ccreative

 commons

 commons}
$\begin{array}{lllllllllll}\text { C } & \mathrm{O} & \mathrm{M} & \mathrm{M} & \mathrm{O} & \mathrm{N} & \mathrm{S} & \mathrm{D} & \mathrm{E} & \mathrm{E} & \mathrm{D}\end{array}$

저작자표시-비영리-변경금지 2.0 대한민국
이용자는 아래의 조건을 따르는 경우에 한하여 자유롭게

- 이 저작물을 복제, 배포, 전송, 전시, 공연 및 방송할 수 있습니다.

다음과 같은 조건을 따라야 합니다:

저작자표시. 귀하는 원저작자를 표시하여야 합니다.

비영리. 귀하는 이 저작물을 영리 목적으로 이용할 수 없습니다.

- 귀하는, 이 저작물의 재이용이나 배포의 경우, 이 저작물에 적용된 이용허락조건 을 명확하게 나타내어야 합니다.
- 저작권자로부터 별도의 허가를 받으면 이러한 조건들은 적용되지 않습니다.

저작권법에 따른 이용자의 권리는 위의 내용에 의하여 영향을 받지 않습니다.

이것은 이용허락규약(Legal Code)을 이해하기 숩게 요약한 것입니다.

$$
\text { Disclaimer } \square
$$

c)Collection

博士學位論文

A study on the effect

済州大學校 大學院
敬 學 1 科
姜 炅 勳

2011年 2月

A study on the effect

Kyeong-Hun Kang
(Supervised by professor Yong-Sik Yun)

A thesis submitted in partial fulfillment of the requirement for the degree of Doctor of Science

This thesis has been examined and approved.

Department of Mathematics
GRADUATE SCHOOL
CHEJU NATIONAL UNIVERSITY

이펙트에 대한 研究

指導教授 尹 龍 植

姜 吕 勳

이 論文을 理學 博土學位 論文으로 提出함

2010年 12月

美炅勳의 理學 博士學位 論文을 認准함

濟州大學校 大學院

CONTENTS

Abstract(English)

1. Introduction 1
2. Preliminaries 3
3. σ-morphism on the set of effects
3.1 The basic properties of σ-morphism on the set of effects8
3.2 The continuity of σ-morphism 134. The mean value and variance of one-sided fuzzyset
4.1 One-sided fuzzy sets 19
4.2 The mean value and variance of one-sided fuzzy sets 23
References 32Abstract(Korean)Acknowledgements(Korean)

< Abstract>

A study on the effect

We introduce the concepts of effects (or called fuzzy events) and observable (or called fuzzy random variable) as the generalizations of event and random variable, respectively. Also, we introduce the concept of sigmamorphism and we prove some basic properties and continuity of sigmamorphism as a probability measure on the set of effects. There are various types of mean value and variance for fuzzy sets. We study mean value and variance defined by Christer Carlsson and Robert Fullér. For two independent random variables A and B, the expectation of $A B$ equals the product of two expectations of A and B. We investigate the corresponding property for independence which is one-sided fuzzy set. We show that the mean value of product $A B$ of two one-sided fuzzy sets A and B equals the product of two mean values of one-sided fuzzy sets A and B. And, we calculate the possibilistic mean value, variance and covariance of one-sided fuzzy sets and their products.

1. Introduction

Since L. A. Zadeh introduced the concept of fuzzy sets, the theory of fuzzy sets has been developed in various aspects. In some senses, many theories in fuzzy mathematics can be considered as a generalization of the original theory. In probability theory, many researchers have tried to generalize the concepts of events and random variables in probability theory.

In probability theory, the imprecision comes from our incomplete knowledge of the system but the random variables(measurements) still have precise values. But, in fuzzy theory, we also have an imprecision in our measurements, and so random variables must be replaced by fuzzy random variables and events by fuzzy events. In this sense, S. Gudder introduced the concepts of effects(fuzzy events), observable(fuzzy random variable) and their distribution. Also, he introduced the concept of σ-morphism on the set of effects.

In section 2, we introduced the basic concepts of fuzzy sets. And we introduced the concept of fuzzy numbers and the operations(addition, subtraction, multiplication and division) for them. Especially, we introduced the concepts of triangular fuzzy numbers, trapezoidal fuzzy numbers and quadratic fuzzy numbers and the results of four operations for these fuzzy numbers.

In section 3, we introduced the concept of effect, observable and σ morphism as a probability measure on the set of effects and some basic properties of σ-morphism. And we proved some properties about σ morphism. The main theorem in section 3 is the continuity of σ-morphism
that can be considered as a generalization of the continuity of probability measure.

In section 4, we introduced the concepts of possibilistic mean value and variance of fuzzy numbers defined by C. Carlsson and R. Fullér [7] and calculate the mean value and variance of some special fuzzy numbers introduced in section 2. To develop our calculations, we define the concepts of one-sided fuzzy set. The main result in section 4 is that, in some special case, the mean of the product of two fuzzy sets is the product of means of each fuzzy sets. This result can be considered as the similar result which is well-known in the independence of events in probability theory.

2. Preliminaries

Let X be a set. A classical subset A of X is often viewed as a characteristic function μ_{A} from X to $\{0,1\}$ such that $\mu_{A}(x)=1$ if $x \in A$, and $\mu_{A}(x)=0$ if $x \notin A .\{0,1\}$ is called a valuation set. The following definition is a generalization of this notion.

Definition 2.1. A fuzzy set A on X is a function from X to the interval $[0,1]$. The function is called the membership function of A.

Let A be a fuzzy set on X with a membership function μ_{A}. Then A is a subset of X that has no sharp boundary. A is completely characterized by the set of pairs

$$
A=\left\{\left(x, \mu_{A}(x)\right) \mid x \in X\right\}
$$

Elements with a zero degree of membership are normally not listed.
If X is a finite set $\left\{x_{1}, \cdots, x_{n}\right\}$, a fuzzy set A on X is expressed as

$$
A=\mu_{A}\left(x_{1}\right) / x_{1}+\cdots+\mu_{A}\left(x_{n}\right) / x_{n}=\sum_{i=1}^{n} \mu_{A}\left(x_{i}\right) / x_{i} .
$$

If X is not finite, we write

$$
A=\int_{X} \mu_{A}(x) / x .
$$

Two fuzzy sets A and B are said to be equal, denoted by $A=B$, if and only if $\mu_{A}(x)=\mu_{B}(x)$, for all $x \in X$.

Definition 2.2. A γ-level set of a fuzzy set A on \mathbb{R} is defined by $[A]^{\gamma}=$ $\left\{x \in \mathbb{R} \mid \mu_{A}(x) \geq \gamma\right\}$ if $\gamma>0$ and $[A]^{\gamma}=\operatorname{cl}\left\{x \in \mathbb{R} \mid \mu_{A}(x)>\gamma\right\}$ if $\gamma=0$.

Definition 2.3. A fuzzy set A on \mathbb{R} is convex if

$$
\mu_{A}\left(\lambda x_{1}+(1-\lambda) x_{2}\right) \geq \min \left(\mu_{A}\left(x_{1}\right), \mu_{A}\left(x_{2}\right)\right)
$$

for all x_{1}, x_{2} in \mathbb{R} and λ in $[0,1]$.

Definition 2.4. A convex fuzzy set A on \mathbb{R} is called a fuzzy number if (1) there exists exactly one $x_{0} \in \mathbb{R}$ such that $\mu_{A}\left(x_{0}\right)=1$, (2) $\mu_{A}(x)$ is piecewise continuous.

Definition 2.5. A triangular fuzzy number is a fuzzy set A having membership function

$$
\mu_{A}(x)=\left\{\begin{array}{lll}
0 & \text { if } \quad x<a-\alpha, a+\beta \leq x \\
(x-a+\alpha) / \alpha & \text { if } \quad a-\alpha \leq x<a \\
(a+\beta-x) / \beta & \text { if } \quad a \leq x<a+\beta
\end{array}\right.
$$

The above triangular fuzzy set is denoted by $A=(\alpha, a, \beta)$.

Definition 2.6. A quadratic fuzzy number is a fuzzy set A having membership function

$$
\mu_{A}(x)=\left\{\begin{array}{lll}
0 & \text { if } \quad x<\alpha, \beta \leq x \\
-a(x-\alpha)(x-\beta)=-a(x-k)^{2}+1 & \text { if } \quad \alpha \leq x<\beta
\end{array}\right.
$$

where $a>0$. The above quadratic fuzzy set is denoted by $A=[\alpha, k, \beta]$.

Definition 2.7. A fuzzy set A on \mathbb{R} having membership function

$$
\mu_{A}(x)= \begin{cases}0, & x<a_{1}, a_{4} \leq x \\ \frac{x-a_{1}}{a_{2}-a_{1}}, & a_{1} \leq x<a_{2} \\ 1, & a_{2} \leq x<a_{3} \\ \frac{a_{4}-x}{a_{4}-a_{3}}, & a_{3} \leq x<a_{4}\end{cases}
$$

is called a trapezoidal fuzzy set. The above trapezoidal fuzzy set is denoted by $A=\left(a_{1}, a_{2}, a_{3}, a_{4}\right)$.

The addition, multiplication and scalar multiplication of fuzzy sets are defined by the extension principle [5].

