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<Abstract>

Linear Preservers of Regularity and Extreme Sets

of Matrix Inequalities over Boolean Algebras

In this thesis, we research two topics on linear preserver problems.

One topic is to characterize the linear operators that preserve the

regularity of binary Boolean matrices. A matrix  is called regular if there

exists a matrix  such that . We obtain that a linear operator 

strongly preserves regularity of binary Boolean matrices if and only if  has

the forms that    or    with invertible matrices  and

.

Another topic is to characterize the linear operators that preserve the sets

of matrix pairs over general Boolean algebras which satisfy the extreme

cases for certain Boolean rank inequalities. For this purpose we construct the

following 8 sets of matrix pairs;

,

,

,

,

,

,

,

.

We characterize those linear operators that preserve these 8 sets as

  ,     or    with invertible Boolean

matrices  and .



1 Introduction

There are many papers on linear operators that preserve certain properties of matrices

([1] -[16], [24] -[27]). We call such topic of research as “Linear Preserver Problems”. This

linear preserver problems have been studied for the various characterizations of matrices

during a century. In 1887, Frobenius characterized the linear operators that preserve

determinant of matrices over real field, which was the first results on linear preserver

problems. After his result, many researchers have studied the linear operators that

preserve some matrix functions, say, rank and permanent of matrices and so on([20]).

Recently, Beasley & Pullman began to research the matrices over semirings or Boolean

algebras([9] -[11]). There are many semirings such that nonnegative integers, nonnegative

reals, fuzzy semirings and (non)binary Boolean algebra and so on([11]).

The results on linear preserver problems over semirigs are more applicable to linear

preserver problems and combinatorics than those results over fields. The researches over

a semiring are not easy to generalize those results over field since the system of semiring

does not assume the additive inverse element for any element in the semiring. So we have

to re-define many concepts for the properties of matrices over semiring to generalize the

known definitions over field.

Now, almost all researches on linear preserver problems have dealt with those semir-

ings without zero-divisors to avoid the difficulties of multiplication arithmetic for the

elements in those semirings([3], [4], [9], [14]). But general Boolean algebra is not the

case. That is, all elements except 0 and 1 in the general Boolean algebra are zero-

divisors. So there are few results on the linear preserver problems for the matrices over

general Boolean algebra([16], [25] , [27]). Although there are many arithmetic difficulties

of matrices over general Boolean algebra, we study the Boolean rank of matrices over

general Boolean algebra and that we characterize the linear operators that preserve pairs

of matrices over general Boolean algebra which satisfy some rank inequalities.

In this thesis, we research two topics on the linear preserver problems. One topic is to

characterize the linear operators that preserve the regularity of binary Boolean matrices.

Another topic is to characterize the linear operators that preserve the sets of matrix pairs
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over general Boolean algebra which satisfy the extreme cases for certain Boolean rank

inequalities. For this purpose, we study the inequalities of Boolean rank for the sum or

multiplication of matrices over general Boolean algebra. We also construct the sets of

matrix pairs that satisfy the equalities for those Boolean rank inequalities.

The contents of this thesis are as follows:

In Chapter 2, we study the regularity of matrices over binary Boolean algebra and

characterize the linear operators that preserve the regularity.

In Chapter 3, we study the extreme sets of matrix pairs for the Boolean rank inequal-

ities over general Boolean algebra and characterize the linear operators that preserve the

extreme sets of matrix pairs.
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2 Regularity preservers of matrices over binary Boolean
algebra

2.1 Properties of regularity and singularity of Boolean matrices

The binary Boolean algebra([15]) is the set B1 = {0, 1} equipped with two operations,

addition(+) and multiplication(·), defined as follows:

0 + 0 = 0 0 · 0 = 0
0 + 1 = 1 + 0 = 1 0 · 1 = 1 · 0 = 0

1 + 1 = 1 1 · 1 = 1.

For all a, b ∈ B1, we suppress the dot of a · b and simply write ab. Let Mm,n(B1) denote

the set of all m × n Boolean matrices with entries in the binary Boolean algebra B1.

The usual definitions for addition and multiplication of matrices over fields are applied

to Boolean matrices as well. If m = n, we use the notation Mn(B1) instead of Mm,n(B1).

Boolean matrices play an important role in linear algebra, combinatorics, graph the-

ory and network theory. And many problems in the theory of nonnegative matrices

depend only on the distribution of nonzero entries. In such cases the relevant property

of each entry is whether it is zero or nonzero, and the problem can be often simplified by

substituting for the given matrix the Boolean (0, 1)-matrix.

Several authors characterized those linear operators on Mm,n(B1) that (strongly)

preserve various properties and functions defined on Mm,n(B1)([9], [24], [25]).

In this chapter, we study some properties of Boolean regular matrices. We also deter-

mine the linear operators on Mm,n(B1) that strongly preserve Boolean regular matrices.

The matrix In is the n×n identity matrix, Jm,n is the m×n matrix of all ones, Om,n

is the m × n zero matrix. We will suppress the subscripts on these matrices when the

orders are evident from the context. For any matrix A ∈ Mm,n(B1), A
T is denoted by

the transpose of A. A matrix in Mm,n(B1) with only one nonzero entry is called a cell. If

the nonzero entry occurs in the ith row and the jth column, we denote this cell by Ei,j .

Definition 2.1.1. A matrix in Mm,n(B1) is called an ith row matrix, denoted by Ri, if

Ri =
n∑
j=1

Ei,j for some i ∈ {1, . . . ,m}. Similarly, a matrix in Mm,n(B1) is called a jth
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column matrix, denoted by Cj , if Cj =
m∑
i=1

Ei,j for some j ∈ {1, . . . , n}. A line matrix is

an ith row matrix or a jth column matrix.

Let A = [ai,j ] be any matrix in Mm,n(B1). Then A can be written uniquely as
m∑
i=1

n∑
j=1

ai,jEi,j , which is called the canonical form of A. If ai,j = 1 for some i and j, then

we say that the cell Ei,j is in the matrix A. Since ai,j ∈ {0, 1}, the canonical form of A

shows that A is a sum of cells.

For A = [ai,j ], B = [bi,j ] ∈Mm,n(B1), we say that B dominates A (written B ≥ A or

A ≤ B) if bi,j = 0 implies ai,j = 0 for all i and j. This provides a reflexive and transitive

relation on Mm,n(B1).

Definition 2.1.2. Cells E1, E2, . . . , Ek are called collinear if
k∑
i=1

Ei ≤ L for some line

matrix L.

Definition 2.1.3. A matrix A ∈Mn(B1) is said to be invertible if there exists a matrix

B ∈Mn(B1) such that AB = BA = In.

In 1952, Luce([17]) showed that a matrix A ∈ Mn(B1) possesses a two-sided inverse

if and only if A is an orthogonal matrix in the sense that AAT = In, and that, in this

case, AT is a two-sided inverse of A. In 1963, Rutherford([23]) showed that if a matrix

A ∈ Mn(B1) possesses a one-sided inverse, then the inverse is also a two-sided inverse.

Furthermore such an inverse, if it exists, is unique and is AT . Also, it is well known that

the n× n permutation matrices are the only n× n invertible Boolean matrices.

The notion of generalized inverse of an arbitrary matrix apparently originated in

the work of Moore([19]), and the generalized inverses have applications in network and

switching theory and information theory([12]).
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Definition 2.1.4. Let A be a matrix in Mm,n(B1). Consider a matrix X ∈Mn,m(B1) in

the equation

AXA = A. (2.1.1)

If (2.1.1) has a solution X, then X is called a generalized inverse of A. Furthermore A

is called regular if there exists a solution of (2.1.1); Otherwise, A is called singular.

Clearly Jm,n and Om,n are regular in Mm,n(B1) because Jm,nJn,mJm,n = Jm,n and

Om,nOn,mOm,n = Om,n.

In general, a solution of (2.1.1), although it exists, is not necessarily unique. For

example, consider a matrix A =

[
1 0
0 0

]
∈ M2(B1). Then we can easily show that

X =

[
1 a
b c

]
∈M2(B1) are generalized inverses of A for all a, b, c ∈ B1.

The equation (2.1.1) have been studied by several authors ([19, 21, 22]). Plemmons

([21]) published algorithms for computing generalized inverses of Boolean matrices under

certain conditions. Also Rao and Rao([22]) had characterizations of regular matrices in

Mm,n(B1).

Proposition 2.1.5. Let A be a matrix in Mm,n(B1). If U ∈ Mm(B1) and V ∈ Mn(B1)

are invertible, then the following are equivalent :

(a) A is regular in Mm,n(B1);

(b) UAV is regular in Mm,n(B1);

(c) AT is regular in Mn,m(B1);

(d) UATV is regular in Mn(B1) (if m = n).

Proof. It is obvious.

Also we can easily show that

A is regular if and only if

[
A O
O B

]
is regular (2.1.2)
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for all matrices A ∈Mm,n(B1) and for all regular matrices B ∈Mp,q(B1).

In particular, all idempotent matrices in Mn(B1) are regular.

Definition 2.1.6. ([9]) The Boolean rank, b(A), of a nonzero m × n Boolean matrix A

is defined as the least integer k for which there exist m× k and k × n Boolean matrices

B and C with A = BC. The Boolean rank of a zero matrix is zero.

We can easily obtain that

0 ≤ b(A) ≤ min{m,n} and b(AB) ≤ min{b(A), b(B)} (2.1.3)

for all A ∈Mm,n(B1) and for all B ∈Mn,q(B1).

Let A = [a1 a2 · · · an ] be a matrix in Mm,n(B1), where aj is the jth column of A

for all j = 1, . . . , n. Then the column space of A is the set

{
n∑
j=1

αjaj

∣∣∣αj ∈ B1

}
, and

denoted by < A >; the row space of A is < AT >.

Definition 2.1.7. ([22]) Let A be a matrix in Mm,n(B1) with b(A) = k. Then A is said

to be space decomposable if there exist matrices B ∈ Mm,k(B1) and C ∈ Mk,n(B1) such

that A = BC, < A >=< B > and < AT >=< CT >.

Theorem 2.1.8. ([22]) A is regular in Mm,n(B1) if and only if A is space decomposable.

Proposition 2.1.9. If A is a matrix in Mm,n(B1) with b(A) ≤ 2, then A is regular.

Proof. If b(A) = 0, then A = O is clearly regular. If b(A) = 1, then there exist

permutation matrices P and Q such that PAQ =

[
J O
O O

]
, and hence PAQ is regular

by (2.1.2). It follows from Proposition 2.1.5 that A is regular.

Suppose that b(A) = 2. Then there exist m × 2 matrix B = [b1 b2 ] and 2 × n

matrix C = [c1 c2 ]T such that A = BC, where b1 and b2 are distinct nonzero columns

of B, and c1 and c2 are distinct nonzero columns of CT . Then we can easily show that all
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columns of A are of the forms 0,b1,b2 and b1 +b2 so that < A >=< B >. Similarly, all

columns of AT are of the forms 0, c1, c2 and c1 +c2 so that < AT >=< CT >. Therefore

A is space decomposable and hence A is regular by Theorem 2.1.8.

The weight of a matrix A in Mm,n(B1) is the number of nonzero entries of A and will

be denoted by #(A). The number of elements in a set S is also denoted by #(S).

Corollary 2.1.10. Let A be a matrix in Mm,n(B1) with #(A) ≤ 4. Then A is regular.

