

碩士學位論文

넙치 Paralichthys olivaceus의 암수판별기법 개발에 관한 연구

濟州大學校 産業大學院

海洋生物工學科

康文壽

2014年 2月

넙치 Paralichthys olivaceus의 암수판별기법 개발에 관한 연구

指導敎授 이 제 희

강 문 수

이 論文을 理學 碩士學位 論文으로 提出함

2014年 2月

강문수의 理學 碩士學位 論文을 認准함

審査委	員長	정	준	범 (印)
委	員	0]	제	희 (印)
委	員	전	ቶ	진 (印)

濟州大學校 産業大學院

2014年 2月

A study on the Identification Method of sex in flounder *Paralichthys olivaceus*

Moon-soo Kang (Supervised by Professor Jehee Lee)

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENT FOR THE DEGREE OF MASTER OF SCIENCE

2014. 2.

DEPARTMENT OF MARINE LIFE SCIENCES GRADUATE SCHOOL OF INDUSTRY JEJU NATIONAL UNIVERSITY

Abstract	1
I. 서 론	2
II. 실험방법 및 결과	6
1. 조직학적 관찰을 통한 넙치의 암수판별	6
1) 미분화 상태	6
2) 정소로의 분화	7
3) 난소로의 분화	7
2. 암수판별을 위한 marker 개발	10
1) 생식선 특이적 <i>Vasa</i> 유전자 cloning	10
2) Vasa 유전자의 primer set 개발 ······	35
3) <i>Aromatase</i> 유전자의 primer set 개발	38
3. 개발된 암수판별 marker를 이용한 넙치 종묘의 암수판별	44
1) 넙치 시료 Sampling	44
2) Total RNA의 분리, cDNA 합성, Real-Time RT-PCR	44
III. 고 찰	49
IV. 요 약	58
V. 참 고 문 헌	59
감사의 글	65

Abstract

Sex determination in some reptiles, amphibians, and fishes is known to be influenc ed greatly by environmental factors.

Aromatase is the key enzyme in estrogen production and therefore is a reliable ma rker of female differentiation.

Aromatase cytochrome P450 (P450arom) is the enzyme complex responsible for conversion of androgens to estrogens in vertebrates. Consequently, in some fishes its activity appears critical to ovarian differentiation. Olive flounder (Paralichthys olivaceus) is a commercially important flatfish in which females grow larger than males and sex determination is temperature sensitive. Through cloning of the P450arom gene in ovary and quantitative reverse transcription-polymerase chain reaction, we developed a biomarker for early female differentiation in olive flounder. The deduced amino acid sequence for olive flounder P450arom is similar to other teleosts.

The part of a gonad was subjected to sex discrimination experiment using aromatase marker, and the rest part, by histological observation. The result of sex discrimination by using markers developed in this study was absolutely correspondent to the result acquired from histological observation, confirming its high accuracy as an useful marker. Gonadal histology confirmed predictions of sex based on P450arom expression in juvenile flounder, demonstrating that the patterns of P450arom expression observed relate to sex-specific differentiation. Also, in order to apply the method, developed in this study, juvenile (fry) flounder from fish farm were examined, and it revealed that sex discrimination of flounders under early sex differentiation is successful. This research represents a unique approach to assessing sex differentiation in a natural population, and a powerful technique for better understanding mechanisms of flounder sex determination and rapidly defining conditions for controlling sex for aquaculture assessing sex responses using the aromatase marker.

I. 서 론

최근 1~2년 사이에, 여름철에 생산된 넙치 치어를 입식한 제주지역 양식어가에서 평년에 비해 더딘 성장으로 인한 출하지연으로 경제적 피해가 발생되고 있다. 이는, 종묘 본래의 유전적 형질의 문제가 아니라 넙치의 암·수간에 나타나는 차이로, 성분 화시기의 고수온 사육으로 인하여 암컷에 비해 성장이 더딘 수컷으로의 분화가 촉진 되어 일어나는 현상이다. 또한, 이러한 웅성화로 인한 생산성 저하로 발생되는 경제 적 손실은 1회성에 그치지 않고, 연간 2~3회의 입식과 출하를 반복하는 제주지역의 양식생산 시스템에서 다음 입식시기의 지연을 초래하는 악순환으로 연결되고 있다. 이러한 이유로 제주지역 양식생산자 단체에서는 수컷보다 성장이 상대적으로 빠른 넙치의 암컷을 종묘단계에서 선별할 수 있는 기술개발을 요구하고 있는 실정이다.

넙치양식업의 발전을 위해서는 우선, 생산성 향상 및 생산비 절감을 위한 여러 가지 방면에서의 기술 개발이 다각적으로 이루어져야 할 필요가 있다. 이러한 기술 개발에는 앞서 언급한 육종기술 뿐만 아니라, 환경요인 조절을 통한 성장촉진 기술 개발 또는, 넙치의 성별 성장률 차이를 이용한 암컷 위주의 종묘생산 기술개발, 종 묘의 암수판별기술 개발 등을 비롯한 여러 가능한 기술개발들이 동시에 이루어질 필요가 있다.

육종기술개발이나 사육환경 기술개발이 현재는 성장위주의 연구에 집중되어 있는 실정인데 이는, 생산기간 단축을 통한 생산비 절감과 생산성 향상에 목적을 두고 있 음이다. 앞으로는 생산비 및 생산성을 포함하여 맛과 품질 등에도 포커스가 맞춰진 양식기술개발이 요구될 수 있겠으나, 현 시점에서 요구되는 고성장 넙치 생산 기술 이 인위적 호르몬 투여나 유전자 조작이 아닌 사육환경조절을 통해 생산성 향상을 이끌어 낼 수 있는 방식으로 개발된다면, 차후에 육종기술 등이 개발되더라도 이와 접목하여 보다 효과적인 생산성 향상 기술로서 부각 될 수 있으리라 판단된다.

최근 들어, 이러한 노력중의 하나로 넙치 양식 시 필요한 양적 형질(속성장, 질 병내성, 환경내성, 산란시기, 산란량, 육질, 체색)을 선발하여 우수한 형질의 종묘를 생산하는 넙치 육종 프로그램도 시도되고 있다.

하지만, 아무리 좋은 형질의 종묘라 하더라도 그 성장률은 넙치의 경우, 생후

1년을 기준으로 할 때 암컷이 수컷보다 2배 이상 빠르기 때문에, 넙치종묘의 자성 화를 유도하는 것이 무엇보다도 효과적이며 중요하다.