Definition 2.8. For two fuzzy sets A and B on \mathbb{R}, the addition, subtraction, multiplication and division are defined as
(1) addition $A(+) B$:

$$
\mu_{A(+) B}(z)=\sup _{z=x+y} \min \left\{\mu_{A}(x), \mu_{B}(y)\right\}, x, y \in \mathbb{R}
$$

(2) subtraction $A(-) B$:

$$
\mu_{A(-) B}(z)=\sup _{z=x-y} \min \left\{\mu_{A}(x), \mu_{B}(y)\right\}, x, y \in \mathbb{R}
$$

(3) multiplication $A(\cdot) B$:

$$
\mu_{A(\cdot) B}(z)=\sup _{z=x \cdot y} \min \left\{\mu_{A}(x), \mu_{B}(y)\right\}, x, y \in \mathbb{R}
$$

(4) division $A(/) B$:

$$
\mu_{A(/) B}(z)=\sup _{z=x / y} \min \left\{\mu_{A}(x), \mu_{B}(y)\right\}, x, y \in \mathbb{R}
$$

Theorem 2.9. ([5]) For two triangular fuzzy numbers $A=\left(a_{1}, a_{2}, a_{3}\right)$ and $B=\left(b_{1}, b_{2}, b_{3}\right)$, we have
(1) $A(+) B=\left(a_{1}+b_{1}, a_{2}+b_{2}, a_{3}+b_{3}\right)$,
(2) $A(-) B=\left(a_{1}-b_{3}, a_{2}-b_{2}, a_{3}-b_{1}\right)$,
(3) $A(\cdot) B$ and $A(/) B$ need not to be triangular fuzzy numbers.

Example 2.10. Let $A=(2,5,7)$ and $B=(1,4,6)$ be the triangular fuzzy numbers. Then we have
(1) $A(+) B=(3,9,13)$,
(2) $A(-) B=(-4,1,6)$,
(3) $A(\cdot) B$ and $A(/) B$ need not to be triangular fuzzy numbers.

Theorem 2.11. ([5]) For two quadratic fuzzy numbers $A=\left[x_{1}, k, x_{2}\right]$ and $B=\left[x_{3}, m, x_{4}\right]$, we have
(1) $A(+) B=\left[x_{1}+x_{3}, k+m, x_{2}+x_{4}\right]$,
(2) $A(-) B=\left[x_{1}-x_{4}, k-m, x_{2}-x_{3}\right]$,
(3) $\mu_{A(\cdot) B}(x)=0$ on the interval $\left[x_{1} x_{3}, x_{2} x_{4}\right]^{c}$ and $\mu_{A(\cdot) B}(x)=1$ at $x=$ $k m$. Note that $A(\cdot) B$ needs not to be a quadratic fuzzy number,
(4) $\mu_{A(/) B}(x)=0$ on the interval $\left[\frac{x_{1}}{x_{4}}, \frac{x_{2}}{x_{3}}\right]^{c}$ and $\mu_{A(/) B}(x)=1$ at $x=\frac{k}{m}$.

Note that $A(/) B$ needs not to be a quadratic fuzzy number.

Example 2.12. Let $A=[1,2,3]$ and $B=[2,7,12]$ be the quadratic fuzzy numbers. Then we have
(1) $A(+) B=[3,9,15]$,
(2) $A(-) B=[-11,-5,1]$,
(3) $A(\cdot) B$ and $A(/) B$ need not to be quadratic fuzzy numbers.

Theorem 2.13. ([5]) For two trapezoidal fuzzy sets $A=\left(a_{1}, a_{2}, a_{3}, a_{4}\right)$ and $B=\left(b_{1}, b_{2}, b_{3}, b_{4}\right)$, we have
(1) $A(+) B=\left(a_{1}+b_{1}, a_{2}+b_{2}, a_{3}+b_{3}, a_{4}+b_{4}\right)$,
(2) $A(-) B=\left(a_{1}-b_{4}, a_{2}-b_{3}, a_{3}-b_{2}, a_{4}-b_{1}\right)$,
(3) $A(\cdot) B$ and $A(/) B$ need not to be trapezoidal fuzzy sets.

Example 2.14. Let $A=(1,3,5,8)$ and $B=(-1,2,5,9)$ be the trapezoidal fuzzy sets. Then we have
(1) $A(+) B=(0,5,10,17)$,
(2) $A(-) B=(-8,-2,3,9)$,
(3) $A(\cdot) B$ and $A(/) B$ need not to be trapezoidal fuzzy sets.

3. σ-morphism on the set of effects

3.1 The basic properties of σ-morphism on the set of effects

The basic structure is a measurable space (Ω, \mathcal{F}) where Ω is a sample space consisting of outcomes and \mathcal{F} is a σ-field of events in Ω corresponding to some probabilistic experiment. It is useful to identify an event A with its indicator function I_{A}. If μ is a probability measure on (Ω, \mathcal{F}), then $\mu(A)$ is interpreted as the probability that the event A occurs. A measurable function $f: \Omega \rightarrow \mathbb{R}$ is called a random variable. The expectation of f is defined by $E[f]=\int f d \mu$. Denoting the Borel σ-algebra on the real line \mathbb{R} by $\mathcal{B}(\mathbb{R})$, the distribution of f is the probability measure μ_{f} on $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ given by $\mu_{f}(B)=\mu\left(f^{-1}(B)\right)$. We interpret $\mu_{f}(B)$ as the probability that f has a value in the set B. Notice that $\mu\left(I_{A}\right)=\mu(A)$ for any $A \in \mathcal{A}$ so the identification of A with I_{A} carries directly over to probabilities. In particular, this identification enables us to give simple proofs of basic properties of probabilities.

The distribution of f can be written

$$
\mu_{f}(B)=\mu\left(f^{-1}(B)\right)=\mu\left(I_{f^{-1}(B)}\right)=\mu\left(X_{f}(B)\right)
$$

and we call $\mu_{f}(B)=\mu\left(X_{f}(B)\right)$ the distribution of X_{f}.
Definition 3.1. A random variable $f: \Omega \rightarrow[0,1]$ is called an effect or fuzzy event.

Thus, an effect is just a measurable fuzzy subset of Ω. The set of effects
is denoted by $\mathcal{E}=\mathcal{E}(\Omega, \mathcal{F})$.
Definition 3.2. If μ is a probability measure on (Ω, \mathcal{F}) and $f \in \mathcal{E}$, we define the probability of f to be its expectation $E[f]=\int f d \mu$.

If $\left(f_{i}\right)$ is an increasing sequence in \mathcal{E}, then by the monotone convergence theorem, $E\left[\lim f_{i}\right]=\lim E\left[f_{i}\right]$ so E is countably additive. Stated in another way, if a sequence $\left(f_{i}\right)$ in \mathcal{E} satisfies $\sum f_{i} \in \mathcal{E}$, then $E\left[\sum f_{i}\right]=$ $\sum E\left[f_{i}\right]$.

We call $\mathcal{E}_{c}(\Omega, \mathcal{F})=\left\{I_{A}: A \in \mathcal{F}\right\}$ the set of crisp effects. Since we are describing probability theory in terms of $\mathcal{E}_{c}(\Omega, \mathcal{F})$, we would also like to describe random variables in terms of $\mathcal{E}_{c}(\Omega, \mathcal{F})$. If $f: \Omega \rightarrow \mathbb{R}$ is a random variable, define $X_{f}: \mathcal{B}(\mathbb{R}) \rightarrow \mathcal{E}_{c}(\Omega, \mathcal{F})$ by $X_{f}(B)=I_{f^{-1}(B)}$. Then X_{f} satisfies the conditions

$$
X_{f}(\mathbb{R})=I_{f^{-1}(\mathbb{R})}=1
$$

and if $A_{i} \in \mathcal{B}(\mathbb{R})$ are mutually disjoint, then

$$
X_{f}\left(\cup A_{i}\right)=I_{f^{-1}\left(\cup A_{i}\right)}=I_{\cup f^{-1}\left(A_{i}\right)}=\sum I_{f^{-1}\left(A_{i}\right)}=\sum X_{f}\left(A_{i}\right) .
$$

Conversely, if $X_{f}: B(\mathbb{R}) \rightarrow \mathcal{E}_{c}(\Omega, \mathcal{F})$ satisfies these two conditions, then it can be shown that there exists a unique random variable $f: \Omega \rightarrow \mathbb{R}$ such that $X_{f}=X$. We call X_{f} the crisp observable corresponding to f.

It is frequently useful to consider more general random variables and crisp observables. Let (Λ, \mathcal{B}) be another measurable space and let $f: \Omega \rightarrow$ Λ be a measurable function. we call f a random variable with value space Λ and the mapping $X_{f}: \mathcal{B}(\mathbb{R}) \rightarrow \mathcal{E}_{c}(\Omega, \mathcal{F})$ given by $X_{f}(B) \rightarrow I_{f^{-1}(B)}$ is
the corresponding crisp observable with value space Λ. We now give the general definition of an observable.