Proof. By Proposition 2.1.9, we lose no generality in assuming that b(A) = 3 or 4. Con-

sider a matrix B =

[
A O
O O

]
in Mm+1,n+1(B1). Since #(A) ≤ 4 and b(A) = 3 or 4, we

can easily show that there exist permutation matrices P ∈Mm+1(B1) and Q ∈Mn+1(B1)

such that PBQ =

[
C O
O O

]
for some idempotent matrix C in M4(B1) with #(C) = 3 or

4. By (2.1.2) and Proposition 2.1.5, we have that B is regular and hence A is regular by

(2.1.2).

Example 2.1.11. Consider a matrix A =

1 1 0
0 1 1
0 0 1

. Then we can easily show that

b(A) = 3.

Now we show that A is not space decomposable. If A is space decomposable, then

there exist 3× 3 matrices B and C such that A = BC, < A >=< B > and < AT >=<

CT >. It follows from (2.1.3) that b(B) = b(C) = 3, and hence both B and C have

neither a zero row nor a zero column. Also, there exists a permutation matrix P such

that A = DE, where D = [di,j ] = BP , E = [ei,j ] = P TC and D ≥ I3. Then we have

< A >=< B >=< BP >=< D > (2.1.4)

and

< AT >=< CT >=< CTP >=< ET > . (2.1.5)

Furthermore we have that

E has neither a zero row nor a zero column (2.1.6)
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because b(E) = b(P TC) = b(C) = 3. From A = DE with a1,3 = a2,1 = a3,1 = a3,2 = 0,

we have e1,3 = e2,1 = e3,1 = e3,2 = 0. It follows from (2.1.6) that e1,1 = e3,3 = 1. Thus,

E =

1 e1,2 0
0 e2,2 e2,3
0 0 1

. If e1,2 = 0 or e2,3 = 0, then we have e2,2 = 1 by (2.1.6). Then

we have

0
1
0

 ∈< ET >, while

0
1
0

 /∈< AT >, a contradiction to (2.1.5). Thus we may

assume that e1,2 = e2,3 = 1 so that E =

1 1 0
0 e2,2 1
0 0 1

. If e2,2 = 0, then b(E) = 2, a

contradiction. Hence e2,2 = 1. It follows from A = DE that D =

1 0 0
0 1 d2,3
0 0 1

. In this

case,

0
1
0

 ∈< D >, while

0
1
0

 /∈< A >, a contradiction to (2.1.4). Therefore A is not

space decomposable.

In the following, we give some properties of Boolean regular matrices.

If A and B are matrices in Mm,n(B1), we define A \B to be the matrix C = [ci,j ] in

Mm,n(B1) such that ci,j = 1 if and only if ai,j = 1 and bi,j = 0.

Define an upper triangular matrix Λn in Mn(B1) by

Λn = [λi,j ] ≡
( n∑
i≤j

Ei,j

)
\ E1,n =


1 1 · · · 1 0

1 · · · 1 1
. . .

...
...

1 1
1

 .

Then the following Lemma shows that Λn is not regular for n ≥ 3.

Lemma 2.1.12. Λn is regular in Mn(B1) if and only if n ≤ 2.

Proof. If n ≤ 2, then Λn is regular by Corollary 2.1.10.

Conversely, assume that Λn is regular for some n ≥ 3. Then there exists a nonzero

matrix B = [bi,j ] in Mn(B1) such that Λn = ΛnBΛn. From 0 = λ1,n =
n−1∑
i=1

n∑
j=2

bi,j , we

obtain that all entries of the second column of B are zero except for the entry bn,2. From

0 = λ2,1 =
n∑
i=2

bi,1, we have that all entries of the first column of B are zero except for

8



b1,1. Also, from 0 = λ3,2 =
n∑
i=3

2∑
j=1

bi,j , we obtain that bn,2 = 0. If we combine these three

results, we conclude that all entries of the first two columns are zero except for b1,1. But

we have 1 = λ2,2 =
n∑
i=2

2∑
j=1

bi,j = 0, a contradiction. Hence Λn is singular for all n ≥ 3.

In particular, Λ3 =

1 1 0
0 1 1
0 0 1

 is singular. By Proposition 2.1.5, we have that the

lower triangular matrix ΛTn is singular for n ≥ 3, while Λn+ ΛTn is regular by Proposition

2.1.9 because b(Λn + ΛTn ) = 2. Let

Φm,n =

[
Λ3 O
O O

]
(2.1.7)

for all min{m,n} ≥ 3. Then Φm,n is singular by (2.1.2).

Corollary 2.1.13. Let E and F be distinct cells in Mm,n(B1) with min{m,n} ≥ 3. Then

there exists a matrix A in Mm,n(B1) such that #(A) = 3 and A + E + F is singular in

Mm,n(B1).

Proof. Since E and F are distinct cells, there exist permutation matrices P and Q such

that

P (E + F )Q = E1,1 + E1,2, E1,2 + E2,2 or E1,1 + E2,2.

Consider a matrix A ∈Mm,n(B1) such that

PAQ = E2,2 + E2,3 + E3,3, E1,1 + E2,3 + E3,3 or E1,2 + E2,3 + E3,3

according as P (E + F )Q = E1,1 + E1,2, E1,2 + E2,2 or E1,1 + E2,2. Then we have that

P (A+E+F )Q = Φm,n is singular in Mm,n(B1). Hence A+E+F is singular in Mm,n(B1)

by Proposition 2.1.5.

Corollary 2.1.14. Let A be a matrix in Mm,n(B1) with #(A) = 3. If b(A) = 2 or 3,

then there exist cells E and F such that A+ E + F is singular.

9



Proof. Consider the singular matrix Φm,n in (2.1.7). If b(A) = 2 or 3, then we can easily

show that there exist permutation matrices U and V such that UAV ≤ Φm,n. Let E′

and F ′ be cells satisfying UAV + E′ + F ′ = Φm,n. Then we obtain that

A+ UTE′V T + UTF ′V T = UTΦm,nV
T

is singular by Proposition 2.1.5. If we let E = UTE′V T and F = UTF ′V T , then the

result follows.

Theorem 2.1.15. For m ≥ 3 and n ≥ 3, let A be a matrix in Mm,n(B1) with #(A) = k

and b(A) = k, where 0 ≤ k ≤ min{m,n}. Then J \A is regular if and only if k ≤ 2.

Proof. If k ≤ 2, then there exist permutation matrices P and Q such that P (J \A)Q =

J \ (aE1,1 + bE2,2), where a, b ∈ {0, 1}, and hence

J \ E11 =


1 0
1 1
...

...
1 1


[

0 1 · · · 1
1 1 · · · 1

]
,

J \ E22 =


1 1
1 0
1 1
...

...
1 1


[

1 0 1 · · · 1
1 1 1 · · · 1

]
,

J \ E11 + E22 =


1 0
0 1
1 1
...

...
1 1


[

0 1 1 · · · 1
1 0 1 · · · 1

]
.

Thus b(J \ A) = b(P (J \ A)Q) ≤ 2. Therefore we have J \ A is regular by Proposition

2.1.9.

Conversely, assume that J \ A is regular for some k ≥ 3. It follows from #(A) = k

and b(A) = k that there exist permutation matrices U and V such that

U(Jm,n \A)V = J \
k∑
t=1

Et,t.
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Let J \
( k∑
t=1

Et,t

)
= X = [xi,j ]. By Proposition 2.1.5, X is regular, and hence there exists

a nonzero matrix B = [bi,j ] ∈Mn,m(B1) such that X = XBX. Then the (t, t)th entry of

XBX becomes ∑
i∈I

∑
j∈J

bi,j (2.1.8)

for all t = 1, . . . , k, where I = {1, . . . , n} \ {t} and J = {1, . . . ,m} \ {t}. From x1,1 = 0

and (2.1.8), we have that

bi,j = 0 for all i = 2, . . . , n; j = 2, . . . ,m. (2.1.9)

Consider the first row and the first column of B. It follows from x2,2 = 0 and (2.1.8)

that

bi,1 = 0 = b1,j for all i = 1, 3, 4, . . . , n; j = 1, 3, 4, . . . ,m. (2.1.10)

Also, from x3,3 = 0, we obtain b1,2 = b2,1 = 0, and hence B = O by (2.1.9) and (2.1.10).

This contradiction shows that k ≤ 2.

Proposition 2.1.16. Let A be a matrix in Mm,n(B1) with #(A) = 5. If A has a row or

a column that has at least 3 nonzero entries, then A is regular.

Proof. Suppose that A has a row or a column that has at least 3 nonzero entries. Then

we can easily show that b(A) ≤ 3. By Proposition 2.1.9, we may assume that b(A) = 3.

Then A has either a row or a column that has just 3 nonzero entries. Suppose that a

row of A has just 3 nonzero entries. Since b(A) = 3, there exist permutation matrices U

and V such that

UAV = E1,1 + E1,2 + E1,3 + E2,i + E3,j

for some i, j ∈ {1, . . . , n} with i < j. If j ≥ 4, then UAV is regular by Corollary 2.1.10

and (2.1.2), and hence A is regular by Proposition 2.1.5. If 1 ≤ i < j ≤ 3, then there

exist permutation matrices U ′ and V ′ such that

U ′UAV V ′ =

[
B O
O O

]
,

11



where B =

1 1 1
0 1 0
0 0 1

. We can easily show that B is idempotent in M3(B1), and hence

B is regular. It follows from (2.1.2) and Proposition 2.1.5 that A is regular.

If a column of A has just 3 nonzero entries, a parallel argument shows that A is

regular.

12



2.2 Linear operators that preserve Boolean regular matrices

In this section we have characterizations of the linear operators that strongly preserve

regular matrices over the binary Boolean algebra.

Definition 2.2.1. An operator T on Mm,n(B1) is said to be

(1) linear if T (αA + βB) = αT (A) + βT (B) for all α, β ∈ B1 and for all A,B ∈

Mm,n(B1).

(2) preserve regularity if T (A) is regular whenever A is regular in Mm,n(B1).

Example 2.2.2. Let A be any regular matrix in Mm,n(B1). Define an operator T on

Mm,n(B1) by

T (X) =

( m∑
i=1

n∑
j=1

xi,j

)
A

for all X = [xi,j ] ∈Mm,n(B1).

Then we can easily show that T is a linear operator that preserves regularity because

T (X) is either O or A for all X ∈ Mm,n(B1). But T does not preserve any singular

matrix in Mm,n(B1).

Thus, we are interested in a linear operator T on Mm,n(B1) such that T (X) is regular

if and only if X is regular over Mm,n(B1).

Definition 2.2.3. A linear operator T on Mm,n(B1) is said to be strongly preserve reg-

ularity if T (A) is regular if and only if A is regular in Mm,n(B1).

Theorem 2.2.4. Let T be a linear operator on Mm,n(B1), where min{m,n} ≤ 2. Then

T strongly preserves all regular matrices.
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Proof. If min{m,n} ≤ 2, then all matrices in Mm,n(B1) are regular by (2.1.3) and

Proposition 2.1.9. Hence T (A) is always regular for all A in Mm,n(B1). Thus the result

follows.

Definition 2.2.5. A linear operator T on Mm,n(B1) is said to be singular if T (X) = O

for some nonzero matrix X in Mm,n(B1); Otherwise, T is called nonsingular.

Lemma 2.2.6. If T is a linear operator on Mm,n(B1) that strongly preserves regularity

for m ≥ 3 and n ≥ 3, then T is nonsingular.