본 연구개발은 염색체 조작이나 인위적인 호르몬 투여 없이 넙치의 생리적 성특 성을 이용한 환경적 요인의 조절만으로 자성화를 유도하고자 하는 것이며, 이는 저 비용으로 친환경적이면서 높은 식품안정성과 빠른 성장 및 생산을 기대할 수 있는 일석이조의 기술이라 사료된다.

또한, 이러한 암·수의 판별에 있어 종묘단계에서의 조기판별이 중요한데, 기 활용 중인 암컷 특이적 vitellogenin을 이용하는 방법은 성숙시기에만 유용한 것으로, 넙치 가 약 8~9개월(평균체중 약 600 g)이상 성장한 이후에나 판별이 가능하다. 하지만, 본 연구에서 이용하고자 하는 것은 자성화의 지표 호르몬인 estrogen 생성과 연관하 여 시간적, 공간적으로 발현량의 차이를 나타내는 전사체를 측정하는 방법으로서, 치어단계(체장 5~7 cm)에서 빠르고 정확하게 암·수를 판별할 수 있는 효과적인 방법 이므로, 종묘 선택 시 정확한 판단기준을 제시해 줄 수 있을 것으로 기대된다.

상업적으로 중요한 어종인 넙치는 암컷이 수컷보다 성장이 빠른 특징이 있기 때문에, 암컷만 생산하는 편이 양식에 있어 유리하다. 하지만, 유전적으로 암컷이라 하더라도 성분화시기의 사육수온에 따라 수컷이 높은 비율로 출현하기 때문에 종묘 단계에서 적정 수온관리를 통해 암컷으로의 분화를 유도하는 것이 매우 중요하다. 하지만, 아직까지 넙치의 자성화 유도에 적절한 수온이나 수온관리 시기에 대한 연 구보고는 이루어지지 않고 있는 현실이다.

넙치이외에도 어류에서는 암·수에 따라 경제적 가치가 상이한 경우가 많다. 예를 들어, 뱀장어나 넙치 등에서는 암컷의 성장속도가 더 빠르지만, 틸라피아에서는 수 컷의 성장속도가 더 빠르다. 또한, 암·수간의 체색에 있어서도 연어나 참돔의 경우 암컷에 대한 기호성이 더 높으며, 생식소를 식용하는 숭어와 은어에서는 알을 가지 고 있는 암컷에 대한 산업적 가치가 높다.

따라서, 종묘단계에서 산업적 가치가 있는 성만을 선별하여 사육하는 것이 양식 에 있어서 매우 가치 있는 일이지만, 어류의 치어단계에서 육안으로 구별하기란 불 가능하다. 일반적으로 어류는 자웅이체이지만, 체색(놀래기, 붉돔, 납자루 등)이나 형태(연어, 해마 등)로 암·수를 구별할 수 있는 어류는 적고, 식용으로 익숙한 정강 이, 정어리, 고등어, 넙치, 그리고 복어류 등의 경우, 외형만으로는 구별할 수 없다. 연어, 쥐치, 쏨뱅이 등과 같이 자웅이 함께 산란하는 어종에서는 상대방의 성별 을 알리기 위해 외관상의 차이를 보이는 경우도 있다. 암컷의 몸에 기생하는 일부 아귀류를 제외하고 어류의 성별은 몸의 크기로 구별하기 어려우나, 암·수간의 성장 속도가 다르거나, 최대체장이 다른 경우가 있다. 예를 들어, 아귀와 넙치는 암컷이 최소 성숙체장 면에서 수컷에 비해 크다.

따라서 이번 연구에서는 넙치의 성분화전후 과정중의 생식선 발달을 관찰하여 성판별의 기초자료로서 활용하고자 한다.

성염색체에 의해 성이 결정되는 포유류의 경우, Y염색체에 존재하는 수컷 특이 적 반복염기서열을 이용한 PCR법에 의한 배(胚)의 성판별법이 확립되어 있다. 그러 나,어류에서는 성염색체를 갖는 종이 많지 않을 뿐 아니라, 성염색체만으로는 기능 적 성이 결정되지 않으며, 성분화시기의 수온 등과 같은 환경적인 영향에 의해 성 이 변하는 종이 많다.

성염색체에 존재하는 암·수간의 유전자 차이를 이용하는 방법이 아니라, 동일한 게놈을 갖더라도 암·수간에 발현량이 다른 유전자를 이용하는 방법이 필요하다. 이 러한 목적에 합당한 유전자는 그 발현이 암·수간에 시간적 또는 공간적으로 차이가 있어야만 한다. 따라서, 유전적 성(genetic sex)과는 달리 표현되는 생식선의 기능적 성(gonadal sex)을 치어단계에서 빠르고 정확하게 구별할 수 있는 기술의 개발이 필 요하다

넙치의 성은 통상적으로 유전적으로 결정되어 XX개체는 암컷으로, XY개체는 수 컷으로 분화한다. 하지만, XX개체에 androgen(17α-methyltestosterone)투여 또는 고수 온처리를 하면 수컷으로의 성 분화가 일어나고, XY개체에 estrogen (estradiol-17β)투 여를 실시하면 암컷으로 분화하는 것으로 알려졌다.

또한, 유전적 암컷(XX개체)이라 하더라도 고수온 및 저수온에서 사육을 하면 기 능적 수컷으로 성분화가 이루어지며, 이와 같이 넙치의 성 분화에 있어 유전적 암 컷에서 수컷으로의 성전환과정에서 일어나는 estrogen량 감소 현상의 원인은 아직 구체적으로 밝혀진 것은 없으나, 수온차에 의해 estrogen 생성에 중요한 효소인 aromatase 발현이 억제됨으로 나타나는 E₂의 감소가 주요한 요인으로 작용할 것이라 보고되고 있다. 대부분의 척추동물에서 수컷과 암컷은 수정 시에 성염색체의 조합에 의해 유전 적으로 결정되어진다. 하지만, 어류를 비롯한 파충류, 양서류 등과 같은 일부 종에 서는 성염색체의 조합뿐만 아니라, 환경조건에 의해서도 성 결정 및 분화가 좌우되 는 것으로 알려져 있다.

종래 어류의 성 판별법에는 암컷 특유의 단백질(vitellogenin)을 이용하는 방법이 주로 알려져 있었다. 하지만, 이 방법은 난소가 성숙하는 시기에 이르러야 암·수를 구별할 수 있기 때문에, 조기 성판별이 어려운 문제점이 있어, 현실적으로는 성어가 된 이후에 나타나는 외견상의 특징 및 생식선의 형태로 구별하는 수 밖에 없었다.

