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Abstract

This article concerns the numerical computing of the Cramer-von Mises distauce
estimator, which is known to have the desirable statistical properties such as the
robustness and efficiency. Here, it is shown that the usual optimization algorithins,
such as the Newton-Raphson method and the Bisection method, fail to find the
estimnator. As an alternative, a derivative-free grid-type algorithin, the Dichotomnous
Search method, is considered. The simulation results show that the Dichotomous
Search method tends to find the estimator correctly.

Key Words: Cramer-von Mises distance, Minimum distance estimator, Uni-
modal, Derivative-free, Dichotomous Search, Convergence rate

1 Introduction

Let X|,..., X, be independent and identically distributed random variables with the dis-
tribution function F. Consider a parametric family F = {Fp : § € O}, where © is an open

set in the real line. Define a minimum distance functional:
T(F) = arg mindp(6) (1)

where dp(#) is a criterion function, measuring the discrepancy between F’ and F,. If F
belongs to F and the true parameter is 8, then T(F) = 8,. The true parameter ty can
be estimated by substituting the sample distribution function F; for F. The estimator,
defined as T(F,), is called a minimum distance estimator.

To specify the criterion function dr(8), we consider the set I' consisting of all non-
negative continuous functions G such that G > 0, G(0) = 0, G'(0) = 0 and G (0) = 0.
Dehine

dr(®) = [ Glér(t, O)lu(t, O)dF () 2)
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where 6r(t,6) = F(t) — Fy(t), w(t,8) > 0 is a weight function, and G is in the set .
The minimiser § of dr, (9) is called the generalized weighted Cramer-von Mises distance
estimator, which is presented in Qatiirk and Hettmansperger (1997). It is well-known
that the Cramer-von Mises estimator has the desirable statistical properties such as the
robustness and efficiency and the asymptotic normality. As for G, one usually utilizes
Gi(t) =%, Go(t) = £3/(t + 1) and Gs(t) = [(t +1)"/* - 1]2. The functions G, and G are
the Hellinger and Neyman distance functions, respectively, in the context of the minimum
disparity function of Lindsay (1994).

Here, in order to obtain a Cramer-von Mises distance estimator, we employ G, = t*

and w(t,f) = 1. In this case, we have

dr©) = [ (R0 - R@)dF)

%X_; (Fo(Xg) = =)?
?

n+1

= %i(FG(X[i]) - )%. (3)

i=1

The Cramer-von Mises estimator 6 is defined to be # that minimizes Formula (3). Usu-
ally, the estimator is obtained by solving the equation ddr, (8)/86 = 0. Since, in practice,
the solution cannot be obtained analytically, one should resort to some numerical techniques
for minimizing the objective function dg, (#). In order to solve the equation 8dr, (6)/96 = 0,
the first choice among the popular numerical methods will be the Newton-Raphson method,
which is based on the first and second derivatives of the objective function. However, a
solution of the equation is not necessarily a global optimum: it may be a local minimurn,
a local maximum or a saddle point. It is because despite the function § — dp, () has a
unimodal feature, the function is not truly unimodal (see Definition 1 below for the uni-
modality) due to the noisy fluctuations as seen in Figure 4. Since the Newton-Raphson
method does not perform well and even fails to find the solution that minimizes dr, (),
here we consider using the Dichotomous Search method, which is a derivative-free grid-type
optimization method.

Our goal of this paper is to demonstrate through simulation studies that the Dichoto-
mous Search method finds the Cramer-von Mises estimator more correctly whereas the
others including the Newton-Raphson method misbehave in searching for the estimate. In
Section 2, we provide a precise outline on the Dichotomous Search method for readers. In
Section 3, the simulation results are reported for the normal random variables for comparing
the performance of the Dichotomous Search method with other popular methods.
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2 Dichotomous Search

In this section, we review the derivative-free Dichotomous Search method. Since the dr, (¢)
has a unimodal shape, we start with a mathematical definition of unimodality.

[Definition] (Bazarra, Sherali and Shetty, 1993)
A function f is unimodal iff for each ', £* with f(z') # f(z?) and for0 < A < 1

fOz'+(1-N1?) < max{f(z"), f(z*)}. (4)

In the literature, it is well-known that the unimodality is not a sufficient condition for
the correct convergence of the Newton-Raphson method. It is easy to find out a coun-
terexample. However, as will be shown below, the Dichotomous Search method guarantecs

the correct convergence.