Proof. If T (X) = O for some nonzero matrix X in Mm,n(B1), then we have T (E) = O

for all cells E ≤ X. Let F be a cell different from E. By Corollary 2.1.13, there exists

a matrix A with #(A) = 3 such that A + E + F is singular, while A + F is regular

by Corollary 2.1.10. Nevertheless, T (A + E + F ) = T (A + F ), a contradiction to the

fact that T strongly preserves regularity. Hence T (X) 6= O for all nonzero matrix X in

Mm,n(B1). Therefore T is nonsingular.

For any i ∈ {1, 2, . . . ,mn}, let Si denote a sum of arbitrary distinct i cells in Mm,n(B1)

with #(Si) = i. Hereafter, we let min{m,n} = α and max{m,n} = β.

Proposition 2.2.7. Let T be a linear operator on Mm,n(B1) that strongly preserves

regularity, where min{m,n} = α ≥ 3. Then we have

#(T (Si)) ≤ 2α+ i

for all Si ∈Mm,n(B1), where i ∈ {1, 2, . . . , α(β − 2)}.

Proof. We lose no generality in assuming that α = m and β = n. Thus we will show

that #(T (Si)) ≤ 2m+ i for all Si ∈Mm,n(B1), where i ∈ {1, 2, . . . ,m(n− 2)}.

14



If i = m(n−2) then clearly #(T (Si)) ≤ mn = 2m+i. For arbitrary i ∈ {1, 2, . . . ,m(n−

2)−1}, suppose that #(T (Si)) ≥ 2m+i+1 for some Si ∈Mm,n(B1). Then J \T (Si) dom-

inates at most mn−(2m+i+1) cells. Thus we have #(T (J)\T (Si)) ≤ mn−(2m+i+1).

Now for each cell G with G ≤ T (J) \ T (Si), let H be a cell such that G ≤ T (H), and let

X be the sum of all such cells H. Then we have

#(X) ≤ #(T (J) \ T (Si)) ≤ mn− (2m+ i+ 1).

Now we claim that T (J) = T (Si) + T (X). It suffices to show T (J) ≤ T (Si) + T (X).

Let G be any cell such that G ≤ T (J). If G ≤ T (Si), then we are done. If G 6≤ T (Si),

then there exists a cell H with H ≤ X such that G ≤ T (H) by the construction of

X. Thus, G ≤ T (H) ≤ T (X). Therefore we have T (J) ≤ T (Si) + T (X), and hence

T (J) = T (Si) + T (X) = T (Si +X).

Since #(X +Si) ≤ mn− (2m+ 1), there exist distinct cells F1, F2, F3 such that they

are not dominated by X + Si and b
( 3∑
j=1

Fj

)
= 3. It follows from T (J) = T (X + Si) and

X + Si ≤ J \
3∑
j=1

Fj that

T (J) = T (X + Si) ≤ T
(
J \

3∑
j=1

Fj

)
≤ T (J),

and hence T (J) = T
(
J \

3∑
j=1

Fj

)
, a contradiction to the fact that T strongly preserves

regularity because J is regular, while J \
3∑
j=1

Fj is not regular by Theorem 2.1.15. There-

fore we have #(T (Si)) ≤ 2m+ i for all Si. We conclude that #(T (Si)) ≤ 2m+ i for all

i = 1, 2, . . . ,m(n− 2).

The next Lemma will be important in order to show that if E is any cell in Mm,n(B1)

with min{m,n} ≥ 3, then T (E) is also a cell for any linear operator on Mm,n(B1) that

strongly preserves regularity.
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Lemma 2.2.8. Let min{m,n} = α ≥ 3 and T be a linear operator on Mm,n(B1) that

strongly preserves regularity. Then for any h ∈ {0, 1, 2, . . . , 2α}, we have

#(T (Si)) ≤ 2α+ i− h

for all Si ∈Mm,n(B1), where i ∈ {1, 2, . . . , 2α− h+ 1}.

Proof. Without loss of generality, we assume that α = m. Thus we will show that if

h ∈ {0, 1, 2, . . . , 2m}, then we have #(T (Si)) ≤ 2m+ i− h for all Si ∈ Mm,n(B1), where

i ∈ {1, 2, . . . , 2m− h+ 1}.

The proof proceeds by induction on h. It follows from Proposition 2.2.7 that #(T (Si))

≤ 2m+ i for all Si ∈Mm,n(B1), where i ∈ {1, 2, . . . , 2m+ 1}. Thus if h = 0, the result is

obvious. Next, we assume that for some h ∈ {0, 1, 2, . . . , 2m− 1}, the argument is true.

That is, we have

#(T (Si)) ≤ 2m+ i− h (2.2.1)

for all Si ∈Mm,n(B1), where i ∈ {1, 2, . . . , 2m−h+1}. Now we will show that #(T (Si)) ≤

2m + i − h − 1 for all Si ∈ Mm,n(B1), where i ∈ {1, 2, . . . , 2m − h}. For arbitrary

i ∈ {1, 2, . . . , 2m− h}, suppose that #(T (Si)) ≥ 2m+ i− h for some Si ∈Mm,n(B1). By

(2.2.1), we have

#(T (Si)) = 2m+ i− h and #(T (Si + F )) = 2m+ i− h or (2m+ i− h) + 1

for all cells F with F 6≤ Si. If #(T (Si +F1)) = 2m+ i−h for some cell F1 with F1 6≤ Si,

then we have T (Si + F1) = T (Si). Let F2 and F3 be distinct cells different from F1 such

that they are not dominated by Si and b
( 3∑
j=1

Fj

)
= 3. Then we can select the matrix

Y ∈Mm,n(B1) such that Si + Y = J \
3∑
j=1

Fj , and hence Si + Y + F1 = J \ (F2 + F3). It

follows from T (Si + F1) = T (Si) that T (Si + F1) + T (Y ) = T (Si) + T (Y ), equivalently

T
(
J \ (F2 + F3)

)
= T

(
J \

3∑
j=1

Fj

)
,

a contradiction because J \
3∑
j=1

Fj is singular, while J \ (F2 + F3) is regular by Theorem

2.1.15. Thus we may assume that #(T (Si + F )) = (2m+ i− h) + 1 for all cells F with
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F 6≤ Si. This means that for any cell F with F 6≤ Si, there exists only one cell CF such

that

CF 6≤ T (Si), CF ≤ T (F ) and T (Si + F ) = T (Si) + CF (2.2.2)

because #(T (Si)) = 2m+ i− h. Let Em,n be the set of all cells in Mm,n(B1) and let

Ω = {CF |F ∈ Em,n and F 6≤ Si}.

Suppose that CH 6= CF for all distinct cells F and H that are not dominated by Si.

Then we have #(Ω) = mn − i. Since CF 6≤ T (Si) for any cell F with F 6≤ Si, we have

#(Ω) ≤ mn − (2m + i − h) because #(T (Si)) = 2m + i − h. This is impossible. Hence

CH = CF for some distinct cells F and H that are not dominated by Si. It follows from

(2.2.2) that

T (Si + F +H) = T (Si + F ) + T (Si +H) = T (Si) + CF = T (Si + F ). (2.2.3)

Let H1 and H2 be distinct cells different from H such that they are not dominated

by Si + F and b(H + H1 + H2) = 3. Let Y ′ be the matrix such that Si + F + Y ′ =

J \ (H + H1 + H2). Then we have Si + F + H + Y ′ = J \ (H1 + H2). It follows from

(2.2.3) that

T
(
J \ (H1 +H2)

)
= T

(
J \ (H +H1 +H2)

)
,

a contradiction because J \ (H1 +H2) is regular, while J \ (H +H1 +H2) is singular by

Theorem 2.1.15. Consequently, we have #(T (Si)) ≤ 2m + i − h for all Si ∈ Mm,n(B1),

where i ∈ {1, 2, . . . , 2m− h}. Hence the result follows.

Corollary 2.2.9. Let T be a linear operator on Mm,n(B1) that strongly preserves regu-

larity, where min{m,n} ≥ 3. Then T (E) is a cell for all cells E in Mm,n(B1).

Proof. Let h = 2m in Lemma 2.2.8. Then we have #(T (S1)) ≤ 1 for all S1 ∈Mm,n(B1).

It follows from Lemma 2.2.6 that #(T (S1)) = 1 for all S1 ∈ Mm,n(B1), equivalently

#(T (E)) = 1 for any cell E in Mm,n(B1). Therefore we have that T (E) is a cell for any

cell E in Mm,n(B1).
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As shown in Theorem 2.2.4, if T is a linear operator on Mm,n(B1) with min{m,n} ≤ 2,

then T (strongly) preserves regularity because all matrices in Mm,n(B1) are regular by

Proposition 2.1.9.

If min{m,n} ≥ 3, there exists a linear operator on Mm,n(B1) such that T preserves

regularity, while T does not strongly preserve regularity, see Example 2.2.2.

The next Lemmas are necessary to prove the main theorem of this section.

Lemma 2.2.10. Let T be a linear operator on Mm,n(B1) that strongly preserve regularity

for min{m,n} ≥ 3. Then T is bijective on the set of cells.

Proof. By Corollary 2.2.9, we suffice to show that T (E) 6= T (F ) for all distinct cells E

and F in Mm,n(B1). Suppose that T (E) = T (F ) for some distinct cells E and F . Then

we have T (E + F ) = T (E). By Corollary 2.1.13, there exists a matrix A in Mm,n(B1)

with #(A) = 3 such that A+ E + F is singular. Since T (E + F ) = T (E), we have

T (A+ E + F ) = T (A+ E),

a contradiction to the fact that T strongly preserves regularity because A+E is regular

by Corollary 2.1.10. Therefore T is bijective on the set of cells.

Let A ∈ Mm,n(B1) be a nonzero matrix dominated by a line matrix. Then we have

b(A) = 1. If #(A) = s, then we say that A is a s-star matrix. Therefore all s-star

matrices are regular by Proposition 2.1.9.

Lemma 2.2.11. Let T be a linear operator on Mm,n(B1) that strongly preserve regularity

for min{m,n} ≥ 3. Then T preserves all 3-star matrices.

Proof. Suppose that T does not preserve a 3-star matrix A in Mm,n(B1). Then we

have that b(T (A)) = 2 or 3. By Corollary 2.1.14, there exist cells E and F such that

T (A) + E + F is singular. By Lemma 2.2.10, we can write E = T (H1) and F = T (H2)

for some cells H1 and H2. Thus we have

T (A) + E + F = T (A+H1 +H2).
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But A + H1 + H2 is regular by Proposition 2.1.16. This contradicts to the fact that T

strongly preserves regularity. Hence T preserves all 3-star matrices.

Corollary 2.2.12. Let T be a linear operator on Mm,n(B1) that strongly preserve regu-

larity for min{m,n} ≥ 3. Then T preserves all line matrices.

Proof. Suppose that T does not preserve a line matrix A in Mm,n(B1). Then there exist

two cells E and F dominated by A such that two cells T (E) and T (F ) are not collinear.

Let G be a cell such that E+F +G is a 3-star matrix. By Lemma 2.2.11, T (E+F +G)

is a 3-star matrix, and hence b(T (E + F + G)) = 1. Thus, the three cells T (E), T (F )

and T (G) are collinear. This contradicts to the fact that the two cells T (E) and T (F )

are not collinear. Therefore T preserves all line matrices.

We say that a linear operator T on Mm,n(B1) is a (U, V )-operator if there exist

invertible matrices U ∈Mm(B1) and V ∈Mn(B1) such that either

T (X) = UXV for all X ∈Mm,n(B1), or

m = n and T (X) = UXTV for all X ∈Mm,n(B1).

We remind that the n × n permutation matrices are the only n × n invertible Boolean

matrices.