Vasa 유전자는 DEAD(Asp-Glu-Ala-Asp) protein family로서 germ-line cell linage (PGCs)에 특이적인 발현을 나타내는 유전자이며 노랑초파리에서 첫 보고가 이루어 진 이후 포유류에 이르기까지 여러 종의 생물에서 밝혀지고 있다. Vasa 유전자는 PGCs 발달에 직접적인 영향을 미치며, zebrafish에서의 연구결과, Vasa의 발현을 억 제하면 생식세포가 거의 형성되지 않게 된다고 보고되고 있다. 발생초기 뿐 아니라 성숙한 생식소에서도 Vasa 유전자가 특이적으로 발현한다고 보고되었다. 이어 등에 서의 실험결과, Vasa 유전자는 성숙한 정소와 난소에서 매우 높게 발현되었고 뇌, 간, 신장, 비장, 근육, 그리고 심장과 같은 체세포에서는 발현되지 않음이 보고되고 있다. 그 외에도 어류에서만 감성돔, 배스, 다랑어, 대구, 민어, 참돔, 송어, 고등어, 쏨벵이, 방어, 전갱이, 붕어, 메기, 초어, 드렁허리 등, 여러 종에서의 Vasa 유전자가 분리되었고 생식소에 특이적인 발현양상을 나타낸다고 보고되고 있다.

본 연구에서는 넙치 생식선에서 vasa full-length cDNA를 분리하여 생식소 조직에 특이적인 house-keeping 유전자로 사용하고, aromatase mRNA를 활용한 암수판별 marker를 개발하는데 목적을 두었다.

- 5 -

Ⅱ. 재료 및 방법 실험방법 및 결과

1. 조직학적 관찰을 통한 넙치의 암수판별

넙치의 생식선 발달상태를 조직학적으로 관찰하기 위하여 치어 및 중간육성어로 부터 생식선을 적출하였다 (그림 1). 생식선은 Bouin's solution에 하루 동안 고정한 후 70% EtOH로 치환시켜주었다. 고정된 조직은 단계별 탈수 과정을 거친 후 파라 핀으로 포매하였으며, 절편법에 의해 7 µm의 두께의 조직표본으로 만들었다. 조직표 본은 Hansen's haematoxylin과 0.5% eosin으로 비교염색을 실시하여 광학현미경하에 서 검경하였다.

그림 1. 샘플 채취과정. A. 샘플의 체중과 체장 측정, B. 개복해부를 하여 생식선 부위를 적출

1) 미분화 상태

넙치에서 미분화된 상태의 생식선은 복강의 아래 양쪽으로 길게 뻗어나온 상태 로 연승되어 있었다. 이 상태에서 암수간의 조직학적 특징은 관찰할 수 없었다. 다 만 추후에 난소로 발달할 것으로 예상되는 개체에서는 난소강의 안쪽에 해당하는 부위에 세포들의 cyst가 형성되는 것을 관찰할 수 있었다 (그림 2).

그림 2. 미분화상태의 넙치 생식선 조직사진. A. 복강막에 연수된 상태의 생식선 원기, B. 생식선원기의 확대사진

2) 정소로의 분화

전개체에서 성분화가 종료된 상태로 정소로 분화된 개체에서는 생식세포의 분화 는 관찰되지 않았으며, 생식선 중간에 공포상이 관찰되어 전형적인 정소의 조직 특 성이 관찰되었다. 또한 생식선의 크기도 암컷과 비교하여 상대적으로 작았다 (그림 3).

조직학적 관찰을 통한 생식선의 암수판별에 있어서는 2가지 관점에 유의하여야 한다. 우선 생식선의 생식세포의 발달상태를 바탕으로 판별하는 것이 가장 일반적 이지만, 성적으로 미성숙상태에서는 생식세포가 분화되지 않기 때문에 판단하기 어 려운 점이 있다. 다음으론 체세포의 발달 양상으로도 암수의 판별이 가능하다. 다시 말해 정소에서는 초기 분화단계에서는 생식세포의 발달이 둔화되고 생식선에 공포 상이 관찰이 되며, 난소에서는 난소강이 형성되어 형태적으로 암수의 구분이 가능 하다.

3) 난소로의 분화

암컷으로 분화한 개체들에서는 대부분 난소강의 형성이 완료되었으며 난소소협 이 발달, 생식세포의 체세포분열이 많이 진행되고 있었으며, 일부 개체에서는 감수 분열이 이루어져 주변인기 난모세포까지 분화한 개체들도 관찰되었다 (그림 4).

그림 3. 정소로 분화된 개체들의 생식선 조직상. A. 수컷으로 분화된 개체, B. 수컷으로 분화된 개체, C. 수컷으로 분화된 개체, D. 수컷으로 분화 된 개체, E. 수컷으로 분화된 개체, F. 수컷으로 분화된 개체.

그림 4. 암컷으로 분화된 개체들의 생식선 조직상. A. 암컷으로 분화된 개체, B. 암컷으로 분화된 개체, C. 암컷으로 분화된 개체, D. 확대상. 감수분열중인 생식선, E. 수컷으로 분화된 개체, F. 암컷으로 분화된 개체. 주변인기 난모세포까지 분화한 정소.

2. 암수판별을 위한 marker 개발

1) 생식선 특이적 Vasa 유전자 cloning

(1) Degenerated primer design

넙치의 생식소로부터 Vasa 유전자를 Polymerase Chain Reaction (PCR)법으로 증폭, 분리하기 위한 degenerated primer set들은 타 어종에서 보고된 Vasa 유전자 서열을 참고로 제작하였다. National Center for Biotechnology Information (NCBI) data base를 검색하여 타 종의 Vasa 유전자서열들을 multiple alignment하여 nulceotide sequence level에서의 homology가 가장 높고 primer로서의 조건을 최대한 갖춘 부분을 참고하 였다((de)VASA F1~F3, R1~R3). 또한, 넙치와 같은 가자미목 어종인 박대의 Vasa mRNA 서열에서도 별도의 primer를 제작하여 넙치 Vasa 유전자 탐색에 사용하였다 (Cs-VASA F1, R1). 각 참고서열의 GenBank accession number는 다음과 같다. A.s. (Acanthopagrus schlegelii vasa protein mRNA, partial CDs) Accession number DQ399799; L.p. (Leucopsarion petersii mRNA for vasa homologue, complete CDs) Accession number AB098252; N.m. (Nibea mitsukurii vasa mRNA, complete CDs) Accession number GQ404692; P.m. (Pagrus major vasa mRNA for DEAD (Asp-Glu-Ala-Asp) box polypeptide 4, complete CDs) Accession number AB378581; S.I. (Salvelinus leucomaenis vasa mRNA, complete CDs) Accession number EU448254; S.j. (Scomber japonicus vasa mRNA, complete CDs) Accession number GQ404693; S.a. (Sparus aurata vasa-like mRNA, partial CDs) Accession number AF520608; T.o. (Thunnus orientalis vasa mRNA, complete cds.) Accession number EU253482; T.j. (Trachurus japonicus vas mRNA for vasa, complete cds.) Accession number AB362788; C.s. (Cynoglossus semilaevis vasa mRNA, complete cds.) Accession number HQ727561. 각 Primer들은 20~23 mer 길이, 53.5~59.8 ℃ Tm, 45.7~60 %의 GC 함량을 갖게 구성하였고, 제작된 primer stock은 100pmole/ul의 농도로, working primer는 10pmole/ul의 농도로 Nuclease-free water에 녹였다. 제작한 각 primer들의 정보는 표 1과 같다.