With the unimodal curves in Figure 1, we illustrate the Dichotomous Search algorithm.

f(z2)
10 o) F(z))
@ T, I b ax, z2 b

Figure 1: test points

Given an initial region of interest Z = [a, ], as described in Figure 1, we evaluate the
values at the two test points z; and zp with z; < z. If f(z1) < f(z2), then the new
interval of ‘uncertainty’ becomes [a, T,] since the optimum point cannot exist in (z2,b].
Otherwise if f(z;) > f(z2), then the new interval of uncertainty is [z1,b]. Notice that
depending on the value comparison of f at z, and z3, the length of the new interval of
uncertainty is either equal to b — z; or z, — a, which is less than b — a. In selecting «, and
o, one usually takes them symmetrically around the midpoint (b + a)/2 of a and b with
certain distance ¢ > 0. Depending on the values of f at z, and z, as mentioned above, a
new interval of uncertainty is determined. This procedure is repeated with placing two new
observations z, and z, for the next iteration until it terminates. In fact, this procedure
works for any a < z; < z2 < b. However, a particular choice of € = z; — (b — a)/2 yields
an optimal algorithm, so called the ‘Golden Section Search’, with the ‘golden number’
a = (z3 — a)/(b—a) = (v/5 —1)/2 2 0.618 (cf. Kim, 1997).

- 101 -



JNHYO KIM and SANGYEOL LEE

® @o—o—©@ L
0 - I 1/2 I

[a—

Figure 2: Using the fixed ratio o at kth iteration

In the following, we summarize the Dichotomous Search method using the above itera-

tive scheme.

Algorithm for the Dichotomous Search

Initialization step

Choose a constant « (=0.618) and an allowable final length of uncertainty,
[ > 0. Let [a;,b] = [a,b] be the initial interval of uncertainty, and note that
the initial interval Z = [a,, b;] includes the optimum point, and let k£ = 1 and

go to the main step.
Main Step

1. If by — ax < I, then stop; the minimum point lies in [ax, ). Otherwise
consider z, and z, defined in Formulae (5) and (6) ; go to step 2.

zy = a + a(by — ax) = (1 — a)ay + ab (3)
Ty = by — a(bk - ak) = oo + (1 - a)bk (6)

2. If f(z1) < f(ze), let agyy = aix and bxy; = z,. Otherwise let agy = 1)
and bg., = by. Replace k by k + 1, go to step 1.

In Formulae (5) and (6), it should be noted that one of the values at the two test points
in current iteration can be reused in the next iteration if the optimal constant o = 0.618. ..
is given, with which the the Golden Section Search is achieved as illustrated in Figures 2
and 3. It implies that the Golden Section Search requires only one additional test point in
each iteration step. However, due to its floating-point representation in a digital computer
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Figure 3: Using the fixed ratio « at (k+1)th iteration

(the digital computer cannot recognize irrational numbers), in practice one cannot use
the above algorithm as precisely as above. Civen o = 0.618..., the test point in next
iteration step will be only mathematically coincided, but not computationally. T herefore.
it is recornmended to store 1)the locations z, and z, and 2)the values f(z;) and f(xy), and
to reuse one of them without evaluating over again in the next iteration.

The following two theorems, which can be found in Bazarra, Sherali and Shetty (1993).
validate the convergence of the Dichotomous Search method.

Theorem 1 Let f : R — R' be unimodal over [a,b) withz, < z2 € [a,b]. If f(z)) <
f(z,), then f(z) > f(xy) for allz € (z2,0); and if f(z1) > f(xq), then f(z) 2 f(z2) for all

z € [a,11).

From Theorem 1, we know that if f(z,) < f(z2), then there must not exist an optimum
point in [y, b] since f(2) > f(z,) forall z € [z3,b). Now we eliminate the region [z2,0) to
get the new interval of uncertainty [a, z,] for the next iteration step. In this way, our region
of interest will be reduced in each step until we reach the optimurmn point within an allowable
final length of uncertainty. A similar argument follows for the case of f(z1) = f(z2).

Theorem 2 Consider the problem of minimizing a unimodal function f(z) defined on an
open set S C RP. If z is a local optimal solution using the Dichotomous Search method,

then 1 1s also the global solution.

By Theorem 2, we are convinced that if we find one local optimum point of a unimodal
function f(z), then it is necessarily the global optimum point. In the above two theoremns,
whenever a function to be minimized is unimodal, the Dichotomous Search always finds
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derivative quadratic | Newton-Raphson l 2.0
derivative-free | superlinear | Muller’s method 1.839
Secant method 1.618
Ilinois method 1.442

linear Dichotomous Search | 1.0

Bisection 1.0

Table 1: Comparison of the theoretical order p of convergence in Formula (7)

the optimum point. This is definitely a great advantage over the Newton-Raphson method,
since Theorem 2 does not hold for the Newton-Raphson method.

Given two competitive convergent algorithms, a theoretical comnparison for convergence
speed could be made on the basis of the mathematical order of convergence. Let the
sequence {zx,k =1,2,...} C R! converge toZ € R' in L,-norm. The order of convergence
of the sequence is defined as the supremum of p > 0 satisfying

]imsupw =03< (7)
k—o0 |zk -7 |p
and the constant  is called the convergence constant. The sequence withp=1and 8 <1
is said to have linear convergence implying geometric sequence; the sequence with p > 1 or
with p =1 and B = 0 is said to have superlinear convergence which means asymptotically
faster than linear convergence; in particular, the sequence with p = 2 and 3 < oc is said
to have a second-order or a quadratic convergence.