Definition 3.3. Let \mathcal{B} be a σ-field of Λ. An observable is a map X : $\mathcal{B} \rightarrow \mathcal{E}(\Omega, \mathcal{F})$ such that $X(\Lambda)=1_{\Omega}$ and if $B_{i} \in \mathcal{B}(i=1,2,3, \cdots)$ are mutually disjoint, then $X\left(\cup B_{i}\right)=\sum X\left(B_{i}\right)$ where the convergence of the summation is pointwise.

If $X(B)$ is crisp for every $B \in \mathcal{B}$, then X is crisp. If μ is a probability measure on (Ω, \mathcal{F}), then the distribution of X is the probability measure μ_{X} on (Λ, \mathcal{B}) given by $\mu_{X}(B)=\mu(X(B))$. Note that μ_{X} is indeed a probability measure because $\mu_{X}(\Lambda)=1$ and if $B_{i} \in \mathcal{B}$ are mutually disjoint, then by the monotone convergence theorem,

$$
\mu_{X}\left(\cup B_{i}\right)=\mu\left(X\left(\cup B_{i}\right)\right)=\mu\left(\sum X\left(B_{i}\right)\right)=\sum \mu\left(X\left(B_{i}\right)\right)=\sum \mu_{X}\left(B_{i}\right)
$$

Example 3.4. If $f:(\Lambda, \mathcal{B}) \rightarrow(\Omega, \mathcal{F})$ is a measurable function, the corresponding crisp observable $X_{f}: \mathcal{F} \rightarrow \mathcal{E}(\Lambda, \mathcal{B})$ is given by $X_{f}(B)=I_{f^{-1}(B)}$.

To summarize we can describe probability theory in an equivalent way by replacing events by crisp effects $\left(A \rightarrow I_{A}\right)$, probabilities by expectations $\left(\mu(A) \rightarrow \mu\left(I_{A}\right)\right)$, random variables by crisp observables $\left(f \rightarrow X_{f}\right)$.

Definition 3.5. A state on $\mathcal{E}(\Omega, \mathcal{F})$ is a map $s: \mathcal{E}(\Omega, \mathcal{F}) \rightarrow[0,1]$ that satisfies $s\left(1_{\Omega}\right)=1$ and if $\left(f_{i}\right)$ is a sequence in \mathcal{E} such that $\Sigma f_{i} \in \mathcal{E}(\Omega, \mathcal{F})$, then $s\left(\Sigma f_{i}\right)=\Sigma s\left(f_{i}\right)$.

A state s corresponds to a condition or preparation of a system and
$s(f)$ is interpreted as the probability that the effect f occurs when the system is in the condition corresponding to s. If μ is a probability measure on (Ω, \mathcal{F}), then it follows from the monotone convergence theorem that $\mu: \mathcal{E}(\Omega, \mathcal{F}) \rightarrow[0,1]$ is a state.

Definition 3.6. $\widetilde{X}: \mathcal{E}(\Omega, \mathcal{F}) \rightarrow \mathcal{E}(\Lambda, \mathcal{B})$ is a σ-morphism if $\widetilde{X}\left(1_{\Omega}\right)=1_{\Lambda}$ and if $\left(f_{i}\right)$ is a sequence in \mathcal{E} such that $\Sigma f_{i} \in \mathcal{E}(\Omega, \mathcal{F})$, then $\widetilde{X}\left(\Sigma f_{i}\right)=$ $\Sigma \widetilde{X}\left(f_{i}\right)$.

Example 3.7. Let $\Omega=[0,1]$ and $\Lambda=[1,2]$. Let \mathcal{F} and \mathcal{B} be the σ-fields of Ω and Λ, respectively. Define $\widetilde{X}: \mathcal{E}(\Omega, \mathcal{F}) \rightarrow \mathcal{E}(\Lambda, \mathcal{B})$ by

$$
\widetilde{X}(f)(x)=f(x-1)
$$

Then \tilde{X} is a σ-morphism. In fact, $\widetilde{X}\left(1_{\Omega}\right)(x)=1_{\Omega}(x-1)=1_{\Lambda}(x)$ and

$$
\widetilde{X}\left(\Sigma f_{i}\right)(x)=\Sigma f_{i}(x-1)=\Sigma \widetilde{X}\left(f_{i}\right)(x) .
$$

Example 3.8. Let $\Omega=\Lambda=[0,1]$. Let \mathcal{F} and \mathcal{B} be the σ-fields of Ω and Λ, respectively. Define $\tilde{X}: \mathcal{E}(\Omega, \mathcal{F}) \rightarrow \mathcal{E}(\Lambda, \mathcal{B})$ by

$$
\widetilde{X}(f)(x)=\frac{1}{2}(f(x)+f(1-x))
$$

Then \tilde{X} is a σ-morphism. In fact,

$$
\widetilde{X}\left(1_{\Omega}\right)(x)=\frac{1}{2}\left(1_{\Omega}(x)+1_{\Omega}(1-x)\right)=1_{\Lambda}(x)
$$

and

$$
\begin{aligned}
\tilde{X}\left(\Sigma f_{i}\right)(x) & =\frac{1}{2}\left(\Sigma f_{i}(x)+\Sigma f_{i}(1-x)\right) \\
& =\Sigma \frac{1}{2}\left(f_{i}(x)+f_{i}(1-x)\right) \\
& =\Sigma \widetilde{X}\left(f_{i}\right)(x) .
\end{aligned}
$$

Theorem 3.9. ([2]) We have the followings.
(1) If $\widetilde{X}: \mathcal{E}(\Omega, \mathcal{F}) \longrightarrow \mathcal{E}(\Lambda, \mathcal{B})$ is a σ-morphism, then $\widetilde{X}(\lambda f)=\lambda \widetilde{X}(f)$ for every $\lambda \in[0,1]$ and $f \in \mathcal{E}(\Omega, \mathcal{F})$,
(2) If $s: \mathcal{E}(\Omega, \mathcal{F}) \rightarrow[0,1]$ is a state, then there exists a unique probability measure μ on (Ω, \mathcal{F}) such that $s(f)=\int f d \mu$ for every $f \in \mathcal{E}(\Omega, \mathcal{F})$.

The next result shows that there exists a natural one-to-one correspondence between observables and σ-morphisms.

Theorem 3.10. ([2]) If $X: \mathcal{F} \rightarrow \mathcal{E}(\Lambda, \mathcal{B})$ is an observable, then X has a unique extension to a σ-morphism $\widetilde{X}: \mathcal{E}(\Omega, \mathcal{F}) \rightarrow \mathcal{E}(\Lambda, \mathcal{B})$. If Y : $\mathcal{E}(\Omega, \mathcal{F}) \rightarrow \mathcal{E}(\Lambda, \mathcal{B})$ is a σ-morphism, then $\left.Y\right|_{\mathcal{F}}$ is an observable.

If $f: \Lambda \rightarrow \Omega$ is a measurable function, the corresponding crisp observable $X_{f}: \mathcal{F} \rightarrow \mathcal{E}(\Lambda, \mathcal{B})$ is given by $X_{f}(B)=I_{f^{-1}(B)}$. The next result shows that $\widetilde{X}_{f}: \mathcal{E}(\Omega, \mathcal{F}) \rightarrow \mathcal{E}(\Lambda, \mathcal{B})$ has a simple form.

Corollary 3.11. ([2]) If $f: \Lambda \rightarrow \Omega$ is a measurable function, then $\widetilde{X}_{f}(g)=g \circ f$ for every $g \in \mathcal{E}(\Omega, F)$, where \widetilde{X}_{f} is an extension of X_{f} in Example 3.4.

3.2 The continuity of σ-morphism

In section 3.1, we define the concept of effect, observable and σ-morphism as a probability measure on the set of effects. In this section, we prove the some basic properties of σ-morphism and the continuity of σ-morphism.

Theorem 3.12. If $\widetilde{X}: \mathcal{E}(\Omega, \mathcal{F}) \rightarrow \mathcal{E}(\Lambda, \mathcal{B})$ is a σ-morphism, then
(1) $\widetilde{X}\left(0_{\Omega}\right)=0_{\Lambda}$,
(2) $\widetilde{X}\left(\sum_{i=1}^{n} f_{i}\right)=\sum_{i=1}^{n} \widetilde{X}\left(f_{i}\right)$,
(3) If $f-g \in \mathcal{E}(\Omega, \mathcal{F})$, then $\widetilde{X}(f-g)=\widetilde{X}(f)-\widetilde{X}(g)$. In particular,

$$
\widetilde{X}\left(1_{\Omega}-g\right)=1_{\Lambda}-\widetilde{X}(g),
$$

(4) $f \leq g \Rightarrow \widetilde{X}(f) \leq \widetilde{X}(g)$,

Proof. (1) Let $f_{1}=1_{\Omega}, f_{i}=0_{\Omega}(i \geq 2)$. Since $\widetilde{X}\left(\sum_{i=1}^{\infty} f_{i}\right)=\widetilde{X}\left(1_{\Omega}\right)=1_{\Lambda}$ and

$$
\sum_{i=1}^{\infty} \widetilde{X}\left(f_{i}\right)=\widetilde{X}\left(f_{1}\right)+\sum_{i=2}^{\infty} \widetilde{X}\left(f_{i}\right)=1_{\Lambda}+\sum_{i=2}^{\infty} \widetilde{X}\left(0_{\Omega}\right)
$$

we have $1_{\Lambda}=1_{\Lambda}+\sum_{i=2}^{\infty} \widetilde{X}\left(0_{\Omega}\right)$ and thus $\widetilde{X}\left(0_{\Omega}\right)=0_{\Lambda}$.
(2) Let $f_{i}=0_{\Omega}(i \geq n+1)$, then $\sum_{i=1}^{\infty} f_{i}=\sum_{i=1}^{n} f_{i}$. Thus

$$
\widetilde{X}\left(\sum_{i=1}^{n} f_{i}\right)=\widetilde{X}\left(\sum_{i=1}^{\infty} f_{i}\right)=\sum_{i=1}^{\infty} \widetilde{X}\left(f_{i}\right)=\sum_{i=1}^{n} \widetilde{X}\left(f_{i}\right)
$$

(3) Since $\widetilde{X}(f)=\widetilde{X}(f-g+g)=\widetilde{X}(f-g)+\widetilde{X}(g)$,
we have

$$
\widetilde{X}(f-g)=\widetilde{X}(f)-\widetilde{X}(g)
$$

(4) Since $\widetilde{X}(g)=\widetilde{X}(g-f)+\widetilde{X}(f), \widetilde{X}(g-f) \geq 0$.