Theorem 2.2.13. Let T be a linear operator on Mm,n(B1) with min{m,n} ≥ 3. Then

T strongly preserves regularity if and only if T is a (U, V )-operator.

Proof. The sufficiency follows from Proposition 2.1.5. To prove the necessity, assume

that T strongly preserves regularity. Then T is bijective on the set of cells by Lemma

2.2.10 and T preserves all line matrices by Corollary 2.2.12. Since no combination of s

row matrices and t column matrices can dominate Jm,n where s+ t = min{m,n} unless

s = 0 or t = 0, we have that either
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(1) the image of each row matrix is a row matrix and the image of each column matrix

is a column matrix, or

(2) the image of each row matrix is a column matrix and the image of each column

matrix is a row matrix.

If (1) holds, then there exist permutations σ and τ of {1, . . . ,m} and {1, . . . , n},

respectively such that T (Ri) = Rσ(i) and T (Cj) = Cτ(j) for all i = 1, . . . ,m and j =

1, . . . , n. Let U ∈ Mm(B1) and V ∈ Mn(B1) be permutation (i.e., invertible) matrices

corresponding to σ and τ , respectively. Then we have

T (Ei,j) = Eσ(i),τ(j) = UEi,jV

for all cells Ei,j in Mm,n(B1). Let X =
m∑
i=1

n∑
j=1

xi,jEi,j be any matrix in Mm,n(B1). By

the action of T on the cells, we have that T (X) = UXV . If (2) holds, then m = n and

a parallel argument shows that there exist invertible matrices U and V in Mn(B1) such

that T (X) = UXTV for all X in Mn(B1). Therefore T is a (U, V )-operator.

Thus, as shown in Theorems 2.2.4 and 2.2.13, we have characterizations of the linear

operators that strongly preserve Boolean regular matrices.
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3 Extreme sets of matrix pairs over general Boolean alge-
bra and their preservers

3.1 Preliminaries and Basic results

Definition 3.1.1. ([11]) A semiring S consists of a set S and two binary operations,

addition(+) and multiplication(·), such that:

• S is an Abelian monoid under addition (the identity is denoted by 0);

• S is a monoid under multiplication (the identity is denoted by 1);

• multiplication is distributive over addition on both sides;

• s0 = 0s = 0 for all s ∈ S.

Definition 3.1.2. ([11]) A semiring S is called antinegative if the zero element is the

only element with an additive inverse.

Definition 3.1.3. ([11]) A semiring S is called a general Boolean algebra if S is equivalent

to a set of subsets of a given set M , the sum of two subsets is their union, and the product

is their intersection. The zero element is the empty set and the identity element is the

whole set M .

Let Sk = {a1, a2, · · · , ak} be a set of k-elements, P(Sk) be the set of all subsets of

Sk and Bk be a general Boolean algebra of subsets of Sk = {a1, a2, · · · , ak}, which is

a subset of P(Sk). It is straightforward to see that a general Boolean algebra Bk is a

commutative and antinegative semiring. Let Mm,n(Bk) denote the set of m× n matrices

with entries from the general Boolean algebra Bk. If m = n, we use the notation Mn(Bk)

instead of Mn,n(Bk).

Throughout the thesis, we assume that m ≤ n. The matrix In is the n × n identity

matrix, Jm,n is the m × n matrix of all ones and Om,n is the m × n zero matrix. We

omit the subscripts when the order is obvious from the context and we write I, J and O,
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respectively. The matrix Ei,j , which is called a cell, denotes the matrix with exactly one

nonzero entry, that being a one in the (i, j)th entry. A weighted cell is any nonzero scalar

multiple of a cell, that is, αEi,j is a weighted cell for any 0 6= α ∈ Bk. Let Ri denote the

matrix whose ith row is all ones and is zero elsewhere, and Cj denote the matrix whose

jth column is all ones and is zero elsewhere. We denote by #(A) the number of nonzero

entries in the matrix A. We denote by A[i,j|r,s] the 2 × 2 submatrix of A which lies in

the intersection of the ith and jth rows with the rth and sth columns.

Definition 3.1.4. ([9], [13]) The matrix A ∈ Mm,n(Bk) is said to be of Boolean rank r

if there exist matrices B ∈ Mm,r(Bk) and C ∈ Mr,n(Bk) such that A = BC and r is the

smallest positive integer that such a factorization exists. We denote b(A) = r.

By definition, the unique matrix with Boolean rank equal to 0 is the zero matrix O.

If F is a field, then there is the usual rank function ρ(A) for any matrix A ∈

Mm,n(F). These rank functions are not equal in general. However, the inequality

b(A) ≥ρ(A) always holds for any matrix A ∈ Mm,n(F)
⋂

Mm,n(S). Consider the ma-

trix M =


1 0 0 1
1 1 0 0
0 1 1 0
0 0 1 1

 ∈M4,4(Bk). Then M has Boolean rank 4 and has real rank 3

by Example 4.3 in [6].

The behavior of the function ρ with respect to matrix multiplication and addition is

given by the following inequalities([2] and [18]):

• the rank-sum inequalities:

|ρ(A)− ρ(B)| ≤ ρ(A + B) ≤ ρ(A) + ρ(B),

• Sylvester’s laws:

ρ(A) + ρ(B)− n ≤ ρ(AB) ≤ min {ρ(A), ρ(B)},

• and the Frobenius inequality:

ρ(AB) + ρ(BC ) ≤ ρ(ABC ) + ρ(B),
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where A, B and C are conformal matrices with entries from a field.

The arithmetic properties of Boolean rank are restricted by the following list of in-

equalities([2]), since the Boolean algebra is antinegative:

(1) b(A + B) ≤ b(A) + b(B);

(2) b(AB) ≤ min{b(A), b(B)};

(3) b(A + B) ≥


b(A) if B = O ,
b(B) if A = O ,
1 if A 6= O and B 6= O ;

(4) b(AB) ≥
{

0 if b(A) + b(B) ≤ n,
1 if b(A) + b(B) > n.

Below, we use the following notation in order to denote sets of matrices that arise as

extremal cases in the inequalities listed above:

RSA(Bk) = { (X,Y ) ∈Mm,n(Bk)2| b(X + Y ) = b(X) + b(Y) },

RS1(Bk) = {(X,Y ) ∈Mm,n(Bk)2| b(X + Y ) = 1},

RSD(Bk) = {(X,Y ) ∈Mm,n(Bk)2| b(X + Y ) = |b(X)− b(Y)|},

RMM (Bk) = {(X,Y ) ∈Mn(Bk)2| b(XY ) = min{ b(X),b(Y)}},

RM0(Bk) = {(X,Y ) ∈Mn(Bk)2| b(XY ) = 0},

RM1(Bk) = {(X,Y ) ∈Mn(Bk)2| b(XY ) = 1},

RMA(Bk) = {(X,Y ) ∈Mn(Bk)2| b(XY ) = b(X) + b(Y)− n},

RM3(Bk) = {(X,Y, Z) ∈Mn(Bk)3| b(XY Z)+b(Y ) = b(XY ) + b(Y Z)}.

Definition 3.1.5. ([4]) We say that an operator T preserves a set P if X ∈ P implies that

T (X) ∈ P or if P is the set of ordered pairs (triples) such that (X,Y ) ∈ P (respectively,

(X,Y, Z) ∈ P) implies ((T (X), T (Y )) ∈ P (respectively, (T (X), T (Y ), T (Z)) ∈ P).

Definition 3.1.6. An operator T strongly preserves the set P if X ∈ P if and only if

T (X) ∈ P or if P is the set of ordered pairs (triples) such that (X,Y ) ∈ P (respectively,

(X,Y, Z) ∈ P) if and only if (T (X), T (Y )) ∈ P (respectively, (T (X), T (Y ), T (Z)) ∈ P).
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Definition 3.1.7. ([4]) For X,Y ∈ Mm,n(S), the matrix X ◦ Y denotes the Hadamard

or Schur product, i.e., the (i, j)thentry of X ◦ Y is xi,jyi,j .

Definition 3.1.8. ([4]) An operator T is called a (P,Q,B)-operator if there exist per-

mutation matrices P and Q and a matrix B ∈ Mm,n(S) with no zero entries such that

T (X) = P (X ◦ B)Q for all X ∈ Mm,n(S) or if for m = n, T (X) = P (X ◦ B)TQ for all

X ∈ Mm,n(S). A (P,Q,B)-operator is called a (P,Q)-operator if B = J , the matrix of

all ones.

Definition 3.1.9. ([4]) Let Bk be a general Boolean algebra. An operator T : Mm,n(Bk)→

Mm,n(Bk) is called linear if it satisfies T (X + Y ) = T (X) + T (Y ) and T (αX) = αT (X)

for all X,Y ∈Mm,n(Bk) and α ∈ Bk.

Definition 3.1.10. A line of a matrix A is a row or a column of the matrix A.

Definition 3.1.11. ([4]) We say that the matrix A dominates the matrix B if and only

if bi,j 6= 0 implies that ai,j 6= 0, and we write A ≥ B or B ≤ A.

Lemma 3.1.12. Let P and Q be permutation matrices of m-square and n-square respec-

tively. If T : Mm,n(S) → Mm,n(S) is defined by T (X) = PX or T (X) = XQ for any

X ∈Mm,n(Bk). Then T preserves Boolean rank. That is, b(T (X)) = b(X).

Proof. Let A,B ∈ Mm,n(S) and P be an m × m permutation matrix. Since, in any

semiring S,

b(AB) ≤ min{b(A),b(B)}, b(PX) ≤ min{b(P ), b(X)} ≤b(X).

And

b(X) = b(IX) = b((P TP )X) = b(P T (PX)) ≤b(PX).

24



Hence b(PX) = b(X). Similarly b(XQ) = b(X) for all n× n permutation matrix Q.

Lemma 3.1.13. If A =

[
a b
c d

]
∈M2,2(Bk) has Boolean rank 1, then ad = bc.

Proof. Suppose that b(A) = 1. Then there exist vectors x = [x1,x2]T and y = [y1,y2]

such that A = xy. Thus

A =

[
a b
c d

]
=

[
x1
x2

] [
y1 y2

]
=

[
x1y1 x1y2
x2y1 x2y2

]
.

Hence ad = x1x2y1y2 = bc.

Lemma 3.1.14. If ad 6= bc, then A =

[
a b
c d

]
∈M2,2(Bk) has Boolean rank 2.

Proof. Suppose that ad 6= bc and b(A) 6= 2. Then b(A) = 1 and there exist vectors

x = [x1,x2]T and y = [y1,y2] such that A = xy. Thus

A =

[
a b
c d

]
=

[
x1
x2

] [
y1 y2

]
=

[
x1y1 x1y2
x2y1 x2y2

]
.

Hence ad = x1x2y1y2 = bc, a contradiction to ad 6= bc.

The inverse of Lemma 3.1.13 is not true. Consider the following example:

Example 3.1.15. Let B4 = P({a, b, c, d}) and A =

[
{a} {b}
{c} {d}

]
be a 2× 2 matrix over

B4. Then {a} · {d} = 0 = {b} · {c}, but b(A) = 2 6= 1.

Lemma 3.1.16. Let A ∈Mm,n(Bk), where m,n ≥ 2. b(A) = 1 if and only if b(A′) = 1

for any 2× 2 submatrix A′ of A.

Proof. ⇒) Suppose that b(A) = 1, then there exist vectors a = [a1, a2, . . . , am]T and

b = [b1,b2, . . . ,bn] such that A = ab, i.e., ai,j = aibj for all 1 ≤ i ≤ m and 1 ≤ j ≤ n.