The comparison of convergence order of selected algorithms is provided in Table 1. It
is simple to show that the Dichotomous Search method provides linear convergence with
order p = 1. It implies that the Dichotomous Search method has a slower convergence rate
than the popular derivative methods, most of which exhibit a better convergence rate than
the Dichotomous Search method. Also, the Dichotomous Search method is slower than the
Secant method as shown in Table 1 See Thisted(1988) for Secant method. This is a sort.
of drawback but we should recall that the derivative method does not converge in many
cases whenever a chaotic behavior exists in the objective function (cf. Kim, 1997).
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3 Simulation Study and Concluding Remarks

In this simulation study, 30 random variables are generated from N (¢,0%) with 6 =1 and
o? = 4. Using those random variables, the function dr, () is drawn (see Figure 4) and the
Cramer-von Mises estimate is computed by utilizing the Dichotomous Search method. This
procedure is repeated 20 times, and the averages of the 20 estimates and their MSE are
computed. From Figure 4, one can notice that dr.(#), =10 < 8 < 10, have a feature of noisy
unimodality. Figure 5 displays the magnified versions of the same graphs in Figure 4 on
the smaller interval 0 < # < 2. From Figure 5, one is able to watch the fluctuation feature
more dramatically. According to Table 2, the averages of the Cramer-von Mises estimates
with the initial guess intervals [—10,20] and -5, 10] are 0.94 and 0.95 and their MSE's
are 0.074 and 0.463, respectively. Apparently, both average values are close to the true
parameter § = 1 and the MSE’s are reasonably small, which shows that the Dichotomous
Search method finds the true parameter correctly regardless of the initial guess interval.
These results suggest us that the Dichotomous Search method is suitable for finding the
Cramer-von Mises estimator.

Here we also estimated 6 via using the quasi-Newton method, which is a popular version
of the Newton-Raphson methods. The results in Table 2 are obtained using the quasi-
Newton method in the subroutine nlmin provided by the software SPLUS. From table 2,
we can see that the estimates heavily depend on the preassigned initial guess point. The
averages and the MSE's in Table 2 indicate this phenomenon clearly. Compared to the
averages obtained by the Dichotomous Search method, the averages in this case deviate
from the true parameter § = 1 severely. In fact, the average estimates of each 3 cases in
quasi-Newton method are very close to the given initial guess points ; this implies that the
quasi-Newton method tends to find only a local optimum close to the initial guess point.
This result is not a surprise in view of the fluctuations observed in Figures 4 and 5. Recall
that even the unimodality without fluctuations does not guarantee the correct convergence
of the Newton-Raphson method. Meanwhile, note that the Newton-type method relies on
the exact slope of one point at each iteration, and the Secant method uses the approximated
slope based on the two points of (1, f(z1)) and (22, f(z2)). On the other hand, the
Dichotomous Search method uses the four points consisting of the two test points inside
the current interval and its ending points. The set of these four points turns out to be
sufficient for reflecting the unimodality. This is the reason why the Dichotomous Search
method behaves more stably than the Newton-Raphson method.

Besides the Newton-Raphson and the Secant method, the Bisection method is often
considered as an alternative on this problem. The Bisection method is also used for finding
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Figure 4:

Replication of surfaces dr, (8) for —~10 < 8 < 10
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Figure 5: Replication of surfaces dr, () for 0 < 8 < 2
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L

methods

Initial Guess

estimate(s) of 6

mean

Var

MSE U

Normal

Dichotomous
Search

[-10, 20]

0.821.47 0.77 1.07 1.02
1.16 0.98 0.68 0.78 1.05
0.93 0.47 0.76 1.24 1.20
0.50 1.05 1.22 0.97 0.58

0.94

0.07

0.074

(=5, 10]

0.99 0.53 1.09 1.03 -0.86
0.41 1.58 0.35 0.42 0.98
0.63 1.68 1.27 2.28 0.57
1.371.90 1.16 0.96 0.67

0.95

0.46

0.463

nlmin

-3.00 -2.99 -3.00 -2.75 -2.99
-3.00 -3.00 -2.75 -2.5 -3.00
-3.00 -2.00 -3.00 -3.06 -2.00
-3.00 -3.12 -2.99 -2.50 -3.00

-2.83

0.11

14.78

00=3

2.00 3.00 2.00 2.00 3.00
2.00 3.12 3.00 2.00 2.99
2.99 2.00 2.00 2.99 3.00
3.00 2.00 2.00 3.00 3.00

6.75

fo=5

4.99 5.00 5.00 4.99 5.00
5.00 4.99 4.00 4.00 4.00
5.00 4.00 5.00 4.50 4.00
5.00 5.00 4.99 4.00 5.00

4.67

0.21

22.02

Table 2: Dichotomous Search vs. Quasi-Newton for normal sample

a zero of the equation ddr, (6)/08 = 0. However, the Bisection is not proper one, either,
since the equation has numerous zeros as seen in Figure 4.
Through our simulation results, we could see that the Dichotomous Search method

finds the Cramer-von Mises estimator correctly in the normal sample case, while the other

derivative methods fail seriously.

method is a suitable choice for finding the Cramer-von Mises estimator.
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