Theorem 3.13. If $f:\left(\Lambda_{1}, \mathcal{B}_{1}\right) \rightarrow\left(\Lambda_{2}, \mathcal{B}_{2}\right)$ and $g:\left(\Lambda_{2}, \mathcal{B}_{2}\right) \rightarrow\left(\Lambda_{3}, \mathcal{B}_{3}\right)$ are measurable functions, then $\widetilde{X}_{g \circ f}=\widetilde{X}_{f} \circ \widetilde{X}_{g}$.

Proof. Note that $\tilde{X}_{f}: \mathcal{E}\left(\Lambda_{2}, \mathcal{B}_{2}\right) \rightarrow \mathcal{E}\left(\Lambda_{1}, \mathcal{B}_{1}\right), \widetilde{X}_{g}: \mathcal{E}\left(\Lambda_{3}, \mathcal{B}_{3}\right) \rightarrow \mathcal{E}\left(\Lambda_{2}, \mathcal{B}_{2}\right)$ and $\widetilde{X}_{g \circ f}: \mathcal{E}\left(\Lambda_{3}, \mathcal{B}_{3}\right) \rightarrow \mathcal{E}\left(\Lambda_{1}, \mathcal{B}_{1}\right)$. Since $\widetilde{X}_{g \circ f}(h)(\omega)=h \circ(g \circ f)(\omega)$ for every $h \in \mathcal{E}\left(\Lambda_{3}, \mathcal{B}_{3}\right)$ and $\omega \in \Lambda_{1}$,

$$
\begin{aligned}
\tilde{X}_{g \circ f}(h)(\omega) & =h \circ(g \circ f)(\omega)=(h \circ g) \circ f(\omega) \\
& =\widetilde{X}_{f}(h \circ g)(\omega)=\widetilde{X}_{f} \circ \widetilde{X}_{g}(h)(\omega) .
\end{aligned}
$$

Theorem 3.14. Let $f: \Lambda_{2} \rightarrow \Lambda_{1}$ be a measurable function and μ_{i} : $\left(\Lambda_{i}, \mathcal{B}_{i}\right) \rightarrow[0,1]$ be a probability measure $(i=1,2)$. If $\mu_{1}=\left(\mu_{2}\right)_{f}$, then $\mu_{2} \circ \widetilde{X}_{f}=\mu_{1}$.
Proof. Let $g=\sum_{i=1}^{n} c_{i} I_{B_{i}}$ be a simple function in $\mathcal{E}\left(\Lambda_{1}, \mathcal{B}_{1}\right)$. Then by Corollary 3.11 ,

$$
\begin{aligned}
\mu_{2} \circ \tilde{X}_{f}(g) & =\int \tilde{X}_{f}(g) d \mu_{2}=\int(g \circ f) d \mu_{2} \\
& =\int \sum_{i=1}^{n}\left(c_{i} I_{B_{i}} \circ f\right) d \mu_{2} \\
& =\int \sum_{i=1}^{n} c_{i} I_{f^{-1}\left(B_{i}\right)} d \mu_{2} .
\end{aligned}
$$

And, by the definition of expectation and distribution,

$$
\begin{aligned}
\int \sum_{i=1}^{n} c_{i} I_{f^{-1}\left(B_{i}\right)} d \mu_{2} & =\sum_{i=1}^{n} c_{i} \mu_{2}\left(f^{-1}\left(B_{i}\right)\right) \\
& =\sum_{i=1}^{n} c_{i}\left(\mu_{2}\right)_{f}\left(B_{i}\right) \\
& =\sum_{i=1}^{n} c_{i} \mu_{1}\left(B_{i}\right) \\
& =\mu_{1}(g)
\end{aligned}
$$

Hence, $\mu_{2} \circ \widetilde{X}_{f}(g)=\mu_{1}(g)$.
Now for an arbitrary $g \in \mathcal{E}\left(\Lambda_{1}, \mathcal{B}_{1}\right)$, there exists an increasing sequence of simple functions $g_{n} \in \mathcal{E}\left(\Lambda_{1}, \mathcal{B}_{1}\right)$ such that $\lim _{n \rightarrow \infty} g_{n}=g$. Then by Corollary 3.11,

$$
\begin{aligned}
\mu_{2} \circ \widetilde{X}_{f}(g) & =\int \widetilde{X}_{f}(g) d \mu_{2} \\
& =\int \widetilde{X}_{f}\left(\lim _{n \rightarrow \infty} g_{n}\right) d \mu_{2} \\
& =\int\left(\lim _{n \rightarrow \infty} g_{n} \circ f\right) d \mu_{2} .
\end{aligned}
$$

By the monotone convergence theorem and the continuity of probability,

$$
\begin{aligned}
\int\left(\lim _{n \rightarrow \infty} g_{n} \circ f\right) d \mu_{2} & =\lim _{n \rightarrow \infty} \int\left(g_{n} \circ f\right) d \mu_{2} \\
& =\lim _{n \rightarrow \infty} \mu_{2} \circ \widetilde{X}_{f}\left(g_{n}\right) \\
& =\lim _{n \rightarrow \infty} \mu_{1}\left(g_{n}\right) \\
& =\mu_{1}\left(\lim _{n \rightarrow \infty} g_{n}\right) \\
& =\mu_{1}(g)
\end{aligned}
$$

Therefore, $\quad \mu_{2} \circ \widetilde{X}_{f}=\mu_{1}$.

Theorem 3.15. Let $\widetilde{X}: \mathcal{E}(\Omega, \mathcal{F}) \rightarrow \mathcal{E}(\Lambda, \mathcal{B})$ be a σ-morphism. If $\left(g_{n}\right)$ is an increasing sequence in $\mathcal{E}(\Omega, \mathcal{F})$ with $\lim _{n \rightarrow \infty} g_{n}=g$, then $\lim _{n \rightarrow \infty} \widetilde{X}\left(g_{n}\right)=\widetilde{X}(g)$ in $\mathcal{E}(\Lambda, \mathcal{B})$.

Proof. Let $f_{1}=g_{1}$ and $f_{n}=g_{n}-g_{n-1}(n \geq 2)$. Then $f_{n} \in \mathcal{E}(\Omega, \mathcal{F})$ for all n and $g_{n}=\sum_{i=1}^{n} f_{i}$. Since $g=\sum_{i=1}^{\infty} f_{i}$, we have

$$
\begin{aligned}
\widetilde{X}(g) & =\widetilde{X}\left(\sum_{i=1}^{\infty} f_{i}\right) \\
& =\sum_{i=1}^{\infty} \widetilde{X}\left(f_{i}\right) \\
& =\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \widetilde{X}\left(f_{i}\right) \\
& =\lim _{n \rightarrow \infty} \widetilde{X}\left(\sum_{i=1}^{n} f_{i}\right) \\
& =\lim _{n \rightarrow \infty} \widetilde{X}\left(g_{n}\right) .
\end{aligned}
$$

Hence

$$
\lim _{n \rightarrow \infty} \widetilde{X}\left(g_{n}\right)=\widetilde{X}(g)
$$

Corollary 3.16. Let $\widetilde{X}: \mathcal{E}(\Omega, \mathcal{F}) \rightarrow \mathcal{E}(\Lambda, \mathcal{B})$ be a σ-morphism. If $\left(g_{n}\right)$ is a decreasing sequence in $\mathcal{E}(\Omega, \mathcal{F})$ with $\lim _{n \rightarrow \infty} g_{n}=g$, then $\lim _{n \rightarrow \infty} \widetilde{X}\left(g_{n}\right)=\widetilde{X}(g)$ in $\mathcal{E}(\Lambda, \mathcal{B})$.

Theorem 3.17. Let $\widetilde{X}: \mathcal{E}(\Omega, \mathcal{F}) \rightarrow \mathcal{E}(\Lambda, \mathcal{B})$ be a σ-morphism. If $\left(g_{n}\right)$ is a sequence in $\mathcal{E}(\Omega, \mathcal{F})$ with $\lim _{n \rightarrow \infty} g_{n}=g$, then $\lim _{n \rightarrow \infty} \widetilde{X}\left(g_{n}\right)=\widetilde{X}(g)$ in $\mathcal{E}(\Lambda, \mathcal{B})$.

