the time duration and transient time phenomenon varies from algorithm to algorithm. 

Since this phenomenon is present only for a very small time period, hence it does not 

preclude the estimator’s efficacy. Fig. 11 represent the estimation results for present 

input scenario.  

Notice abrupt change in the flux at time 1.0t =  for the estimated values of input 

flux. This is the point at which some unexpected delay in catching up of stable 

estimation is prominent for reconstruction results. Since the state and input estimation 

depend on the single weight matrix, therefore, when there is a sudden and abrupt shift 

in the values, the estimator needs a little time to converge. Hence, interdependence in 

estimation of different variables leads to unwanted delay when there are abrupt 

changes [29]. This lag goes on till the end of estimation and that is why we see the 

error involved. However there is no such delay in linear and sinusoidal input flux 

application. The associated error, although higher than that associated with sinusoidal 

input, is still within the reasonable tolerance level and the estimation performance can 

be conveniently regarded as suitable and excellent state estimation is witnessed in this 

scenario as well. Fig. 12 and 13 represent the simulation results for 1 sensor and 3 

sensors respectively with the identical sensor locations as in the sinusoidal input case 

for these sensor arrangements. The related error with state and input estimation for 

these cases is noted in Table 3. As clear from the figures, a higher error is associated 

with 1 sensor and the lag is more pronounced than in the case of 5 sensors. However 
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the three sensor arrangement is again the optimized one when the sensor number and 

error involved is analyzed at the same time.  

 

Fig. 11 (a) True flux distribution along the z-axis at ( , ) ( , . )x y 1 0 5=  w.r.t time (b) estimated 

input flux (c) temperature distribution along x-axis at ( , ) ( . , . )y z 0 5 0 5= w.r.t time (d) estimated 

temperature distribution, for 5 sensors. 

 
 

Table 3 Error table for different sensor arrangements for second scenario 

 Error in input estimation (%) Error in state estimation (%) 

1 sensor 18.52 1.0 

3 sensors 14.24 0.96 

5 sensors 12.45 0.54 
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Fig. 12 (a) True flux distribution along the z-axis at ( , ) ( , . )x y 1 0 5=  w.r.t time (b) estimated 

input flux (c) temperature distribution along x-axis at ( , ) ( . , . )y z 0 5 0 5= w.r.t time (d) estimated 

temperature distribution, for 1 sensor. 

 
 

 

Fig. 13 (a) True flux distribution along the z-axis at ( , ) ( , . )x y 1 0 5=  w.r.t time (b) estimated 

input flux (c) temperature distribution along x-axis at ( , ) ( . , . )y z 0 5 0 5= w.r.t time (d) estimated 

temperature distribution, for 3 sensors. 
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A more wearying test for the ASE estimation filter can be the one involving 

continuous step changing input flux. Although this kind of situation is not practically 

common, but if the estimator is successful in estimating this kind of flux distribution, 

then the ASE performance will be established and one can easily deduce the wide 

ranging applicability of the algorithm in theoretical and practical applications as well. 

This section therefore reports the step-changing input estimation by ASE. The tested 

input flux is given as: 

0.75 0.0 3.0,17.0 20.0

1.25 3.0 6.0,14.0 17.0
( )

1.75 6.0 9.0,11.0 14.0

2.25 9.0 11.0

t t

t t
q t

t t

t

£ < £ <ì
ï £ < £ <ï

= í
£ < £ <ï

ï £ <î

    (50)  

Again all the three sensor arrangements are analyzed. As mentioned earlier, this 

scenario is a very difficult one from the filtering point of view. The abrupt changes 

are more pronounced, more frequent and the time between two peaks is very small. 

As discussed above, the state and input estimation depend on the single weight 

matrix; therefore, when there is a sudden and abrupt change in the estimation 

parameter, the estimator needs time to converge and stabilize. Hence, interdependence 

in estimation of different variables leads to unwanted delay when there are abrupt 

changes, therefore one should expect more error in the estimation results of this input 

flux set-up. Fig. 14 presents the estimation results for the 5 sensor arrangement 

scenario for step input flux. 