가. 넙치 Total RNA 분리

Total RNA는 약 800 g 크기의 암컷과 수컷을 사용하였다. 넙치의 정소와 난소 및 암컷의 뇌, 간, 신장, 비장, 심장, 아가미, 소장, 위, 근육, 그리고 피부 조직들을 적 출하여 RNA 분리에 사용하였다. 적출한 각 조직들은 즉시 Easy blue (iNtRON) 800 ul를 첨가, pestle을 사용하여 homogenization 후 200 ul의 chloroform을 넣어 20초 간 vortex 시켜 RNA를 분리하였다. 상온에서 10분 간 반응시킨 후 4℃ 12,000 rpm에서 15분 간 원심분리하였고, 분리된 상등액 400 ul를 새 tube에 옮긴 뒤 동량의 isopropanol을 첨가하여 5분 간 원심분리함으로 RNA를 침전시켰다. 침전된 RNA pellet에 에탄을 800 ul를 첨가 후 5분 간 원심분리하여 정제한 뒤 에탄올을 제거, nuclease-free water 200 ul에 녹였다. 분리된 각 조직의 total RNA는 분광광도계 (NanoVue, GE)를 사용하여 흡광도를 측정하였고, 260/280 nm 흡광도의 비율이 1.9 이상인 것만을 사용하였다 (표 2). 분리된 total RNA들의 정성분석을 위하여 1% nuclease-free agarose gel 상에서 total RNA 2 ul를 100Volt, 20분 간 전기영동하여 rRNA의 상태를 확인하였고, rRNA의 각 subunit들이 intact함이 확인된 시료만을 cDNA 합성에 사용하였다 (그림 5).

Set	Name	Sequence	Length (mer)	Tm (°C)	G.C%
1	(de)VASA F1	5'-GGCAGAGATCTCATGGCCTG-3'	20	56.69	60
1	(de)VASA R1	5'-CANGDVGGCACTTCCTGCTG-3'	20	59.8	62.5
2	(de)VASA F2	5'-AAAACGGCTGCATTCCTGCT-3'	20	58.30	50
2	(de)VASA R2	5'-GTBGCMACCAGGACNGGACA-3'	20	58.4	62.5
2	(de)VASA F3	5'-CCATCCTVCAKCAGCTGATG-3'	20	55.6	50
3	(de)VASA R3	5'-AGYTGVTCCCTCTTKGAGAACTT-3'	23	55.1	45.7
4	(de)VASA F4	5'-TTCAGYGAGCTVCAGGAGCC-3'	20	57.7	55
4	(de)VASA R4	5'-CATVTCHGGCTCRAAGCCCAT-3'	21	59.8	54.8
5	Cs-VASA F1	5'-ATAGGCGGAGCATCATCATC-3'	20	53.7	50
3	Cs-VASA R1	5'-GCAACCAGGACTGGACATTT-3'	20	53.5	50

표 1. 본 연구에 사용한 degenerated primer의 서열 및 정보

* R(A,g), Y(C,T), M(A,C), K(g,T), V(A,C,g), H(A,T,C), B(g,T,C), D(g,A,T), N(A,g,C,T)

Tissue	난소	정소	뇌	간	신장	비장	심장	아가미	소장	위	근육
Ratio	1.975	2.002	1.985	1.982	1.965	2.006	2.039	1.944	1.958	2.000	1.961
Conc. (ng/ul)	498.4	400.4	431.2	526.4	361.6	499.2	481.2	405.2	372.0	507.2	379.6

표 2. 넙치 각 조직에서 분리한 total RNA들의 260/280 nm ratio 및 농도

그림 5. 넙치 각 조직으로부터 분리된 total RNA 전기영동 결과

나. cDNA 합성

분리된 각 조직의 Total RNA로부터 Maxime RT PreMix Kit Oligo (dT) Primer (iNtRON)를 사용하여 cDNA를 합성하였다. 분리된 각 조직의 total RNA를 RNase-free DNase (Promega)로 처리하여 오염되었을 수 있는 DNA를 제거한 후 cDNA 합성에 사용하였다. DNase가 처리된 RNA 1 ug을 넣고 최종 20 ul가 되도록 nuclease-free water를 첨가한 후 pipette으로 잘 녹이고 cDNA 합성반응을 수행하였다. 준비된 시료들을 45 ℃에서 60분 간 RTase 반응시켜 RNA 상보적 가닥을 합성하였 고, 90 ℃에서 5분 간 반응시켜 RTase를 불활성화 시켰다. 합성된 각 cDNA에 30 ul 의 nuclease-free water를 추가하여 최종 농도를 20 ng/ul가 되도록 하였다.

다. Polymerase Chain Reaction (PCR)을 통한 넙치 Vasa 유전자 증폭

합성된 정소와 난소 cDNA를 주형으로 하여 제작한 각 primer set을 사용하여 넙 치 Vasa cDNA를 증폭하였다. 100 ng의 cDNA를 주형으로 하여 각 5 pmole의 primer set과 250 uM/each의 dNTP mix, 그리고 1 rxn/tube의 reaction buffer와 polymerase (Phire[™] Hot Start DNA Polymerase; FINNZYMES)를 사용하여 final 20 ul에 반응시켰 다. 반응 조건은 98 ℃에서 pre-denature 후, 98 ℃에서 8초 간 denature, 60 ℃에서 8 초 간 annealing, 72 ℃에서 40초 간 extension을 1 cycle로 하여, 총 35 cycle을 반응 시킨 뒤, 72 ℃에서 1분 간 post extension하였다. 증폭산물을 확인하기 위한 전기영 동은 1 % agarose gel에 PCR 산물을 모두 loading 한 후, 100 volt에서 20분 간 수행 하였다 (그림 6). 증폭산물의 크기를 비교하기 위한 marker DNA는 1 Kb DNA Ladder (iNtRON) 5 ul를 사용하였다. 전기영동 결과, (de)-Vasa F2/R2 primer set에서 약 1.3 kb 크기와 (de)-Vasa F4/R4 primer set에서 약 500 bp 크기의 산물이 확인되었 다. (de)-Vasa F4/R4 primer set의 산물의 경우, 분류학상 같은 목 (order)에 해당하는 *Cynoglossus semilaevis* (박대)의 예상 부위 크기인 약 300 bp의 크기보다 큰 것으로 서, 분류학적으로 가장 유연관계가 높은 종이었으나, *Vasa* 유전자에 대한 유전학적 유연관계는 높지 않을 수 있음을 추정하게 한다.