Proof. First, we prove that

$$
\begin{aligned}
\widetilde{X}\left(\liminf _{n \rightarrow \infty} g_{n}\right) & \leq \liminf _{n \rightarrow \infty} \widetilde{X}\left(g_{n}\right) \\
& \leq \limsup _{n \rightarrow \infty} \widetilde{X}\left(g_{n}\right) \\
& \leq \widetilde{X}\left(\limsup _{n \rightarrow \infty} g_{n}\right)
\end{aligned}
$$

Let $f_{n}=\inf _{i \geq n} g_{i}$. Since $\left(f_{n}\right)$ is an increasing sequence in $\mathcal{E}(\Omega, \mathcal{F})$, by Theorem 3.15, we have

$$
\begin{aligned}
\widetilde{X}\left(\liminf _{n \rightarrow \infty} g_{n}\right) & =\widetilde{X}\left(\sup _{n \geq 1} \inf _{i \geq n} g_{i}\right) \\
& =\widetilde{X}\left(\sup _{n \geq 1} f_{n}\right) \\
& =\widetilde{X}\left(\lim _{n \rightarrow \infty} f_{n}\right) \\
& =\lim _{n \rightarrow \infty} \widetilde{X}\left(f_{n}\right) .
\end{aligned}
$$

Let $n \in N$. Then, for each $n \leq i, f_{n} \leq g_{i}$, we have $\widetilde{X}\left(f_{n}\right) \leq \widetilde{X}\left(g_{i}\right)$ and hence $\widetilde{X}\left(f_{n}\right) \leq \inf _{i \geq n} \widetilde{X}\left(g_{i}\right)$. Therefore

$$
\sup _{n \geq 1} \widetilde{X}\left(f_{n}\right) \leq \sup _{n \geq 1} \inf _{i \geq n} \widetilde{X}\left(g_{i}\right)=\liminf _{n \rightarrow \infty} \widetilde{X}\left(g_{n}\right)
$$

But, since

$$
\lim _{n \rightarrow \infty} \tilde{X}\left(f_{n}\right)=\sup _{n \geq 1} \tilde{X}\left(f_{n}\right),
$$

we have

$$
\tilde{X}\left(\liminf _{n \rightarrow \infty} g_{n}\right) \leq \liminf _{n \rightarrow \infty} \tilde{X}\left(g_{n}\right)
$$

Similarly, $\limsup _{n \rightarrow \infty} \widetilde{X}\left(g_{n}\right) \leq \widetilde{X}\left(\limsup _{n \rightarrow \infty} g_{n}\right)$. For $g_{n} \in \mathcal{E}(\Omega, \mathcal{F})$, since

$$
\begin{aligned}
\limsup _{n \rightarrow \infty} \widetilde{X}\left(g_{n}\right) & \leq \widetilde{X}\left(\limsup _{n \rightarrow \infty} g_{n}\right) \\
& =\widetilde{X}\left(\lim _{n \rightarrow \infty} g_{n}\right) \\
& =\widetilde{X}\left(\liminf _{n \rightarrow \infty} g_{n}\right) \\
& \leq \liminf _{n \rightarrow \infty} \widetilde{X}\left(g_{n}\right),
\end{aligned}
$$

we have

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \widetilde{X}\left(g_{n}\right) & =\liminf _{n \rightarrow \infty} \widetilde{X}\left(g_{n}\right) \\
& =\limsup _{n \rightarrow \infty} \widetilde{X}\left(g_{n}\right) \\
& =\widetilde{X}\left(\lim _{n \rightarrow \infty} g_{n}\right) \\
& =\widetilde{X}(g) .
\end{aligned}
$$

Hence

$$
\lim _{n \rightarrow \infty} \widetilde{X}\left(g_{n}\right)=\widetilde{X}(g)
$$

4. The mean value and variance of one-sided fuzzy sets

In this chapter, we define the one-sided fuzzy set and the mean value and variance, defined by Christer Carlsson and Robert Fullér, for various types of one-sided fuzzy sets.

4.1 One-sided fuzzy set

The triangular fuzzy set and quadratic fuzzy set have a continuous membership function. To develop our calculations, we define the new fuzzy sets having discontinuous membership functions.

Definition 4.1. A left fuzzy set is a fuzzy set A having membership function

$$
\mu_{A}(x)=\left\{\begin{array}{lll}
0 & \text { if } & x<a-\alpha, a<x \\
f(x) & \text { if } & a-\alpha \leq x \leq a
\end{array}\right.
$$

where $f(x)$ is a continuous and increasing function with $f(a-\alpha)=0$ and $f(a)=1$. Similarly, a right fuzzy set is a fuzzy set A having membership function

$$
\mu_{A}(x)=\left\{\begin{array}{lll}
0 & \text { if } & x<a, a+\beta<x, \\
g(x) & \text { if } & a \leq x \leq a+\beta
\end{array}\right.
$$

where $g(x)$ is a continuous and decreasing function with $g(a)=1$ and $g(a+\beta)=0$. We call these sets one-sided fuzzy sets.

By using this definition, we can define the left triangular fuzzy set as follows.

Definition 4.2. A left triangular fuzzy set is a fuzzy set A having membership function

$$
\mu_{A}(x)=\left\{\begin{array}{lll}
0 & \text { if } \quad x<a-\alpha, a<x \\
(x-a+\alpha) / \alpha & \text { if } & a-\alpha \leq x \leq a
\end{array}\right.
$$

Similarly, a right triangular fuzzy set can be defined.

By the same ways, left(right) quadratic fuzzy set can be defined. And, to denote these one-sided fuzzy sets, we will use the notations in Definition 2.5 and 2.6. For example, the left triangular fuzzy set in Definition 4.2 is denoted by $(\alpha, a, 0)$.

Remark. Let A be a triangular fuzzy set. Then $A=B+C$ where B be a left triangular fuzzy set and C be a right triangular fuzzy set.

Theorem 4.3. (1) Let A_{1} and A_{2} be the left fuzzy sets. Then $A_{1}+A_{2}$ is a left fuzzy set.
(2) Let A_{1} and A_{2} be the right fuzzy sets. Then $A_{1}+A_{2}$ is a right fuzzy set.

Proof. (1) Let A_{1} and A_{2} be the left fuzzy sets with membership functions

$$
\mu_{A_{1}}(x)=\left\{\begin{array}{lll}
0 & \text { if } & x<a_{1}-\alpha_{1}, a_{1}<x \\
f_{1}(x) & \text { if } & a_{1}-\alpha_{1} \leq x \leq a_{1}
\end{array}\right.
$$

and

$$
\mu_{A_{2}}(x)=\left\{\begin{array}{lll}
0 & \text { if } & x<a_{2}-\alpha_{2}, a_{2}<x \\
f_{2}(x) & \text { if } & a_{2}-\alpha_{2} \leq x \leq a_{2}
\end{array}\right.
$$

respectively, where $f_{1}(x)$ and $f_{2}(x)$ are continuous and increasing functions with $f_{1}\left(a_{1}-\alpha_{1}\right)=0, f_{1}\left(a_{1}\right)=1, f_{2}\left(a_{2}-\alpha_{2}\right)=0$ and $f_{2}\left(a_{2}\right)=1$. Since
$\left[A_{1}\right]^{\gamma}=\left[f_{1}^{-1}(\gamma), a_{1}\right]$ and $\left[A_{2}\right]^{\gamma}=\left[f_{2}^{-1}(\gamma), a_{2}\right]$, we have $\left[A_{1}+A_{2}\right]^{\gamma}=$ $\left[f_{1}^{-1}(\gamma)+f_{2}^{-1}(\gamma), a_{1}+a_{2}\right]$. Hence $A_{1}+A_{2}$ is a left fuzzy set.
(2) By the similar manner, (2) can be obtained.

Example 4.4. Let $A_{1}=(2,4,0)$ and $A_{2}=(3,7,0)$ be the left triangular fuzzy sets and $B_{1}=(0,5,3)$ and $B_{2}=(0,7,2)$ be the right triangular fuzzy sets. Let $\left[A_{1}\right]^{\gamma},\left[A_{2}\right]^{\gamma},\left[B_{1}\right]^{\gamma}$ and $\left[B_{2}\right]^{\gamma}$ be the γ-level sets of A_{1}, A_{2}, B_{1} and B_{2}, respectively.
(1) Since $\left[A_{1}\right]^{\gamma}=[2 \gamma+2,4]$ and $\left[A_{2}\right]^{\gamma}=[3 \gamma+4,7]$, we have $\left[A_{1}+A_{2}\right]^{\gamma}=$ $[5 \gamma+6,11]$. Hence $A_{1}+A_{2}=(5,11,0)$ is a left triangular fuzzy set,
(2) $\left[B_{1}\right]^{\gamma}=[5,8-3 \gamma]$ and $\left[B_{2}\right]^{\gamma}=[7,9-2 \gamma]$, we have $\left[B_{1}+B_{2}\right]^{\gamma}=$ $[12,17-5 \gamma]$. Hence $B_{1}+B_{2}=(0,12,5)$ is a right triangular fuzzy set.