Thus for any 2× 2 submatrix

A′ = A[i, j|r, s] =

[
aibr aibs
ajbr ajbs

]
=

[
ai
bj

] [
br bs

]
,
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i.e., b(A′) = 1.

⇐) Suppose that b(A) = r > 1. Then there exist matrices B ∈ Mm,r(Bk) and

C ∈ Mr,n(Bk) such that A = BC. Thus there exist matrices B′ ∈ Mm,2(Bk) and

C ′ ∈M2,n(Bk) with Boolean rank 2 such that A′ = B′C ′. Therefore there exist matrices

B′′ ⊂ B′ and C ′′ ⊂ C ′ in M2,2(Bk) such that A′′ = B′′C ′′ ∈ M2,2(Bk) with b(A′′) = 2, a

contradiction.

Theorem 3.1.17. Let T : Mm,n(Bk)→Mm,n(Bk) be a linear operator. Then the follow-

ing conditions are equivalent:

(a) T is bijective;

(b) T is surjective;

(c) T is injective;

(d) there exists a permutation σ on {(i, j)|i = 1, 2, . . . ,m; j = 1, 2, . . . , n} such that

T (Ei,j) = Eσ(i,j) for all 1 ≤ i ≤ m and 1 ≤ j ≤ n.

Proof. (a), (b) and (c) are equivalent since Mm,n(Bk) is a finite set.

(d)⇒(b) For any D ∈Mn(Bk), we may write

D =
m∑
i=1

n∑
j=1

di,jEi,j .

Since σ is a permutation, there exist σ−1(i, j) and

D′ =

m∑
i=1

n∑
j=1

dσ−1(i,j)Eσ−1(i,j)

such that

T (D′) = T (
m∑
i=1

n∑
j=1

dσ−1(i,j)Eσ−1(i,j))

=

m∑
i=1

n∑
j=1

dσσ−1(i,j)Eσσ−1(i,j)

=

m∑
i=1

n∑
j=1

di,jEi,j = D.

(a)⇒(d) We assume that T is bijective. Suppose that T (Ei,j) 6= Eσ(i,j) where σ be

a permutation on {(i, j)|i = 1, 2, . . . ,m; j = 1, 2, . . . , n}. Then there exist some pairs
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(i, j) and (r, s) such that T (Ei,j) = αEr,s(α 6= 1) or some pairs (i, j), (r, s) and (u, v)

((r, s) 6= (u, v)) such that T (Ei,j) = αEr,s + βEu,v + Z(α 6= 0, β 6= 0, Z ∈ Mm,n(Bk)),

where the (r, s)th and (u, v)th entries of Z are zeros.

Case 1) Suppose that there exist some pairs (i, j) and (r, s) such that T (Ei,j) =

αEr,s(α 6= 1). Since T is bijective, there exist Xr,s ∈Mm,n(Bk) such that T (Xr,s) = Er,s.

Then αT (Xr,s) = αEr,s = T (Ei,j), and T (αXr,s) = T (Ei,j). Hence αXr,s = Ei,j , which

contradicts the fact that α 6= 1.

Case 2) Suppose that there exist some pairs (i, j), (r, s) and (u, v) such that T (Ei,j) =

αEr,s + βEu,v + Z(α 6= 0, β 6= 0, Z ∈ Mm,n(Bk)), where the (r, s)th and (u, v)th entries

of Z are zeros. Since T is bijective, there exist Xr,s, Xu,v and Z ′ ∈ Mm,n(Bk) such that

T (Xr,s) = αEr,s, T (Xu,v) = βEu,v, and T (Z ′) = Z. Thus

T (Ei,j) = αEr,s + βEu,v + Z = T (Xr,s) + T (Xu,v) + T (Z ′) = T (Xr,s +Xu,v + Z ′).

So Ei,j = Xr,s +Xu,v + Z ′, a contradiction.

Remark 3.1.18. One can easily verify that if m = 1 or n = 1, then all operators

under consideration are (P,Q,B)-operators and if m = n = 1, then all operators under

consideration are (P, P T , B)-operators.

Henceforth we will always assume that m,n ≥ 2.

Lemma 3.1.19. Let T : Mm,n(Bk)→ Mm,n(Bk) be a linear operator which maps a line

to a line and T be defined by the rule T (Ei,j) = bi,jEσ(i,j), where σ is a permutation

on the set {(i, j)|i = 1, 2, . . . ,m; j = 1, 2, . . . , n} and bi,j ∈ Bk are nonzero elements for

i = 1, 2, . . . ,m; j = 1, 2, . . . , n. Then T be a (P,Q,B)-operator.

Proof. Since no combination of p rows and q columns can dominate J for any nonzero p

and q with p+ q = m, we have that either the image of each row is a row and the image

of each column is a column, or m = n and the image of each row is a column and image

of each column is a row. Thus there are permutation matrices P and Q such that

T (Ri) ≤ PRiQ, T (Cj) ≤ PCjQ
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or, if m = n,

T (Ri) ≤ P (Ri)
TQ, T (Cj) ≤ P (Cj)

TQ.

Since each nonzero entry of a cell lies in the intersection of a row and a column and T

maps nonzero cells to nonzero (weighted) cells, it follows that

T (Ei,j) = Pbi,jEi,jQ = P (Ei,j ◦B)Q,

or, if m = n,

T (Ei,j) = P (bi,jEi,j)
TQ = P (Ei,j ◦B)TQ

where B = (bi,j) is defined by the action of T on the cells.

Lemma 3.1.20. If T (X) = X ◦B for all X ∈Mm,n(Bk) and b(B) = 1 then there exist

diagonal matrices D and E such that T (X) = DXE for all X ∈Mm,n(Bk).

Proof. Since b(B) = 1, there exist vectors d = [di,d2, . . . ,dm]T ∈ Mm,1 and e =

[ei, e2, . . . , en] ∈ M1,n such that B = de or bi,j = diej. Let D = diag{d1, d2, . . . , dm}

and E = diag{e1, e2, . . . , en}. Now the (i, j)th entry of T (X) is bi,jxi,j and the (i, j)th

entry of DXE is dixi,jej = bi,jxi,j . Hence T (X) = DXE.

Example 3.1.21. Consider the linear operator T : M3,3(B3) → M3,3(B3) defined by

T (X) = X ◦ B for all X ∈ M3,3(B3) with B3 = P({a, b, c}). Then b(B) = 1 but T does

not preserves the Boolean rank.

Consider X =

 {a, b} {a, b, c} {a, b}
{a, c} {a, b} {a, c}
{a} {b, c} {a, b, c}

 and B =

 {a} {b} {a}{a} {b} {a}
{a} {b} {a}

.

Then b(X) = 3, but

T (X) = X ◦B =

 {a} {b} {a}{a} {b} {a}
{a} {b} {a}

 =

 1
1
1

 [ {a} {b} {a} ] .
That is, b(T (X)) = b(X ◦B) = 1 6= 3 =b(X). Thus b(B) = 1 but T does not preserves

the Boolean rank.
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3.2 Linear preservers of RSA(Bk)

Recall that

RSA(Bk) = { (X,Y ) ∈Mm,n(Bk)2| b(X + Y ) = b(X) + b(Y) }.

Example 3.2.1. We show that RSA(B2) is not an empty set.

Let B2 = P({a, b}) = {φ, {a}, {b}, {a, b}}. Consider two matrices X and Y over B2:

X =

[
{a} {a, b}
φ φ

]
=

[
{a, b}
φ

] [
{a} {a, b}

]
and

Y =

[
φ φ
{a, b} {b}

]
=

[
φ
{a, b}

] [
{a, b} {b}

]
.

Then b(X) = b(Y ) = 1 and

X + Y =

[
{a} {a, b}
{a, b} {b}

]
has Boolean rank 2 by Lemma 3.1.14. Thus (X,Y ) ∈ RSA(B2). That is RSA(B2) 6= φ.

We begin with some general observations on linear operators of special types that

preserve RSA(Bk).

Lemma 3.2.2. Let σ be a permutation of the set {(i, j)|i = 1, 2, . . . , m; j = 1, 2, . . . , n},

and T : Mm,n(Bk) → Mm,n(Bk) be a linear operator defined by T (Ei,j) = bi,jEσ(i,j) for

some nonzero scalars bi,j , 1 ≤ i ≤ m and 1 ≤ j ≤ n. If T preserves RSA(Bk), then T is

a (P,Q,B)-operator.

Proof. We examine the action of T on rows and columns of a matrix. Suppose that

the image of two cells are in the same line, but the cells are not, say, E and F are

cells such that b(E + F ) = 2 and b(T (E + F )) = 1. Then (E,F ) ∈ RSA(Bk) but

(T (E), T (F )) /∈ RSA(Bk), a contradiction since T preserves RSA(Bk). Thus T maps any
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line to a line. By Lemma 3.1.19, we obtain the result.

Lemma 3.2.3. Let T : Mm,n(Bk) → Mm,n(Bk)be a linear operator. If for some B =

(bi,j), where bi,j are nonzero scalars for all 1 ≤ i ≤ m and 1 ≤ j ≤ n, T (X) = X ◦ B

preserves RSA(Bk), then b(B) = 1. Moreover, T (X) = DXE for diagonal matrices D

and E of appropriate sizes.

Proof. If b(B) ≥ 2, then by Lemma 3.1.16, there is a 2 × 2 submatrix B[i, j|r, s] such

that b(B[i, j|r, s]) = 2. Let Y = Ei,r+Ej,r+Ei,s+Ej,s. Thus T (Y ) = bi,rEi,r+bj,rEj,r+

bi,sEi,s + bj,sEj,s = Z has Boolean rank 2 from b(B[i, j|r, s]) = 2. Then for q 6= r, s, we

have b(Ei,q+Y ) = 2 = b(Ei,q) + b(Y ), so that (Ei,q, Y ) ∈ RSA(Bk), while b(T (Ei,q+Y ))

= b(bi,qEi,q +Z) = 2 6= b(bi,qEi,q) + b(Z) = 1 + 2 = 3, a contradiction since T preserves

RSA(Bk). Thus b(B) = 1. Moreover, by Lemma 3.1.20, there exist diagonal matrices D

and E such that T (X) = DXE.

Theorem 3.2.4. Let T : Mm,n(Bk) → Mm,n(Bk) be a surjective linear operator. The

operator T preserves RSA(Bk) if and only if T is a (P,Q)-operator.

Proof. ⇒) If T is surjective, then by Theorem 3.1.17, we have that T is defined by a

permutation σ on the set {(i, j)|i = 1, 2, . . . ,m; j = 1, 2, . . . , n} such that T (Ei,j) = Eσ(i,j)

for all 1 ≤ i ≤ m and 1 ≤ j ≤ n. By Lemma 3.2.2, we have that T is a (P,Q, J)-operator.

Thus T is a (P,Q)-operator.

⇐) Assume that T is a (P,Q)-operator. For any (X,Y ) ∈ RSA(Bk), we have b(X+Y )

= b(X) + b(Y ). Thus

b(T (X) + T (Y )) = b(T (X + Y )) = b(P (X + Y )Q) = b(X + Y )

= b(X) + b(Y ) = b(PXQ) + b(PY Q) = b(T (X)) + b(T (Y )).

Hence the operator T preserves RSA(Bk).

30



Lemma 3.2.5. Let T : Mm,n(Bk) → Mm,n(Bk) be a linear operator. Then there is a

power of T which is idempotent.