라. Elution

Degenerated primer ((de)-Vasa F4/R4 set)를 사용하여 증폭된 난소 cDNA의 PCR 산 물은 cloning을 위하여 Agarose Gel Extraction-Ultra Kit (SolGent)로 elution하였다. 정 제할 DNA를 포함하는 gel 부분을 잘라내어 무게를 측정하여 1.5 ml microtube로 옮 긴 뒤, 잘라낸 gel의 3배 부피의 UB buffer를 첨가한 후 60 ℃에서 10분 간 처리하 였다. Gel이 완전히 녹은 뒤, gel 부피만큼의 isopropanol을 첨가하여 섞어주고, 100 ul의 Super Binder[™] Solution으로 activation 시킨 spin column으로 옮겨 10,000 rpm에 서 30초 간 원심분리하여 DNA만을 column에 결합시킨 후, 80 %의 에탄올로 12,000 rpm에서 30초 씩 2회 세척하고, 동일 조건으로 3분 간 더 원심분리하여 건조시켰다. 건조된 column을 새 microtube로 옮기고 nuclease-free water 30 ul를 처리하여 상온에

그림 6. RT-PCR 전기영동 결과 M: 1 kb DNA Ladder marker

서 1분 간 보관 후, 12,000 rpm에서 1분 간 원심분리하여 DNA를 용출하였다. 분리 된 DNA는 260 nm 파장에서의 흡광도를 측정하여 정량하였고, 260/280 nm 값이 1.8 이상으로서 direct sequencing 및 cloning에 사용하였다. 각 DNA들을 확인하기 위하 여 1 % agarose gel에 10 ul를 loading한 후, 100 volt에서 30분 간 전기영동하였다 (그림 7). 전기영동의 DNA marker로는 1 kb DNA Ladder (iNtRON) 5 ul를 사용하였 다.

그림 7. 난소 cDNA의 PCR 산물에 대한 elution 산물 전기영동 결과 M: 1 kb DNA Ladder marker

마. 재조합 DNA 준비 (ligation)

Elution을 통하여 정제한 넙치의 *Vasa* target PCR product는 cloning을 위하여 T-Blunt vector (Solgent)에 ligation 시켰다. T-Blunt vector는 *lacZ* 유전자를 코딩하고 있어 blue/white colony 색깔을 통하여 선별이 가능하며, 형질전환체로 하여금 항생 제 *ampicillin과 kanamycin*에 내성을 갖게하는 벡터이다 (그림 8). 사용한 벡터의 양 은 10 ng 이었으며, molar ration는 3, ligation에 필요한 insert(각 elution DNA들)의 양 은 벡터의 크기인 약 4 kb를 기준으로 하여, "사용한 벡터의 양 (ng) × 사용한 insert DNA의 크기 (kb) × molar ratio / 사용한 벡터의 크기 (kb)"의 공식에 대입함으로 계 산하였다. 6×T-Blunt buffer (1.2 M NaCl, 0.06 M MgCl₂)와 nuclease-free water를 사용 하여 최종 volume이 6 ul 되게 한 후, 상온 (24 ℃)에서 1시간 동안 반응시켜 형질 전환에 사용하였다.

그림 8. T-Blunt vector의 모식도 및 주요 코딩 유전자 정보. Multiple cloning site, LacZ와 함께 kanamycin 및 ampcillin 저항성 유전자를 가지고 있다.

바. 재조합 DNA에 대한 DH5-a 수용성세포로의 형질전환

T-Blunt vector에 ligation시킨 넙치 *Vasa* partial cDNA nucleotide를 cloning하기 위하 여 수용성세포에 형질전환시켰다. 수용성세포는 *E. coli* 세포주인 DH5-a (Solgent) 50 비를 사용하였고, ligation mixture 4 비를 Inoue 방법을 수정하여 형질전환시켰다. -80 ℃에 보관중인 수용성세포를 얼음에 꽂아 녹이고, ligation mixture를 첨가한 후, 30분 간 반응시켰다. 42 ℃에서 40초 간 heat-shock을 주고, 다시 얼음에 꽂아 두었다가, 37 ℃에 보관해 두었던 SOC broth 배지 400 비를 추가하여 37 ℃, 180 rpm shaking incubator에서 120분 간 배양한 뒤, 200 비를 LB agar 배지 plate에 spreading bead를 사용하여 도말하였다. LB agar 배지에는 80 mg/ml의 X-gal, 0.5 mM의 IPTG, 50 ug/ml의 ampicillin 및 kanamycin을 처리하였다. 넙치 각 유전자들이 형질전환된 수용 성세포들이 도말된 plate는 37 ℃ incubator에서 15시간 동안 배양하였다. 배양결과, 형질전환 수용성세포들이 도말된 plate에서 blue 및 white-colony가 양호하게 형성되 어 있었음을 확인하였고, white colony 8개를 innoculation하여 50 ug/ml의 농도로 kanamycin과 ampicillin이 처리된 LB broth 배지 5 ml에 넣고 37 ℃에서 180 rpm으로 12시간 배양하여 plasmid DNA를 분리하였다.