Example 4.5. Let $A_{1}=[1,2,0]$ and $A_{2}=[3,4,0]$ be the left quadratic fuzzy sets and $B_{1}=[0,5,8]$ and $B_{2}=[0,2,3]$ be the right quadratic fuzzy sets. Let $\left[A_{1}\right]^{\gamma},\left[A_{2}\right]^{\gamma},\left[B_{1}\right]^{\gamma}$ and $\left[B_{2}\right]^{\gamma}$ be the γ-level sets of A_{1}, A_{2}, B_{1} and B_{2}, respectively.
(1) Since $\left[A_{1}\right]^{\gamma}=[2-\sqrt{1-\gamma}, 2]$ and $\left[A_{2}\right]^{\gamma}=[4-\sqrt{1-\gamma}, 4]$, we have $\left[A_{1}+A_{2}\right]^{\gamma}=[6-2 \sqrt{1-\gamma}, 6]$. Hence $A_{1}+A_{2}=[4,6,0]$ is a left quadratic fuzzy set,
(2) Since $\left[B_{1}\right]^{\gamma}=[5,5+3 \sqrt{1-\gamma}]$ and $\left[B_{2}\right]^{\gamma}=[2,2+\sqrt{1-\gamma}]$, we have $\left[B_{1}+B_{2}\right]^{\gamma}=[7,7+4 \sqrt{1-\gamma}]$. Hence $B_{1}+B_{2}=[0,7,11]$ is a right quadratic fuzzy set.

Remark. Let A and B be the left fuzzy set and right fuzzy set, respectively.

Then $A+B$ may not be an one-sided fuzzy set.

Example 4.6. Let $A=(2,4,0)$ be a left triangular fuzzy set and $B=$ $(0,5,3)$ be a right triangular fuzzy set. Let $[A]^{\gamma}$ and $[B]^{\gamma}$ be the γ-level sets of A and B, respectively. Since $[A]^{\gamma}=[2 \gamma+2,4]$ and $[B]^{\gamma}=[5,8-3 \gamma]$, we have $[A+B]^{\gamma}=[2 \gamma+7,12-3 \gamma]$. Thus $A+B=(2,9,3)$ is a triangular fuzzy set, but it is not an one-sided fuzzy set.

Example 4.7. Let $A=[1,2,0]$ be a left quadratic fuzzy set and $B=$ $[0,5,8]$ be a right quadratic fuzzy set. Let $[A]^{\gamma}$ and $[B]^{\gamma}$ be the γ-level sets of A and B, respectively. Since $[A]^{\gamma}=[2-\sqrt{1-\gamma}, 2]$ and $[B]^{\gamma}=$ $[5,5+3 \sqrt{1-\gamma}]$, we have $[A+B]^{\gamma}=[7-\sqrt{1-\gamma}, 7+3 \sqrt{1-\gamma}]$. Thus $A+B$ is neither an one-sided fuzzy set nor a quadratic fuzzy set.

4.2 The mean value and variance of one-sided fuzzy sets

In this section, we introduce the notion of possibilistic mean value and variance of fuzzy sets defined by C. Carlsson and R. Fullér. And, we calculate the possibilistic mean value and variance of one-sided fuzzy sets. Definition 4.8. Let A be a fuzzy set with $[A]^{\gamma}=\left[a_{1}(\gamma), a_{2}(\gamma)\right]$. The lower possibilistic mean value of A is defined by

$$
M_{*}(A)=2 \int_{0}^{1} \gamma a_{1}(\gamma) d \gamma
$$

Similarly, the upper possibilistic mean value of A is defined by

$$
M^{*}(A)=2 \int_{0}^{1} \gamma a_{2}(\gamma) d \gamma
$$

Note that $M_{*}(A)$ is the lower possibility-weighted average of the minima of the γ-sets and $M^{*}(A)$ is the upper possibility-weighted average of the maxima of the γ-sets.

Definition 4.9. Let A be a fuzzy set. The interval-valued possibilistic mean of A is defined by

$$
M(A)=\left[M_{*}(A), M^{*}(A)\right] .
$$

Theorem 4.10. ([7]) Let A and B be two non-interactive fuzzy sets and let $\lambda \in \mathbb{R}$. Then

$$
M(A+B)=M(A)+M(B), M(\lambda A)=\lambda M(A)
$$

Definition 4.11. The crisp possibilistic mean value of a fuzzy set A is the arithmetic mean of its lower possibilistic and upper possibilistic mean values, i.e.,

$$
\bar{M}(A)=\frac{M_{*}(A)+M^{*}(A)}{2} .
$$

Theorem 4.12. ([7]) Let A and B be the fuzzy sets and $\lambda \in \mathbb{R}$. Then

$$
\bar{M}(A+B)=\bar{M}(A)+\bar{M}(B), \bar{M}(\lambda A)=\lambda \bar{M}(A)
$$

Example 4.13. Let $A=(\alpha, a, 0)$ be a left triangular fuzzy set. Then a γ-level set of A is

$$
[A]^{\gamma}=[a-(1-\gamma) \alpha, a], \gamma \in[0,1] .
$$

Thus

$$
M_{*}(A)=2 \int_{0}^{1} \gamma(a-(1-\gamma) \alpha) d \gamma=a-\frac{\alpha}{3}
$$

and

$$
M^{*}(A)=2 \int_{0}^{1} \gamma \cdot a d \gamma=a
$$

Hence we have

$$
M(A)=\left[a-\frac{\alpha}{3}, a\right]
$$

and

$$
\bar{M}(A)=\int_{0}^{1} \gamma(a-(1-\gamma) \alpha+a) d \gamma=a-\frac{\alpha}{6} .
$$

The following theorems show the relations between $M_{*}(A B)$ and $M_{*}(A) M_{*}(B)$ and between $M^{*}(A B)$ and $M^{*}(A) M^{*}(B)$ for triangular fuzzy sets and quadratic fuzzy sets.

Theorem 4.14. Let $A=\left(\alpha_{1}, a, \beta_{1}\right)$ and $B=\left(\alpha_{2}, b, \beta_{2}\right)$ be the triangular fuzzy sets. Then $M_{*}(A) M_{*}(B) \leq M_{*}(A B)$ and $M^{*}(A) M^{*}(B) \leq$ $M^{*}(A B)$.

Proof. Since $[A]^{\gamma}=\left[a-(1-\gamma) \alpha_{1}, a+(1-\gamma) \beta_{1}\right]$ and $[B]^{\gamma}=[b-(1-$ $\left.\gamma) \alpha_{2}, b+(1-\gamma) \beta_{2}\right]$, we have

$$
M_{*}(A)=2 \int_{0}^{1} \gamma\left(a-(1-\gamma) \alpha_{1}\right) d \gamma=a-\frac{\alpha_{1}}{3}
$$

and

$$
M_{*}(B)=2 \int_{0}^{1} \gamma\left(b-(1-\gamma) \alpha_{2}\right) d \gamma=b-\frac{\alpha_{2}}{3} .
$$

Since

$$
\begin{aligned}
M_{*}(A B) & =2 \int_{0}^{1} \gamma\left(a b-a(1-\gamma) \alpha_{2}-b(1-\gamma) \alpha_{1}+(1-\gamma)^{2} \alpha_{1} \alpha_{2}\right) d \gamma \\
& =a b-\frac{a \alpha_{2}}{3}-\frac{b \alpha_{1}}{3}+\frac{\alpha_{1} \alpha_{2}}{6}
\end{aligned}
$$

we have

$$
\begin{aligned}
M_{*}(A) M_{*}(B) & =\left(a-\frac{\alpha_{1}}{3}\right)\left(b-\frac{\alpha_{2}}{3}\right) \\
& =a b-\frac{a \alpha_{2}}{3}-\frac{b \alpha_{1}}{3}+\frac{\alpha_{1} \alpha_{2}}{9} \\
& \leq a b-\frac{a \alpha_{2}}{3}-\frac{b \alpha_{1}}{3}+\frac{\alpha_{1} \alpha_{2}}{6} \\
& =M_{*}(A B) .
\end{aligned}
$$

Similarly, we can show that $M^{*}(A) M^{*}(B) \leq M^{*}(A B)$.

Theorem 4.15. Let $A=\left[\alpha_{1}, k_{1}, \beta_{1}\right]$ and $B=\left[\alpha_{2}, k_{2}, \beta_{2}\right]$ be the quadratic fuzzy sets. Then $M_{*}(A) M_{*}(B) \leq M_{*}(A B)$ and $M^{*}(A) M^{*}(B) \leq$ $M^{*}(A B)$.