Proof. Since Bk is finite, there are only finitely many linear operators from Mm,n(Bk)

into Mm,n(Bk). Thus the sequence {T, T 2, T 3, . . . , Tm, . . .} is finite for sufficiently large

n. That is, there exist integers N ≥ 1 and d ≥ 1 such that for m,n ≥ N with m ≡

n (mod d), Tm = Tn. Let p = Nd. Then 2p ≡ p(mod d). Hence (T p)2 = T 2p = T p.

That is, T p is idempotent.

Theorem 3.2.6. Let T : Mm,n(Bk) → Mm,n(Bk) be a linear operator. If T strongly

preserves RSA(Bk), then T is a (P,Q,B)-operator, where B ∈Mm,n(Bk).

Proof. By Lemma 3.2.5, there is a power of T which is idempotent. Say L = T p

with L2 = L. If X ∈ Mm,n(Bk) and (X,X) ∈ RSA(Bk), then b(X) = b(X + X) =

b(X) + b(X). Thus b(X) = 0, X = Om,n. Similarly, if (T (X), T (X)) ∈ RSA(Bk), then

T (X) = Om,n. Thus (X,X) ∈ RSA(Bk) if and only if (L(X), L(X)) ∈ RSA(Bk) since T

strongly preserves RSA(Bk). So, b(X) = 0 if and only if b(L(X)) = 0. That is, X = Om,n

if and only if L(X) = Om,n. Hence, if A 6= O, then we have L(A) 6= O since T strongly

preserves RSA(Bk). We examine the action of L on rows and columns. Assume that

L(Ri) is not dominated by Ri. Then there is some (r, s) such that Er,s ≤ L(Ri) while

Er,s 6≤ Ri. Then it is easy to see that

(Ri, aEr,s) ∈ RSA(Bk). (3.2.1)

Since Er,s ≤ L(Ri), we can find a matrix X = (xi,j) ∈Mm,n(Bk) with xr,s = 0 such that

L(Ri) = aEr,s +X for nonzero a in Bk. We have

L(Ri + aEr,s) = L(Ri) + L(aEr,s) = L2(Ri) + L(aEr,s)

= L(aEr,s +X) + L(aEr,s) = L(X) + L(aEr,s) + L(aEr,s)

= L(X) + L(aEr,s) = L(X + aEr,s) = L(L(Ri)) = L2(Ri) = L(Ri).

That is,
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b(L(Ri) + L(aEr,s)) = b(L(Ri + aEr,s)) = b(L(Ri)).

But if b(L(Ri)) + b(L(aEr,s)) = b(L(Ri) +L(aEr,s)) = b(L(Ri)), then b(L(aEr,s)) = 0.

Then L(aEr,s) = 0 and aEr,s = 0; which is impossible. Thus (L(Ri)), L(aEr,s) /∈RSA(Bk),

contradiction from (3.2.1), since T and L strongly preserves RSA(Bk). Therefore we

have established that L(Ri) ≤ Ri for all i. Similarly, L(Cj) ≤ Cj for all j. By con-

sidering that Ei,j is dominated by both Ri and Cj , we have that L(Ei,j) ≤ Ri and

L(Ei,j) ≤ Cj , and hence L(Ei,j) ≤ Ei,j . Since Bk is antinegative, T also maps a cell to

a weighted cell and T (J) has all nonzero entries. So, T induces a permutation σ on the

set {(i, j)|i = 1, 2, . . . ,m; j = 1, 2, . . . , n}. That is, T (Ei,j) = bi,jEσ(i,j) for some nonzero

scalars bi,j in Bk. By Lemma 3.2.2, T is a (P,Q,B)-operator.
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3.3 Linear preservers of RS1(Bk)

Recall that

RS1(Bk) = {(X,Y ) ∈Mm,n(Bk)2| b(X + Y ) = 1}.

Example 3.3.1. We show that RS1(B2) is not an empty set.

Consider two matrices X and Y over B2 = P({a, b}):

X =

[
{a} φ
{a} φ

]
and

Y =

[
{a} {a, b}
{a} {a, b}

]
.

Then b(X + Y ) = 1 and hence RS1(B2) 6= φ.

Theorem 3.3.2. Let T : Mm,n(Bk) → Mm,n(Bk) be a surjective linear operator. Then

T preserves RS1(Bk) if and only if T is a (P,Q)-operator.

Proof. If T is a surjective linear operator, by Theorem 3.1.17, we have that T (Ei,j) =

Eσ(i,j) for all 1 ≤ i ≤ m and 1 ≤ j ≤ n. It is easy to see that the weighted cells

αEi,j and βEr,s are in the same line if and only if b(αEi,j + βEr,s) = 1 if and only if

(αEi,j , βEr,s) ∈ RS1(Bk). If T preserves RS1(Bk), then (T (αEi,j), T (βEr,s)) ∈ RS1(Bk)

for (αEi,j , βEr,s) ∈ RS1(Bk). And hence b(T (αEi,j) + T (βEr,s)) = 1 which implies

T (αEi,j) and T (βEr,s) are weighted cells in the same line. Thus lines are mapped to

lines by T , and we have that T is a (P,Q,B)-operator by Lemma 3.1.19. Here we have

B = J from T (Ei,j) = Eσ(i,j). Thus T be a (P,Q)-operator.

Conversely let T be a (P,Q)-operator and consider any (X,Y ) ∈ RS1(Bk). Then

b(X + Y ) = 1. Thus

b(T (X) + T (Y )) = b(T (X + Y )) = b(P (X + Y )Q) = b(X + Y ) = 1.

That is, (T (X), T (Y )) ∈ RS1(Bk). Hence T preserves RS1(Bk).
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Theorem 3.3.3. Let T : Mm,n(Bk)→Mm,n(Bk) be a linear operator preserving RS1(Bk).

Then the following conditions are equivalent:

(a) T is bijective;

(b) T is injective;

(c) T is surjective;

(d) T strongly preserves RS1(Bk);

(e) T is a (P,Q)-operator.

Proof. (a), (b) and (c) are equivalent by Theorem 3.1.17.

(c)⇒(e) If T is a surjective linear operator preserving RS1(Bk), then T is a (P,Q)-

operator by Theorem 3.3.2.

(e)⇒(d) Assume that T is a (P,Q)-operator. Then (X,Y ) ∈ RS1(Bk) if and only if

b(X + Y ) = 1 if and only if b(P (X + Y )Q) = 1 if and only if b(T (X + Y )) = 1 if and

only if b(T (X) + T (Y )) = 1 if and only if (T (X), T (Y )) ∈ RS1(Bk). That is T strongly

preserves RS1(Bk).

(d)⇒(c) Suppose T strongly preserves RS1(Bk). We claim that T is surjective. As-

sume that T is not surjective. Then, by Theorem 3.1.17, T is not injective and hence T

is not injective on the set of all mn cells in Mm,n(Bk). Therefore there exists two distinct

cells Ei,j , Eh,l ∈ Mm,n(Bk) such that T (Ei,j) = T (Eh,l) = Er,s. Then we have 3 cases as

follows:

Case 1) Two cells in distinct lines are mapped to a cell. That is T (Ei,j) = Er,s =

T (Eh,l) with i 6= h, j 6= l. Let X = Ei,j , Y = Eh,l. Then b(X + Y ) = 2, but

b(T (X) + T (Y )) = b(Er,s) = 1; contradicts the fact that T strongly preserves RS1(Bk).

Case 2) Two cells in a row are mapped to a cell. That is T (Ei,j) = Er,s = T (Ei,l)

with j 6= l. Since T strongly preserves RS1(Bk), ith row are mapped to rth row or sth

column and jth column are mapped to rth row or sth column. Say T (Eu,j) = Ev,s with

i 6= u. Let X = Ei,j + Ei,l and Y = Eu,j . Then b(X + Y ) = 2, but b(T (X) + T (Y )) =

b(Er,s + Ev,s) = 1; contradicts the fact that T strongly preserves RS1(Bk).

Case 3) Two cells in a column are mapped to a cell. We have a similar contradiction

as in the Case 2). Therefore these 3 cases implies that T is injective and hence T is
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surjective, by Theorem 3.1.17.
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3.4 Linear preservers of RSD(Bk)

Recall that

RSD(Bk) = {(X,Y ) ∈Mm,n(Bk)2| b(X + Y ) = |b(X)− b(Y)|}.

Example 3.4.1. We show that RSD(Bk) is not an empty set.

Consider

X =

[
1 1
1 0

]
, Y =

[
0 0
0 1

]
∈M2,2(Bk).

Then b(X + Y ) = 1, b(X) = 2, b(Y ) = 1. Hence b(X + Y ) = | b(X) − b(Y ) |. Thus

RSD(Bk) contains (X,Y ) ∈M2,2(Bk)2 and hence RSD(Bk) is not an empty set.

Lemma 3.4.2. Let σ be a permutation of the set {(i, j)|i = 1, 2, . . . , m; j = 1, 2, . . . , n},

and T : Mm,n(Bk)→ Mm,n(Bk) be defined by T (Ei,j) = bi,jEσ(i,j) with nonzero bi,j ∈ Bk

for all 1 ≤ i ≤ m and 1 ≤ j ≤ n, and min{m,n} ≥ 3. If T preserves RSD(Bk), then T

maps a line to a line.

Proof. Since the sum of three weighted distinct cells has Boolean rank at most 3, it

follows that b(T (E1,1 +E1,2 +E2,1)) ≤ 3. Now, for X = E1,1 +E1,2 +E2,1 and Y = E2,2,

we have that (X,Y ) ∈ RSD(Bk), and the image of Y under T is a single weighted cell,

and hence b(T (Y )) = 1. Now, if b(T (X)) = 3, then T (X) is the sum of three weighted

cells that lie in distinct lines. Thus T (X +Y ) must have Boolean rank 3 or 4, and hence

(T (X), T (Y )) /∈ RSD(Bk), a contradiction. If b(T (X)) = 1, then T (X + Y ) 6= O and

(T (X), T (Y )) /∈ RSD(Bk), a contradiction. Consequently we have that b(T (X)) = 2,

and hence b(T (X + Y )) = 1 from (T (X), T (Y )) ∈ RSD(Bk). However it is obvious that

if a sum of four cells has the Boolean rank 1, then they lie either in a line or in the

intersection of two rows and two columns. The matrix T (X + Y ) is a sum of four cells.

These cells do not lie in a line since b(T (X)) = 2. Thus T (X + Y ) must be the sum of

four cells which lie in the intersection of two rows and two columns. Similarly, for any

i, j, h and l, T (Ei,j +Ei,h +El,j +El,h) must lie in the intersection of two rows and two
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columns. It follows that any two rows must be mapped into two lines. By the bijectivity

of T , if some pair of two rows is mapped into two rows (resp. columns), any pair of two

rows is mapped into two rows(resp. columns). Similarly, if some pair of two columns is

mapped into two rows(resp. columns), any pair of two columns is mapped into two rows

(resp. columns). Now, the image of three rows is contained in three lines, two of which

are the image of two rows, thus every row is mapped into a line. Thus T maps a line to

a line.

Theorem 3.4.3. Let m,n ≥ 2 and T be a surjective linear operator on Mm,n(Bk). Then

T preserves RSD(Bk) if and only if T is a (P,Q)-operator.

Proof. ⇐) Assume that T is surjective and a (P,Q)-operator. For any (X,Y ) ∈

RSD(Bk), we have

b(X + Y ) = | b (X)− b(Y )|.

Thus

b(T (X) + T (Y )) = b(T (X + Y )) = b(P (X + Y )Q) = b(X + Y )

= | b(X)− b(Y )| = | b(PXQ)− b(PY Q)| = | b(T (X))− b(T (Y ))|.