The transient time phenomenon is there as like before. The sharp edges as 

present in the true flux distribution are no where visible in the estimated results, the 

estimator catches the flux value but as soon as it tries to stabilize, since there is 

another step hence in the struggle of estimating the next step, the estimator presents a 

wavy look, but over-all estimation performance is acceptable if not out-standing and 

the state estimation is excellent as witnessed in other input scenarios.  ASE here again 

has shown its prowess by giving satisfactory and presentable results. The trend is 

visible and close to the true value and the associated error, as presented in Table 4. is 

although high but still within the conventional tolerance limits.  
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Fig. 14 (a) True flux distribution along the z-axis at ( , ) ( , . )x y 1 0 5=  w.r.t time (b) estimated 

input flux (c) temperature distribution along x-axis at ( , ) ( . , . )y z 0 5 0 5= w.r.t time (d) estimated 

temperature distribution, for 5 sensors. 

 
Fig. 15 and 16 represent the simulation results for 1 sensor and 3 sensors 

respectively with the identical sensor locations as in the previous cases for these 

sensor arrangements. The related error with state and input estimation for these cases 

is noted in Table 4. As clear from the figures, a very high error is associated with 1 

sensor set up and the estimation performance is imperfect. The step-changing trend is 

no where visible and a wavy trend is more dominant.  The results with three sensors 

are also not very good but still presentable. The state has been estimated excellently 

again. Therefore in this case it is recommended to use higher number of sensors that is 

at least the 5 sensors. 

 

Table 4 Error table for different sensor arrangements for third scenario 

 Error in input estimation (%) Error in state estimation (%) 

1 sensor 24.34 0.93 

3 sensors 17.57 0.92 

5 sensors 12.92 0.55 
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Fig. 15 (a) True flux distribution along the z-axis at ( , ) ( , . )x y 1 0 5=  w.r.t time (b) estimated 

input flux (c) temperature distribution along x-axis at ( , ) ( . , . )y z 0 5 0 5= w.r.t time (d) estimated 

temperature distribution, for 1 sensor. 

 
 

 

Fig. 16 (a) True flux distribution along the z-axis at ( , ) ( , . )x y 1 0 5=  w.r.t time (b) estimated 

input flux (c) temperature distribution along x-axis at ( , ) ( . , . )y z 0 5 0 5= w.r.t time (d) estimated 

temperature distribution, for 3 sensors. 
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 V. CONCLUSIONS 

An efficient algorithm has been introduced for estimating the unknown 

boundary input heat flux and the temperature distribution in the inverse heat 

conduction problem. A direct inverse formulation is constructed using the reverse 

matrix, which is derived from the governing equations as well as initial and boundary 

conditions. Three input set-ups have been thoroughly examined to show the 

robustness of the proposed application of the algorithm. Apart from the first input 

setup, the other two input scenarios are known to be computationally intensive and 

intricate as far as the inverse estimation problems are concerned. The inverse 

estimation algorithm, ASE, has proved its outstanding estimation capabilities in all 

the scenarios. Different sensor arrangements have been considered and keeping in 

view the 3-dimensional geometry and process and measurement noise levels, the 

estimator has proved its prowess and applicability in both theoretical and applications. 

Especially the state estimation performance was excellent in all the input set-ups and 

different sensor arrangements. Although a fairly fine mesh structure was chosen, i.e. 

9 9 9´ ´  mesh nodes, still the algorithm responded quite efficiently with respect to 

simulation time and total analysis time for one scenario was 10 iterations per second 

on an Intel based dual-core processor computer.  However the emerging advances in 

computing technology and the availability of oct-core processor computers can surely 

mitigate almost all computational intensities and even very fine mesh structures can 

be efficiently computed. 
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