Proof. Let $a=\frac{4}{\left(\alpha_{1}-\beta_{1}\right)^{2}}$ and $b=\frac{4}{\left(\alpha_{2}-\beta_{2}\right)^{2}}$. Then

$$
[A]^{\gamma}=\left[k_{1}-\sqrt{\frac{1-\gamma}{a}}, k_{1}+\sqrt{\frac{1-\gamma}{a}}\right]
$$

and

$$
[B]^{\gamma}=\left[k_{2}-\sqrt{\frac{1-\gamma}{b}}, k_{2}+\sqrt{\frac{1-\gamma}{b}}\right] .
$$

Thus

$$
M_{*}(A)=2 \int_{0}^{1} \gamma\left(k_{1}-\sqrt{\frac{1-\gamma}{a}}\right) d \gamma=k_{1}-\frac{8}{15 \sqrt{a}}
$$

and

$$
M_{*}(B)=2 \int_{0}^{1} \gamma\left(k_{2}-\sqrt{\frac{1-\gamma}{b}}\right) d \gamma=k_{2}-\frac{8}{15 \sqrt{b}} .
$$

Since

$$
\begin{aligned}
M_{*}(A B) & =2 \int_{0}^{1} \gamma\left(k_{1} k_{2}-k_{1} \sqrt{\frac{1-\gamma}{b}}-k_{2} \sqrt{\frac{1-\gamma}{a}}+\frac{1-\gamma}{\sqrt{a b}}\right) d \gamma \\
& =k_{1} k_{2}-\frac{8 k_{1}}{15 \sqrt{b}}-\frac{8 k_{2}}{15 \sqrt{a}}+\frac{1}{3 \sqrt{a b}}
\end{aligned}
$$

we have

$$
\begin{aligned}
M_{*}(A) M_{*}(B) & =\left(k_{1}-\frac{8}{15 \sqrt{a}}\right)\left(k_{2}-\frac{8}{15 \sqrt{b}}\right) \\
& =k_{1} k_{2}-\frac{8 k_{1}}{15 \sqrt{b}}-\frac{8 k_{2}}{15 \sqrt{a}}+\frac{64}{225 \sqrt{a b}} \\
& \leq k_{1} k_{2}-\frac{8 k_{1}}{15 \sqrt{b}}-\frac{8 k_{2}}{15 \sqrt{a}}+\frac{1}{3 \sqrt{a b}} \\
& =M_{*}(A B) .
\end{aligned}
$$

Similarly, we can show that $M^{*}(A) M^{*}(B) \leq M^{*}(A B)$.

Theorem 4.16. Let A be a left fuzzy set with $[A]^{\gamma}=\left[a_{1}(\gamma), a\right]$ and B be a right fuzzy set with $[B]^{\gamma}=\left[b, b_{2}(\gamma)\right]$, then $M(A B)=M(A) M(B)$.

Proof. Since $[A]^{\gamma}=\left[a_{1}(\gamma), a\right]$ and $[B]^{\gamma}=\left[b, b_{2}(\gamma)\right]$, we have

$$
M_{*}(A)=2 \int_{0}^{1} \gamma a_{1}(\gamma) d \gamma
$$

and

$$
M^{*}(A)=2 \int_{0}^{1} \gamma \cdot a d \gamma=a
$$

Similarly, we have $M_{*}(B)=b$ and $M^{*}(B)=2 \int_{0}^{1} \gamma b_{2}(\gamma) d \gamma$. Thus

$$
M_{*}(A) M_{*}(B)=\left(2 \int_{0}^{1} \gamma a_{1}(\gamma) d \gamma\right) \cdot b=2 b \int_{0}^{1} \gamma a_{1}(\gamma) d \gamma
$$

and

$$
M^{*}(A) M^{*}(B)=a \cdot\left(2 \int_{0}^{1} \gamma b_{2}(\gamma) d \gamma\right)=2 a \int_{0}^{1} \gamma b_{2}(\gamma) d \gamma
$$

Since $[A B]^{\gamma}=\left[b a_{1}(\gamma), a b_{2}(\gamma)\right]$, we have

$$
M_{*}(A B)=2 b \int_{0}^{1} \gamma a_{1}(\gamma) d \gamma
$$

and

$$
M^{*}(A B)=2 a \int_{0}^{1} \gamma b_{2}(\gamma) d \gamma
$$

Hence $M_{*}(A) M_{*}(B)=M_{*}(A B)$ and $M^{*}(A) M^{*}(B)=M^{*}(A B)$. By the definition of $M, M(A B)=M(A) M(B)$.

Theorem 4.16 can be considered as the similar result which is wellknown in the independence of events in probability theory.

Example 4.17. Let A be a left triangular fuzzy set with $[A]^{\gamma}=[2 \gamma+2,4]$ and B be a right triangular fuzzy set with $[B]^{\gamma}=[7,9-2 \gamma]$. Then

$$
M_{*}(A)=2 \int_{0}^{1} \gamma(2 \gamma+2) d \gamma=\frac{10}{3}
$$

and

$$
M^{*}(A)=2 \int_{0}^{1} 4 \gamma d \gamma=4
$$

Similarly, we have $M_{*}(B)=7$ and $M^{*}(B)=\frac{23}{3}$. Thus $M_{*}(A) M_{*}(B)=\frac{70}{3}$ and $M^{*}(A) M^{*}(B)=\frac{92}{3}$. Since $[A B]^{\gamma}=[14 \gamma+14,36-8 \gamma]$, we have

$$
M_{*}(A B)=2 \int_{0}^{1} \gamma(14 \gamma+14) d \gamma=\frac{70}{3}
$$

and

$$
M^{*}(A B)=2 \int_{0}^{1} \gamma(36-8 \gamma) d \gamma=\frac{92}{3}
$$

Hence $M_{*}(A) M_{*}(B)=M_{*}(A B)$ and $M^{*}(A) M^{*}(B)=M^{*}(A B)$. By the definition of M, we have $M(A B)=M(A) M(B)$.

Example 4.18. Let A be a left quadratic fuzzy set with $[A]^{\gamma}=[2-$ $\sqrt{1-\gamma}, 2]$ and B be a right quadratic fuzzy set with $[B]^{\gamma}=[5,5+$ $3 \sqrt{1-\gamma}]$. Then

$$
M_{*}(A)=2 \int_{0}^{1} \gamma(2-\sqrt{1-\gamma}) d \gamma=\frac{22}{15}
$$

and

$$
M^{*}(A)=2 \int_{0}^{1} 2 \gamma d \gamma=2 .
$$

Similarly, we have $M_{*}(B)=5$ and $M^{*}(B)=\frac{33}{5}$. Thus $M_{*}(A) M_{*}(B)=\frac{22}{3}$ and $M^{*}(A) M^{*}(B)=\frac{66}{5}$. Since $[A B]^{\gamma}=[10-5 \sqrt{1-\gamma}, 10+6 \sqrt{1-\gamma}]$, we
have

$$
M_{*}(A B)=2 \int_{0}^{1} \gamma(10-5 \sqrt{1-\gamma}) d \gamma=\frac{22}{3}
$$

and

$$
M^{*}(A B)=2 \int_{0}^{1} \gamma(10+6 \sqrt{1-\gamma}) d \gamma=\frac{66}{5}
$$

Hence $M_{*}(A) M_{*}(B)=M_{*}(A B)$ and $M^{*}(A) M^{*}(B)=M^{*}(A B)$. By the definition of M, we have

$$
M(A) M(B)=M(A B)
$$

Remark. If A and B are left fuzzy sets (or right fuzzy sets), the equality $M(A) M(B)=M(A B)$ does not always hold.

Definition 4.19. The variance of fuzzy set A with $[A]^{\gamma}=\left[a_{1}(\gamma), a_{2}(\gamma)\right]$ is defined by

$$
\operatorname{Var}(A)=\frac{1}{2} \int_{0}^{1} \gamma\left(a_{2}(\gamma)-a_{1}(\gamma)\right)^{2} d \gamma
$$

Example 4.20. If $A=(\alpha, a, 0)$ is a left triangular fuzzy set then

$$
\operatorname{Var}(A)=\frac{1}{2} \int_{0}^{1} \gamma(a-(a-\alpha(1-\gamma)))^{2} d \gamma=\frac{\alpha^{2}}{24}
$$

Definition 4.21. The covariance between fuzzy sets A with $[A]^{\gamma}=\left[a_{1}(\gamma), a_{2}(\gamma)\right]$ and B with $\left.[B]^{\gamma}=\left[b_{1}(\gamma), b_{2}(\gamma)\right]\right)$ is defined by

$$
\operatorname{Cov}(A, B)=\frac{1}{2} \int_{0}^{1} \gamma\left(a_{2}(\gamma)-a_{1}(\gamma)\right)\left(b_{2}(\gamma)-b_{1}(\gamma)\right) d \gamma
$$

Proposition 4.22. Let $A_{1}=\left(\alpha_{1}, a_{1}, 0\right)$ and $A_{2}=\left(\alpha_{2}, a_{2}, 0\right)$ be the left triangular fuzzy sets and $B_{1}=\left(0, b_{1}, \beta_{1}\right)$ and $B_{2}=\left(0, b_{2}, \beta_{2}\right)$ be the right triangular fuzzy sets. Then
(1) $\operatorname{Cov}\left(A_{1}, A_{2}\right)=\frac{\alpha_{1} \alpha_{2}}{24}$.
(2) $\operatorname{Cov}\left(B_{1}, B_{2}\right)=\frac{\beta_{1} \beta_{2}}{24}$.
(3) $\operatorname{Cov}\left(A_{1}, B_{2}\right)=\frac{\alpha_{1} \beta_{2}}{24}$.