Hence ((T (X), T (Y )) ∈RSD(Bk). Therefore T preserves RSD(Bk).

⇒) Assume that T preserves RSD(Bk). Since T is a surjective linear operator, there

exists permutation σ on {(i, j)|i = 1, 2, . . . , m; j = 1, 2, . . . , n} such that T (Ei,j) = Eσ(i,j)

for all 1 ≤ i ≤ m and 1 ≤ j ≤ n by Theorem 3.1.17. Hence T maps any line to a line by

Lemma 3.4.2. Therefore T is a (P,Q)-operator by Lemma 3.1.19 since all the entries of

B are 1.
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3.5 Linear preservers of RMM(Bk)

Recall that

RMM (Bk) = {(X,Y ) ∈Mn(Bk)2| b(XY ) = min{b(X),b(Y)}}.

Example 3.5.1. We show that RMM (Bk) is not an empty set.

Consider

X = Y =

[
1 1
1 1

]
∈M2,2(Bk).

Then b(XY ) = 1, b(X) = 1 and b(Y ) = 1. Hence b(XY ) = min(b(X), b(Y )). Thus

RMM (Bk) contains (X,Y ) ∈M2,2(Bk)2 and hence RMM (Bk) is not an empty set.

Theorem 3.5.2. Let T : Mn(Bk) → Mn(Bk)be a linear operator. Then T is surjective

and preserves RMM (Bk) if and only if there exists a permutation matrix P such that

T (X) = PXP T for all X ∈Mn(Bk).

Proof. ⇐) Let T : Mn(Bk) → Mn(Bk)be defined by T (X) = PXP T and (X,Y ) ∈

RMM (Bk). Then b(XY ) = min{b(X), b(Y )} and hence

b(T (X)T (Y )) = b(PXP TPY P T ) = b(PXY P T ) = b(XY ) = min{b(X),b(Y )}.

Thus (T (X), T (Y )) ∈ RMM (Bk). That is T preserves RMM (Bk).

⇒) Assume that T is surjective and preserves RMM (Bk). By Theorem 3.1.17, we

have that T (Ei,j) = Eσ(i,j) for a permutation σ on {(i, j)|1 ≤ i, j ≤ n}. Consider

(Ei,j , Ej,h) ∈ RMM (Bk) for all h. Then b(T (Ei,j)T (Ej,h)) = min{b(T (Ei,j), b(T (j,h))} =

1, but T (Ei,j)T (Ej,h) = Eσ(i,j)Eσ(j,h). It follows that Eσ(j,h) is in the same row as Eσ(j,1)

for any h = 1, 2, . . . , n. That is, T maps rows to rows; similarly T maps columns to

columns. By Lemma 3.1.19 with bi,j = 1, it follows that T (X) = PXQ for some permu-

tation matrices P and Q. Let us show that Q = P T . Indeed T (Ei,j) = Eπ(i),τ(j), where

π is the permutation corresponding to P and τ is the permutation corresponding to QT .

But (E1,i, Ei,1) ∈ RMM (Bk); thus (Eπ(1),τ(i), Eπ(i),τ(1)) ∈ RMM (Bk) and hence π = τ .

Therefore Q = P T .
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3.6 Linear preservers of RM0(Bk)

Recall that

RM0(Bk) = {(X,Y ) ∈Mn(Bk)2| b(XY ) = 0}.

Example 3.6.1. We show that RM0(Bk) is not an empty set.

Consider X = E1,2 and Y = E1,1. Then (X,Y ) ∈ RM0(Bk). Thus RM0(Bk) is not

an empty set.

Theorem 3.6.2. Let T : Mn(Bk) → Mn(Bk) be a nonsingular (T (X) = O ⇒ X = O)

linear operator. Assume that T (J) ≥ PJ , a permutation matrix. Then T preserves

RM0(Bk) if and only if there exists a permutation matrix P such that T (X) = PXP T

for all X ∈Mn(Bk).

Proof. ⇐) Let T : Mn(Bk) → Mn(Bk)be defined by T (X) = PXP T and (X,Y ) ∈

RM0(Bk). Then b(XY ) = 0 and hence

b(T (X)T (Y )) = b(PXP TPY P T ) = b(PXY P T ) = b(XY ) = 0.

Thus (T (X), T (Y )) ∈ RM0(Bk). That is, T preserves RM0(Bk).

⇒) Assume that T preservesRM0(Bk). Since T (J) ≥ PJ , a permutation matrix, there

are n different cells whose images have nonzero entries in every column. Assume that

these cells can be chosen such that their nonzero entries are in fewer than n columns,

say X = E1 + E2 + . . . + En is the sum of n such cells and X has no nonzero entry

in column h. Then (X,Rh) ∈ RM0(Bk) and hence (T (X), T (Rh)) ∈ RM0(Bk), since

T preserves RM0(Bk). But T (X) has nonzero entry in every column, which implies

T (X)T (Rh) 6= O, a contradiction. Thus, if T maps a column into two columns, then

we have a contradiction from above. Furthermore, if T maps two columns into one

column, there must be a column whose image is at least two column from T (J) ≥ PJ

for some permutation matrix PJ . Thus in this case, we also have a contradiction as

above. Consequently T maps a column into a column and all columns into all columns
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respectively. Hence T induces a permutation on the set of columns. Similarly T induces

a permutation on the set of rows, i.e., T (X) = P (X ◦ B)Q for all X ∈ Mn(Bk) and

some permutation matrices P and Q. Let us show that Q = P T . Indeed we have that

T (Ei,j) = bi,jEπ(i),τ(j). If Q 6= P T , then π 6= τ . Thus, for some i, we have π(i) 6= τ(i)

and hence for some j 6= i, we have π(j) = τ(i). Here (Ei,i, Ej,i) ∈ RM0(Bk) but

T (Ei,i)T (Ej,i) = bi,ibj,iEπ(i),τ(i)Eπ(j),τ(i) = bi,ibj,iEπ(i),τ(i) 6= O,

i.e., (T (Ei,i), T (Ej,i)) /∈ RM0(Bk); a contradiction. Thus π = τ and hence T (X) =

P (X ◦B)P T for all X ∈Mn(Bk). Since T is nonsingular, all entries of B are nonzero and

not zero divisors. But every elements α in Bk is a zero divisor if α 6= 1. Thus bi,j = 1.

Hence B = J . Consequently T (X) = PXP T .

Corollary 3.6.3. Let T : Mn(Bk) → Mn(Bk) be a surjective linear operator. Then T

preserves RM0(Bk) if and only if there exists a permutation matrix P such that T (X) =

PXP T for all X ∈Mn(Bk).

Proof. If T be a surjective linear operator, then T is a bijective by Theorem 3.1.17.

Thus T is a nonsingular. Hence, T preserves RM0(Bk) if and only if T (X) = PXP T by

Theorem 3.6.2.

Corollary 3.6.4. Let T : Mn(Bk) → Mn(Bk) be a linear operator. Then T strongly

preserves RM0(Bk) if and only if there exists a permutation matrix P such that T (X) =

PXP T for all X ∈Mn(Bk).

Proof. ⇐) It is easy to see that operator of the form T (X) = PXP T strongly preserves

RM0(Bk).

⇒) Suppose that T strongly preserves RM0(Bk). We claim that (1) T (J) ≥ PJ , some

permutation matrix, i.e., T (J) has a nonzero element in each row and each column and

(2) T is a nonsingular operator. Then we apply Theorem 3.6.2.

Claim (1): T (J) ≥ PJ . Assume, on the contrary, that T (J) has a zero column (For

the case of a zero row, the proof is quite similar). Up to a multiplication with permutation
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matrices, we may assume that there are nonzero elements in columns 1, 2, . . . t of T (J)

and all elements in the column (t+ 1), . . . , n are zero. Then there exist column matrices

Cj1 , Cj2 , . . . , Cjs whose images dominate all nonzero entries in columns 1 through t. Let

l 6= jh for all h, 1 ≤ h ≤ s. Thus (Cj1 , Cj2 , . . . , Cjs)Rl = O. Since T strongly preserves

RM0(Bk), it follows that T (Cj1 , Cj2 , . . . , Cjs)T (Rl) = O. Then all the entries in rows 1

through t of T (Rl) are zero, since in each of the first t columns of T (Cj1 , Cj2 , . . . , Cjs)

there is a nonzero element. Therefore T (El,l) has nonzero entries only in rows t+1, . . . , n

and only in columns 1, 2, . . . t. Thus T (El,l)
2 = O, i.e., (T (El,l), T (El,l)) ∈ RM0(Bk). This

is a contradiction since T strongly preserves RM0(Bk) and (El,l, El,l) /∈ RM0(Bk). Thus

T (J) has neither a zero row nor a zero column, that is T (J) ≥ PJ .

Claim (2): T is a nonsingular operator. Assume that there exists O 6= X such that

T (X) = O. Then (T (X), T (I)) ∈ RM0(Bk). But (X, I) /∈ RM0(Bk). This contradicts

the fact that T strongly preserves RM0(Bk). Thus T is a nonsingular.

Hence Theorem 3.6.2 is applicable, since claims (1) and (2) satisfy the condition in

Theorem 3.6.2. Consequently we obtain T (X) = PXP T for all X ∈ Mn(Bk) and for

some permutation matrix P .
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3.7 Linear preservers of RM1(Bk)

Recall that

RM1(Bk) = {(X,Y ) ∈Mn(Bk)2| b(XY ) = 1}.

Example 3.7.1. We show that RM1(Bk) is not an empty set.

Consider X = E1,2 + E2,1 and Y = E2,2. Then XY = E1,2 has Boolean rank 1 and

hence (X,Y ) ∈ RM1(Bk). Thus RM1(Bk) is not an empty set.

Lemma 3.7.2. Let T : Mn(Bk) → Mn(Bk) be a linear operator defined by T (Ei,j) =

bi,jEσ(i,j) for some permutation σ of {(i, j)|1 ≤ i, j ≤ n} and nonzero scalars bi,j ∈ Bk.

Then T strongly preserves RM1(Bk) if and only if there exists a permutation matrix P

such that T (X) = PXP T for all X ∈Mn(Bk).

Proof. ⇐) Clearly linear operators of the form T (X) = PXP T strongly preserves

RM1(Bk).

⇒) Assume that T strongly preserves RM1(Bk). Consider (Ei,i, Ei,h) ∈ RM1(Bk) for

all h = 1, . . . , n. If T (Ei,i) = bi,iEr,s for some r and s, then T (Ei,h) = bi,hEs,τ(h), where τ

is some permutation, since (T (Ei,i), T (Ei,h)) ∈ RM1(Bk). That is, T (Ri) ≤ Rs. Thus T

induces a permutation on the rows. Similarly T induces a permutation on the columns.

Thus, for some permutations π and τ , T (Ei,j) = bi,jEπ(i),τ(j). Now b(T (Ei,i)T (Ei,j))

must be 1 and hence π(i) = τ(i). Therefore π = τ and we have that T (X) = P (X ◦B)P T

for all X ∈ Mn(Bk), where P is the permutation corresponding to π. Now, if B 6= J ,

then bp,q 6= 1 for some (p, q). But then, (Ei,i + Ei,q + Ep,i + bp,qEp,q, I) /∈ RM1(Bk),

while (Ei,i +Ei,q +Ep,i +Ep,q, I) ∈ RM1(Bk). However T (Ei,i +Ei,q +Ep,i + bp,qEp,q) =

T (Ei,i+Ei,q+Ep,i+Ep,q), which contradicts the fact that T strongly preserves RM1(Bk).