사. Plasmid DNA의 분리

LB broth 배지에서 배양된 넙치 Vasa partial cDNA nucleotide를 함유하는 수용성 세포로부터의 plasmid DNA는 GeneAllTM ExprepTM Plasmid Isolation Kit (GeneAll)을 사용하여 분리하였다. 2 ml의 세포배양액을 microtube에 넣고 30초 간 spin-down하여 상등액을 제거한 후, RNase가 함유된 resuspension buffer (S1 buffer) 170 ul에 잘 현 탁하였다. 현탁된 세포에 cell lysis buffer 170 ul를 첨가하여 inverting 시킴으로 세포 벽을 파괴하고, 250 ul의 Neutralization buffer (G3 buffer)를 첨가하여 중화시킴으로 cell debris를 뭉치게 하였다. 내용물 모두를 EzClear[™] Column에 옮기고 15,000 rpm 에서 30초 간 원심분리하여 plasmid DNA를 SV Column에 binding 시켰다. 80 % 에 탄올 700 ul를 넣고 15,000 rpm에서 30초 간 원심분리하여 column 내의 salt등을 제 거한 후, 동일 조건에서 1분 간 추가 원심분리하여 건조시키고, 최종 50 ul의 nuclease-free water에 녹여 plasmid DNA를 분리하였다. 분리된 plasmid DNA들은 1 ul씩을 취하여 1 % agarose gel에 loading 한 후, 100 volt에서 30분 간 전기영동을 수행하였다 (그림 9). Plasmid DNA의 크기를 비교하기 위한 marker DNA는 1 kb DNA Ladder (iNtRON) 5 ul를 사용하였다. 확인결과, 8개의 white colony로부터의 plasmid DNA들은 깨끗하게 분리가 되었고, 재조합시키지 않은 T-Blunt vector의 크 기와 비교하였을 때, 8개 중 6 개의 plasmid DNA가 넙치 Vasa target PCR product를 재조합 DNA로 포함하고 있을 것으로 판단되었다.

아. 제한효소 처리

분리된 plasmid DNA들에 대하여 넙치 *Vasa* target PCR product 포함 여부를 확인 하기 위하여 제한효소인 EcoR I으로 vector와 insert DNA를 분리하였다. 분리된 plasmid DNA 8 ul에 EcoR I 및 10×EcoR I buffer (Promega)를 첨가하여 37 ℃에서 60분 간 처리하였다. 제한효소가 처리된 plasmid DNA는 2 ul씩을 취하여 1 % agarose gel에 loading 한 후, 100 volt에서 30분 간 전기영동을 수행하였다 (그림 10). 전기영동 결과, 1, 2, 3, 6, 7, 8번 plasmid DNA가 degenerated primer를 사용하여 증 폭된 PCR 산물의 크기와 비슷한 약 500 bp의 위치에서 잘 확인됨을 알 수 있었다. 한편, 4번과 5번은 제한효소 처리 후, 단일 밴드만이 확인되어 넙치 *Vasa* target PCR product를 갖고 있지 않음을 알 수 있었다.

그림 9. 분리된 plasmid DNA의 전기영동 결과. 8개의 white colony로부터 분리된 plasmid DNA와 재조합되지 않은 vector를 각 1 ul씩 전기영동하였 다. 1, 2, 3, 6, 7, 8번 plasmid DNA가 넙치 *Vasa* target PCR product를 갖 고 있을 것으로 판단되었다. M: 1 kb DNA Ladder marker

그림 10. 분리된 plasmid DNA의 제한효소 EcoR I 처리 전기영동 결과. 8개 의 white colony로부터 분리된 plasmid DNA를 제한효소 처리하여 재조합되 지 않은 vector와 함께 각 2 ul씩 전기영동하였다.

- * M: 1 kb DNA Ladder marker
- * Yellow arrow: insert DNAs

자. 넙치 Vasa partial cDNA의 nucleotide 서열 결정

넙치의 난소 cDNA로부터 cloning하여 분리한 *Vasa* cDNA의 nucleotide 서열을 확 인 및 결정하기 위하여 plasmid DNA에 대한 sequencing을 진행하였다. Sequencing은 국내 대행 전문업체인 (주)제노텍에 의뢰하여 sequencing하였고, 결과가 인정되는 data만을 분석에 활용하였다. 결정된 넙치 각 유전자의 nucleotide 서열들은 National Center for Biotechnology Information (NCBI)의 Nucleotide blast search 프로그램 (http://blast.ncbi.nlm.nih.gov/)을 사용하여 유전자은행에 보고된 서열들을 대상으로 비 교, 예측하였다. 분석결과, cloning된 PCR product는 *Vasa*의 nucleotide 서열임이 확인 되었으며 (data not shown), PCR product 및 elution 전기영동 결과와 비슷한 481 bp 크기를 갖는 것으로 나타났다 (그림 11).

그림 11. 넙치 Vasa partial cDNA의 nucleotide sequence 결정. A: 분리된 6개 plasmid DNA의 서열 및 alignment 결과. B: 넙치 Vasa cDNA의 partial sequence 결정

(3) 넙치 Vasa 유전자의 full-length cDNA sequence 분리

가. Target-specific primer design

법치 *Vasa* 유전자의 full-length cDNA를 분리하기 위하여 Rapid Amplification of cDNA Ends (RACE)에 사용할 primer를 design 하였다. 법치 *Vasa* mRNA에 특이적인 primer set은 기 분리한 법치 *Vasa* cDNA의 partial sequence를 참고로 각 방향별 2개 씩 추가로 제작하여 2nd, 3rd RACE PCR용 primer로 사용하였고, (de)Vasa F4/R4 primer를 1st RACE PCR용으로 사용하였다. 각 Primer들은 20 mer 길이, 53.2~54.1 ℃ Tm, 45~55 %의 GC 함량을 갖게 구성하였고, 제작된 primer stock은 100 pmole/ul의 농도로, working primer는 10 pmole/ul의 농도로 Nuclease-free water에 녹였다. 제작한 2nd, 3rd primer들의 위치와 정보는 그림 12 및 표 3과 같다.

그림 12. 넙치 Vasa partial cDNA의 nucleotide sequence와 제작 primer의 위치

Primer Name	Sequence	Length	Tm	G.C%
PO Vasa=-RTF1	5' - CAGGAAGTTTGCCTTTGGAA - 3'	20	54.1	45
PO Vasa-RT F2	5' - TACAGGAGCCTGAAGCCATC - 3'	20	54	55
PO Vasa-RT R1	5' - GACCTTTCCTCGTCCAATCA - 3'	20	53.6	50
PO Vasa-RT R2	5' - CGTCCAATCATGTCCAACAG - 3'	20	53.2	50

표 3. 본 연구에 사용한 넙치 Vasa cDNA-specific primer의 서열 및 정보

- 나. Rapid Amplification of cDNA Ends (RACE)
- First-strand Full-length cDNA 합성

법치 Vasa partial cDNA의 nucleotide로부터 full-length cDNA를 분리하기 위하여 CapFishing[™] Full-length cDNA Premix Kit (Seegene)로 first-strand full-length cDNA를 합성하였다. 법치 난소 RNA 2 ug, 5 mM dNTP 4 ul, 10 mM dT-adaptor 2 ul를 microtube에 넣어 75 ℃에서 3분 간 반응시킨 후, 얼음에 2분 간 두어 3' 말단에 dT-adaptor를 법치 난소 RNA에 labeling 하였다. 표지된 RNA에 5× RT buffer 4 ul, CapFishing solution 1 ul, BSA (1 mg/ml) 2 ul, RNase inhibitor (40 Unit/ul) 0.5 ul, Reverse transcriptase (200 Unit/ul) 1 ul를 첨가한 후 42 ℃에서 1시간 동안 역전사 반 응을 유지하였다. Double-stranded mRNA의 5' 말단의 Cap 구조를 labeling 하기 위하 여 75 ℃로 denature 시킨 CapFishing adaptor 3 ul를 넣은 후, 역전사효소 0.3 ul를 추 가, 42 ℃에서 30분 간 반응시켰다. 70 ℃ 및 94 ℃에서 역전사효소 활성을 없앤 후, 최종 200 ul로 희석하여 RACE 반응에 주형으로 사용하였다.