Proof. (1) Since $\left[A_{1}\right]^{\gamma}=\left[a_{1}-(1-\gamma) \alpha_{1}, a_{1}\right]$ and $\left[A_{2}\right]^{\gamma}=\left[a_{2}-(1-\gamma) \alpha_{2}, a_{2}\right]$, we have

$$
\operatorname{Cov}\left(A_{1}, A_{2}\right)=\frac{1}{2} \int_{0}^{1} \alpha_{1} \alpha_{2} \gamma(1-\gamma)^{2} d \gamma=\frac{\alpha_{1} \alpha_{2}}{24}
$$

By the similar method, (2) and (3) can be obtained.

Example 4.23. Let $A_{1}=(2,4,0)$ and $A_{2}=(3,7,0)$ be the left triangular fuzzy sets and $B_{1}=(0,5,3)$ and $B_{2}=(0,7,2)$ be the right triangular fuzzy sets.
(1) Since $\left[A_{1}\right]^{\gamma}=[2 \gamma+2,4]$ and $\left[A_{2}\right]^{\gamma}=[3 \gamma+4,7], \operatorname{Cov}\left(A_{1}, A_{2}\right)=\frac{1}{4}$.
(2) Since $\left[B_{1}\right]^{\gamma}=[5,8-3 \gamma]$ and $\left[B_{2}\right]^{\gamma}=[7,9-2 \gamma], \operatorname{Cov}\left(B_{1}, B_{2}\right)=\frac{1}{4}$.
(3) Since $\left[A_{1}\right]^{\gamma}=[2 \gamma+2,4]$ and $\left[B_{2}\right]^{\gamma}=[7,9-2 \gamma], \operatorname{Cov}\left(A_{1}, B_{2}\right)=\frac{1}{6}$.

Proposition 4.24. Let $A_{1}=\left[\alpha_{1}, k_{1}, 0\right]$ and $A_{2}=\left[\alpha_{2}, k_{2}, 0\right]$ be the left quadratic fuzzy sets and $B_{1}=\left[0, m_{1}, \beta_{1}\right]$ and $B_{2}=\left[0, m_{2}, \beta_{2}\right]$ be the right quadratic fuzzy sets. And put $a_{1}=\frac{1}{\left(\alpha_{1}-k_{1}\right)^{2}}, a_{2}=\frac{1}{\left(\alpha_{2}-k_{2}\right)^{2}}, b_{1}=\frac{1}{\left(\beta_{1}-m_{1}\right)^{2}}$ and $b_{2}=\frac{1}{\left(\beta_{2}-m_{2}\right)^{2}}$. Then
(1) $\operatorname{Cov}\left(A_{1}, A_{2}\right)=\frac{1}{12 \sqrt{a_{1} a_{2}}}$.
(2) $\operatorname{Cov}\left(B_{1}, B_{2}\right)=\frac{1}{12 \sqrt{b_{1} b_{2}}}$.
(3) $\operatorname{Cov}\left(A_{1}, B_{2}\right)=\frac{1}{12 \sqrt{a_{1} b_{2}}}$.

Proof. (1) Since

$$
\left[A_{1}\right]^{\gamma}=\left[k_{1}-\sqrt{\frac{1-\gamma}{a_{1}}}, k_{1}\right], \quad\left[A_{2}\right]^{\gamma}=\left[k_{2}-\sqrt{\frac{1-\gamma}{a_{2}}}, k_{2}\right],
$$

we have

$$
\operatorname{Cov}\left(A_{1}, A_{2}\right)=\frac{1}{2} \int_{0}^{1} \gamma \frac{1-\gamma}{\sqrt{a_{1} a_{2}}} d \gamma=\frac{1}{12 \sqrt{a_{1} a_{2}}}
$$

By the similar method, (2) and (3) can be obtained.

Example 4.25. Let $A_{1}=[1,2,0]$ and $A_{2}=[3,4,0]$ be the left quadratic fuzzy sets and $B_{1}=[0,5,8]$ and $B_{2}=[0,2,3]$ be the right quadratic fuzzy sets.
(1)Since $\left[A_{1}\right]^{\gamma}=[2-\sqrt{1-\gamma}, 2] \operatorname{and}\left[A_{2}\right]^{\gamma}=[4-\sqrt{1-\gamma}, 4], \operatorname{Cov}\left(A_{1}, A_{2}\right)=\frac{1}{12}$. (2)Since $\left[A_{1}\right]^{\gamma}=[2-\sqrt{1-\gamma}, 2] \operatorname{and}\left[B_{2}\right]^{\gamma}=[2,2+\sqrt{1-\gamma}], \operatorname{Cov}\left(A_{1}, B_{2}\right)=\frac{1}{12}$. (3)Since $\left[A_{2}\right]^{\gamma}=[4-\sqrt{1-\gamma}, 4]$ and $\left[B_{1}\right]^{\gamma}=[5,5+3 \sqrt{1-\gamma}], \operatorname{Cov}\left(A_{2}, B_{1}\right)=\frac{1}{4}$.

References

[1] S. Gudder, Fuzzy Probability Theory, Demon. Math, Vol. 31 (1998), 235-254.
[2] S. Gudder, What is Fuzzy Probability Theory?, Foundations of Physics, Vol. 30 (2000), 1663-1678.
[3] R. Mesiar, Fuzzy observables, J. Math. Anal. Appl, Vol. 174 (1993), 178-193.
[4] R. Yager, A note on probabilities of fuzzy events, Information Sci, Vol. 128 (1979), 113-129.
[5] L. A. Zadeh, Fuzzy sets, Information Cont, Vol. 8 (1965), 338-353.
[6] L. A. Zadeh, Probability measures and fuzzy events, Math. Anal. Appl, Vol. 23 (1968), 421-427.
[7] Christer Carlsson and Robert Fullér, On possibilistic mean value and variance of fuzzy numbers, Fuzzy Sets and Systems, Vol. 122 (2001), 315-326.
[8] D. Dubois and H. Prade, The mean value of a fuzzy number, Fuzzy Sets and Systems, Vol. 24 (1987), 279-300.
[9] R. Goetschel and W. Voxman, Elementary fuzzy calculus, Fuzzy Sets and Systems, Vol. 18 (1986), 31-43.

〈국문초록＞

이펙트에 대한 研究

본 논문에서는 사건과 확률변수의 일반화로서 각각 이펙트（또는 퍼지사 건）과 가관찰량（또는 퍼지확률변수）를 소개하였다．아울러，이팩트들의 집 합 위에서 확류ㄹㅡㅡㄱ도로서의 시그마－모피즘을 소개하였고 그것의 연속성과 몇가지 기본적인 성질들을 증명하였다．

퍼지 집합들을 위한 다양한 형태의 평균과 분산들이 존재한다．본 논문 에서는 크리스터 칼슨과 로버트 펼러에 의해 정의된 평균과 분산을 연구 하였다．서로 독립인 확률변수 A 와 B 에 대하여 $M(A B)=M(A) M(B)$ 가 성립한다．그리고 한쪽－방면 퍼지 집합들의 독립성에 대한 성질을 탐구하 였고 두 개의 한쪽－방면 퍼지 집합 A 와 B 에 대하여

$$
M(A B)=M(A) M(B)
$$

가 성립하는 것을 증명하였다．또한 한쪽－방면 퍼지 집합들과 그들의 곱 집합에 대한 파서블릭 평균값，분산 그리고 공분산을 계산하였다．

감사의 글

학위 과정의 길은 참 배움의 길 보다는 자신과의 약속을 지키기 위해 노력했던 시간들의 모임에 더 가깝지 않았나 저는 생각하고 싶습니다. 비로소 이제 모든 과 정을 마치고 마지막 갈무리를 한 장의 글로 표현하려 하니 가진 걸 나누지 못하 고 늘 받기만 했던 삶을 반성하게 됩니다. 먼저 박사 학위를 취득할 수 있도록 도 움을 주신 많은 분들께 글로서 나마 감사의 마음을 전해 드리고자 합니다.
많이 부족한 저를 배움의 길로 불러 오늘의 모습으로 있게 해 주신 지도교수 윤용식 교수님께 머리 숙여 깊히 감사를 드립니다. 또한 논문 심사과정에서 세 심히 지적해주시고 지도해주신 고윤희 교수님, 정승달 교수님, 진현성 교수님 과 수학에 재미를 느끼도록 해주셨고 수학하는 자세를 일깨워 주신 박진원 교수님, 그 외 수학과, 수학교육과 교수님들께도 감사 드립니다. 그리고 함께 공부하며 서로에게 힘이 되어 주셨던 선배님들을 비롯한 후배님들께도 고마 운 마음을 전하고 싶습니다.

인생의 처음 날 부터 늘 사랑과 희생으로 든든한 울타리가 되어 주신 부모님, 철없는 막내 사위의 모든 것을 이해해 주시고 감싸 주시던 장모님 그리고 하 늘에서 따뜻한 미소로 지켜보고 계실 장인 어른께 이 논문을 바칩니다.
마지막으로, 세상 아니 우주에서 가장 소중한 아내, 변복실. 그녀의 자상한 배려가 없었으면 지금의 나는 없었을 것입니다. 직장 일을 하면서도 사랑스런 두 아이를 건강하게 키워내고 있는 아내, 내 아내에게 활기찬 성원을 흠빽 전 하고 싶고, 우리 부부에게 너무 소중한 보물인 서연이, 예진이에게 늘 자랑스 런 아빠가 될 수 있도록 더욱 정진하겠습니다.
2010. 12