Thus B = J and hence T (X) = PXP T for all X ∈Mn(Bk).
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Theorem 3.7.3. Let T : Mn(Bk) → Mn(Bk) be a surjective linear operator. Then T

strongly preserves RM1(Bk) if and only if there exists a permutation matrix P such that

T (X) = PXP T for all X ∈Mn(Bk).

Proof. ⇒) Assume that T strongly preserves RM1(Bk). Since T is surjective, we have

T (Ei,j) = Eσ(i,j) for all i and j with 1 ≤ i, j ≤ n by Theorem 3.1.17. By Lemma 3.7.2

with bi,j = 1, we obtain the result.

⇐) If T (X) = PXP T for all X ∈Mn(Bk) and some permutation matrix P , then

T (XY ) = P (XY )P T = PXP TPY P T = T (X)T (Y ).

Thus

b(T (X)T (Y )) = b(T (XY )) = b(PXY P T ) = b(XY ).

Hence (X,Y ) ∈ RM1(Bk) if and only if (T (X), T (Y )) ∈ RM1(Bk). Therefore T strongly

preserves RM1(Bk).
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3.8 Linear preservers of RMA(Bk)

Recall that

RMA(Bk) = {(X,Y ) ∈Mn(Bk)2| b(XY ) = b(X) + b(Y)− n}.

Example 3.8.1. We show that RMA(Bk) is not an empty set.

Consider X = In and Y = E1,1. Then b(XY ) = b(E1,1) = 1 and hence b(XY ) =

b(X) + b(Y )− n. That is (X,Y ) ∈ RMA(Bk). Thus RMA(Bk) is not an empty set.

Theorem 3.8.2. Let T : Mn(Bk) → Mn(Bk), n > 4, be a surjective linear operator.

Then T preserves RMA(Bk) if and only if there exists a permutation matrix P such that

T (X) = PXP T for all X ∈Mn(Bk).

Proof. ⇐) If T (X) = PXP T for all X ∈Mn(Bk) and some permutation matrix P , then

T (XY ) = P (XY )P T = PXP TPY P T = T (X)T (Y )

for all X, Y ∈Mn(Bk). Thus for all (X,Y ) ∈ RMA(Bk),

b(T (X)T (Y )) = b(T (XY )) = b(PXY P T ) = b(XY ) = b(X) + b(Y )− n

= b(PXP T ) + b(PY P T )− n = b(T (X)) + b(T (Y ))− n .

That is, (T (X), T (Y )) ∈ RMA(Bk). Hence T preserves RMA(Bk).

⇒) Assume that T preserves RMA(Bk). Since T is surjective, by Theorem 3.1.17

we have that T (Ei,j) = Eσ(i,j) for some permutation σ. If b(A) = n, then (Ei,j , A) ∈

RMA(Bk). Since b(T (Ei,j)) = 1 by Theorem 3.1.17 and T preserves RMA(Bk), it follows

that b(T (A)) = n. Therefore T maps the set of matrices with Boolean rank n to itself.

If the preimage of a row is not dominated by any line, then there exist cells Er,s and

Ep,q such that T (Er,s + Ep,q) ≤ Ei,h + Ei,l with r 6= p, s 6= q. By extending Er,s + Ep,q

to a permutation matrix by adding n− 2 cells, we find a matrix which is the image of a

permutation matrix but is dominated by n − 1 lines; a contradiction since T maps the

set of matrices with Boolean rank n to itself. Thus the preimage of every row is a row or
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column and, similarly, the preimage of every column is a row or a column. Hence T maps

any line to a line. By Lemma 3.1.19, we have that T is a (P,Q,B)-operator with B = J .

That is, T is a (P,Q)-operator. Since (E1,1, E2,1 + E3,2 + . . . + En,n−1) ∈ RMA(Bk)

while (E1,1, E1,2 + E2,3 + . . . + En−1,n) /∈ RMA(Bk), we have that the transpose op-

erator does not preserve RMA(Bk), thus there exist permutation matrices P and Q

such that T (X) = PXQ. Without loss of generality, we may assume that P = I. If

Q 6= I, we assume that Q corresponds to the permutation π and π(1) 6= 1. Without

loss of generality, T (E1,1) = E1,2. Then (E1,1, E2,2 + E3,3 + . . . + En,n) ∈ RMA(Bk),

while (T (E1,1), T (E2,2 + E3,3 + . . . + En,n)) /∈ RMA(Bk) since (E1,2)(E2,π(2) + E3,π(3) +

. . . + En,π(n)) = E1,2E2,π(2) 6= O. This contradiction gives that Q = P T and hence

T (X) = PXP T .
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3.9 Linear preservers of RM3(Bk)

Recall that

RM3(Bk) = {(X,Y, Z) ∈Mn(Bk)3|b(XY Z) + b(Y ) = b(XY ) + b(Y Z)}.

Example 3.9.1. We show that RM3(Bk) is not an empty set.

Consider X = E1,1, Y = E1,2 and Z = E2,3. Then b(XY Z) = b(E1,3) = 1, b(XY ) =

b(E1,2) = 1 and b(Y Z) = b(EE1,3) = 1. Thus (X,Y, Z) ∈ RM3(Bk) and hence RM3(Bk)

is not an empty set.

Lemma 3.9.2. Let T : Mn(Bk) → Mn(Bk), n > 4, be a surjective linear operator. If T

preserves RM3(Bk), then there exists a permutation matrix P such that T (X) = PXP T

for all X ∈Mn(Bk).

Proof. By Theorem 3.1.17, we have that T (Ei,j) = Eσ(i,j) for a certain permutation σ

on {(i, j)|1 ≤ i, j ≤ n}. It can be easily proved that (Ei,j , Ej,h, Eh,l) ∈ RM3(Bk) for all l

and arbitrary fixed i, j and h. Thus

b(T (Ei,j)T (Ej,h)) + b(T (Ej,h)T (Eh,l))

= b(T (Ei,j)T (Ej,h)T (Eh,l)) + b(T (Ej,h)). (3.9.1)

Now, by Theorem 3.1.17, we may assume that T (Ei,j) = Ep,q, T (Ej,h) = Er,s, T (Eh,l) =

Eu,v for subscripts p, q, r, s, u, and v. Since b(Er,s) = 1 6= 0, it follows from equality

(3.9.1) that either q = r or s = u or both. If, for all l = 1, . . . , n, both equalities

hold, then for fixed i, j, and h, all matrices T (Eh,l), l = 1, . . . , n, have their nonzero

elements lying in one row. Thus T maps rows to rows. Similarly, it is easy to see

that T maps columns to columns. Assume now that there exists an index l such that

only one of the above equalities holds for the triple (Ei,j , Ej,h, Eh,l). Without loss of

generality, assume that s = u and q 6= r. Thus for arbitrary m, 1 ≤ m ≤ n, one has

that (Ei,j , Ej,h, Eh,m) ∈ RM3(Bk). Let T (Eh,m) = Ew,z for certain w and z depending
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on h and m. In the above notation, (Ep,q, Er,s, Ew,z) ∈ RM3(Bk) since T preserves

RM3(Bk). Since q 6= r, it follows that w = s for any w. Thus, in this case, we also

obtain that rows are transformed to rows. By the same arguments with the first matrix,

it is easy to see that columns are transformed to columns. In the other case (s 6= u

and q = r), one obtains similarly that rows are transformed to rows and columns to

columns. By Lemma 3.1.19, it follows that there exist permutation matrices P and Q

such that T (X) = P (X ◦ B)Q with B = J . (I.e., T (X) = PXQ for all X ∈ Mn(Bk).)

In order to show that Q = P T it suffices to note that (Ei,j , Ej,j , Ej,i) ∈ RM3(Bk). Let π

be the permutation corresponding to P and τ be the permutation corresponding to QT .

Therefore

(T (Ei,j), T (Ej,j), T (Ej,i)) = (PEi,jQ,PEj,jQ,PEj,iQ)

= (Eπ(i),τ(j)), Eπ(j),τ(j), Eπ(j),τ(i)) ∈ RM3(Bk).

Thus π = τ and Q = P T .

Theorem 3.9.3. Let T : Mn(Bk) → Mn(Bk), n > 4, be a surjective linear operator.

Then T preserves RM3(Bk) if and only if T (X) = PXP T for all X ∈Mn(Bk), where P

is a permutation matrix.

Proof. ⇐) If (X,Y, Z) ∈ RM3(Bk), then b(XY Z) + b(Y ) = b(XY ) + b(Y Z). Thus

b(T (X)T (Y )T (Z)) + b(T (Y )) = b(PXP TPY P TPZP T ) + b(PY P T )

= b(PXY ZP T ) + b(PY P T ) = b(XY Z) + b(Y ).

Similarly

b(T (X)T (Y )) + b(T (Y )T (Z)) = b(PXP TPY P T ) + b(PY P TPZP T )

= b(PXY P T ) + b(PY ZP T ) = b(XY ) + b(Y Z).

Hence

b(T (X)T (Y )T (Z)) + b(T (Y )) = b(T (X)T (Y )) + b(T (Y )T (Z)).

That is, (T (X), T (Y ), T (Z)) ∈ RM3(Bk). Therefore T preserves RM3(Bk).

47



⇒) Assume that T preserves RM3(Bk). Then, by Lemma 3.9.2, T has the form

T (X) = PXP T for some permutation matrix P .

As a concluding remark, we have characterized the linear operators that preserve

the extreme sets of matrix pairs over general Boolean algebra which come from certain

Boolean rank inequalities.
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<국문초록>

부울 行列들의 定規性과

 階數 不等式의 極値集合 保存者

  本 論文에서는 1887年 以後 100년이 넘도록 硏究되고 있는 線形保存

者 問題의 一環으로 두 가지 主題를 硏究하였다.

  한 가지 主題는 二項 부울 代數 上의 行列의 定規性을 保存하는 線形演

算者를 糾明하는 硏究이다. 한 行列 이 定規行列이라는 定義는 적당한 

行列 가 存在하여 을 滿足하는 것이다. 本 硏究에서는 定規行

列의 性質들을 調査 分析하여 그 特性들을 밝혔다. 그리고 定規行列 를 

線形演算者로 보내어 다시 定規行列이 되게 할 境遇에 그 線形演算者의 

形態는 적당한 可逆行列 와 가 存在하여    또는 

     形態로 糾明됨을 밝혔고, 이를 부울 行列의 特性을 活用하

여 證明하였다.

  다른 하나의 主題는 一般的인 부울 代數 上의 行列 雙들을 保存하는 線

形演算者를 糾明하는 硏究이다. 一般的인 부울 代數 上의 集合에서 두 行

列의 合과 곱에 대하여 부울 階數의 값에 관한 不等式을 分析 調査하였

다. 그 結果 그들 사이에 成立하는 階數 不等式들을 調査하여 그 不等式

들이 等式이 되는 경우의 行列 짝들로 構成되는 8가지 極値 集合들을 構

成하였다. 
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  以上의 行列 짝들의 集合을 線形演算者로 보내어 그 集合의 性質들을 

保存하는 線形演算者를 硏究하여 그 形態를 糾明하였다. 곧, 이러한 行列 

짝들의 集合을 保存하는 線形演算者의 形態는    , 

     또는    와 같은 形態로 나타남을 보이고, 이

들을 證明하였다. 그리고 이 線形演算者와 同値가 되는 條件들을 찾고, 이 

條件들이 同値가 됨을 證明하였다.
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