- 5'- and 3'-RACE

법치 난소의 first-strand full-length cDNA로부터 *Vasa* full-length cDNA를 분리하기 위하여 RACE PCR을 수행하였다. 각기 3개의 법치 *Vasa*-specific primer를 사용하여 5'- 및 3'- 말단으로의 RACE PCR을 수행할 수 있도록 구상하였다 (그림 13). First RACE PCR은 first-strand cDNA 5 ul, SeeAmp Taq Plus Master Mix 25 ul, 10 uM 5'-RACE primer (5'-RACE PCR용) 1 ul, 또는 3'-RACE primer (3'-RACE PCR용) 1 ul, 증류수 18 ul를 섞어 최종 50 ul로 수행하였다. Target-specific primer의 경우, 5'-RACE first PCR을 위해 (de)Vasa R4, PO Vasa-RT R1, PO Vasa-RT R2 primer를, 3'-RACE first PCR을 위해 (de)Vasa F4, PO Vasa-RT F2, PO Vasa-RT F1 primer를 사용하였다. First PCR 반응조건은 94 ℃에서 3분 간 pre-denature 후, 94 ℃에서 40초 간 denature, 60 ℃에서 40초 간 annealing, 72 ℃에서 2분 간 extension을 1 cycle로 하여, 총 35 cycle을 반응시킨 뒤, 72℃에서 5분 간 post extension하였다. 증폭산물을 확인하기 위한 전기영동은 1% agarose gel에 PCR 산물 20 ul를 loading 한 후, 100 volt에서 30분 간 수행하였다 (그림 14). 증폭산물의 크기를 비교하기 위한 marker DNA는 1 Kp (+) DNA Ladder (Enzynomics)와 100 bp DNA Ladder (Enzynomics) 각 5 ul를 사용하였다. Second RACE PCR은 전기영동 후 남긴 first PCR product 30 ul

를 정제하여 2 ul를 주형으로 사용하였고, SeeAmp Taq Plus Master Mix 25 ul, 10 uM 5'-RACE primer (5'-RACE PCR용) 1 ul, 또는 3'-RACE primer (3'-RACE PCR용) 1 ul, 증류수 21 ul를 섞어 최종 50 ul로 수행하였다. Target-specific primer의 경우, 5'-RACE second PCR을 위해 PO Vasa-RT R1과 PO Vasa-RT R2 primer를, 3'-RACE second PCR을 위해 PO Vasa-RT F2과 PO Vasa-RT F1 primer를 사용하였다 (그림 15).

그림 13. 넙치 Vasa full-length cDNA를 분리하기 위한 first RACE PCR 반응의 구상.

Second PCR 반응조건은 94 ℃에서 3분 간 pre-denature 후, 94 ℃에서 40초 간 denature, 60 ℃에서 40초 간 annealing, 72 ℃에서 90초 간 extension을 1 cycle로 하여, 총 35 cycle을 반응시킨 뒤, 72℃에서 5분 간 post extension하였다. 증폭산물을 확인하기 위한 전기영동은 1% agarose gel에 PCR 산물 30 ul를 loading 한 후, 100 volt에서 30분 간 수행하였다(그림 16). 증폭산물의 크기를 비교하기 위한 marker DNA는 1 Kp (+) DNA Ladder (Enzynomics)와 100 bp DNA Ladder (Enzynomics) 각 5 ul를 사용하였다. 5'-RACE PCR 결과, first PCR에서 약 1.3 kb와 1.2 kb 크기의 product가 확인되었고, second PCR에서도 internal target-specific primer의 예상 결과인 약 1.2 kb 크기의 product가 확인되었다. 3'-RACE PCR 결과, first PCR에서 약 1.5 kb와 1.4 kb 크기의 product가 확인되었고, second PCR에서도 internal target-specific primer의 product가 확인되었다. Second PCR까지의 결과가 예상 크기의 product를 보이는 결과를 나타냈고, 해당 product를 clonig하기에 충분함으로 third PCR은 수행하지 않았다.

그림 14. First RACE PCR 전기영동 결과.

* M: marker

그림 15. 넙치 *Vasa* full-length cDNA를 분리하기 위한 second RACE PCR 반 응의 구상. First PCR primer에 적용된 second primer를 적색으로 표시 하였다.

- 그림 16. Second RACE PCR 전기영동 결과.
- * Arrow: Cloning에 사용한 PCR products
- * M: marker

- RACE PCR product의 Cloning

RACE PCR 결과 넙치 난소의 *Vasa* cDNA로 추정되는 두 개의 product (그림 16. arrows)를 cloning하였다. 대상 산물을 gel로부터 잘라내어 앞의 방법과 동일하게 agarose gel로부터 증폭된 DNA를 elution하였다. pGEM-T easy vector (Promega, 그림 17)와 elution DNA를 ligationt시켜 형질전환에 사용할 재조합 DNA를 제작하였다. 형 질전환에 사용한 수용성세포는 *E. coli* 세포주인 DH5-a (Solgent) 50 ul를 사용하였 고, ligation mixture 5 ul를 Inoue 방법을 수정하여 형질전환시켰다. -80 ℃에 보관중 인 수용성세포를 얼음에 꽂아 녹이고, ligation mixture를 첨가한 후, 40분 간 반응시 켰다. 42 ℃에서 60초 간 heat-shock을 주고, 다시 얼음에 꽂아 두었다가, 37 ℃에 보 관해 두었던 LB broth 배지 500 ul를 추가하여 37 ℃, 200 rpm shaking incubator에서 120분 간 배양한 뒤, 50 ul와 300 ul를 각각 LB agar 배지 plate에 spreading bead를 사용하여 도말하였다. LB agar 배지에는 80 mg/ml의 X-gal, 0.5 mM의 IPTG, 50 ug/ml의 ampicillin을 처리하였다. 넙치 각 유전자들이 형질전환된 수용성세포들이 도 말된 plate는 37 ℃ incubator에서 16시간 동안 배양하였다. 배양결과, 형질전환 수용 성세포들이 도말된 plate에서 blue 및 white-colony가 양호하게 형성되어 있었음을 확 인하였고 (그림 18), 5'-RACE PCR 산물을 형질전환시킨 LB agar plate에서 white colony 5개, blue colony 1개를, 그리고 3'-RACE PCR 산물을 형질전환시킨 LB agar plate에서 white colony 6개를 innoculation하여 50 ug/ml의 농도로 ampicillin이 처리된 LB broth 배지 5 ml에 넣고 37 ℃에서 180 rpm으로 10시간 배양하여 plasmid DNA 를 분리하였다.

그림 17. Ligation에 사용한 pGEM-T eassy vector의 모식도. Multiple cloning site과 함께 LacZ, ampicillin 저항성 유전자를 가지고 있다.

그림 18. 5'-RACE PCR product가 형질전환된 plated에서의 white 및 blue colony.

- Plasmid DNA의 분리

LB broth 배지에서 배양된 clone들로부터 넙치 *Vasa* cDNA의 5⁻·및 3⁻RACE PCR product를 포함하는 plasmid DNA는 GeneAll[™] Exprep[™] Plasmid Isolation Kit (GeneAll)을 사용하여 앞의 방법과 동일하게 분리하였다. 분리된 plasmid DNA들은 1 ul씩을 취하여 1 % agarose gel에 loading 한 후, 100 volt에서 50분 간 전기영동을 수행하였다 (그림 19). Plasmid DNA의 크기를 비교하기 위한 marker DNA는 1 Kp (+) DNA Ladder (Enzynomics)와 100 bp DNA Ladder (Enzynomics) 5 ul를 사용하였 다. 확인결과, 5'-RACE의 white colony로부터 분리된 5개 및 3'-RACE의 6개 plasmid DNA들은 blue colony로부터 분리된 재조합되지 않은 vector의 크기와 비교할 때, 모 두 insert DNA를 포함하고 있을 것으로 판단되었다.

그림 19. 5'- 및 3'- RACE PCR 산물을 포함하는 plasmid DNA의 전기영동 결과. * M: marker

- PCR을 통한 plamid DNA 확인

분리된 plasmid DNA들이 넙치 *Vasa* cDNA-specific primer를 통하여 증폭된 product 를 insert DNA로 가지고 있으나, internal primer (VASA-RT F2/R2 set for 5', VASA-RT F1/R1 set for 3')를 가지고 PCR을 수행하여, 얻어진 plasmid DNA들이 넙 치 *Vasa* cDNA와 일치하는 지 확인하였다. 0.1 ul의 분리한 plasmid DNA들을 주형 으로 하여 각 5 pmole의 primer set과 250 uM/each의 dNTP mix, 그리고 1 rxn/tube의 reaction buffer와 polymerase (Phire[™] Hot Start DNA Polymerase; FINNZYMES)를 사용하여 final 20 ul에 반응시켰다. 반응 조건은 98 ℃에서 pre-denature 후, 98 ℃에서 15초 간 denature, 55 ℃에서 15초 간 annealing, 72 ℃에서 90초 간 extension을 1 cycle로 하여, 총 25 cycle을 반응시킨 뒤, 72 ℃에서 1분 간 post extension하였다. 증 폭산물을 확인하기 위한 전기영동은 1 % agarose gel에 PCR 산물을 모두 loading 한 후, 100 volt에서 40분 간 수행하였다 (그림 20). 증폭산물의 크기를 비교하기 위한 marker DNA는 1 Kb (+) DNA Ladder (Enzynomics) 5 ul를 사용하였다. 전기영동 결 과, 각 primer set에 대하여 예상크기인 약 200 bp와 150 bp의 PCR 산물을 확인할 수 있었으며, *Vasa* cDNA 서열을 포함하고 있지 않은 blue colony로부터 분리한 plasmid에서는 증폭산물이 확인되지 않아, 넙치 *Vasa* cDNA가 잘 cloning 되었을 것으로 판단되었다.

그림 20. 5'- 및 3'- RACE PCR 산물을 포함하는 plasmid DNA를 주형으로 internal primer set을 사용한 PCR의 전기영동 결과. * M: marker

다. 넙치 Vasa의 full-length cDNA sequence 결정 및 분석

RACE를 통하여 얻어진 넙치의 *Vasa* cDNA 서열 확인은 (주)제노텍에 의뢰, Applied Bioscience 3730XL 장비를 사용하여 forward 및 reverse 방향으로 sequencing

한 후, 각 clone에 대한 서열을 결정하였다. 5'-RACE 결과 얻어진 각 서열들을 비교 한 후 최종 5개 clone 모두가 넙치의 Vasa cDNA 서열임이 확인되었으며, 약 1,200 bp 크기를 나타냈다 (그림 21). 특이한 것은 2번 clone의 5' 말단 부분이 나머지 4개 clone보다 약 60 bp 정도 크게 나타난 것으로, 이는 넙치 Vasa 유전자가 alternative splicing에 의해 다른 종류의 transcript를 만들어 내거나 subtype이 존재할 수 있음을 추론케 하였다. 3'-RACE 결과 얻어진 서열들은 5개 중 3개의 clone이 넙치의 Vasa cDNA 서열을 포함하고 있었고, 신뢰할 수 있는 결과만을 선별하여 비교한 결과, 모 든 clone들은 약 1,300 bp 크기로 나타났다 (그림 22). 5'- 및 3'-RACE 결과로 얻어 진 서열들은 선택된 서열 내에서 151 bp가 서로 overlap되었고, 넙치의 Vasa cDNA 의 크기는 최종 2461 bp인 것으로 나타났다 (그림 23). 얻어진 nucleotide sequence에 대한 NCBI 검색 결과, 유효 구간 내 상동성이 Euthynnus affinis (점다랑어), Lateolabrax japonicus (농어), Katsuwonus pelamis (가다랑어)와 가장 높게 나타났다. Deduced amino acid 서열은 176-2116 bp 구간으로 646개의 amino acid를, 175개의 5'-UTR과 345개의 3'-UTR을 갖고 있는 것으로 나타났다 (그림 24). 넙치 Vasa의 deduced amino acid를 타 종과 비교해 본 결과, Seriola guingueradiata (방어) 및 Trachurus japonicus (전갱이)와 같은 그룹으로 나뉘었으며, 같은 가자미목인 Cynoglossus semilaevis (박대)와는 거리가 있는 것으로 나타났다 (그림 25). 넙치 Vasa 단백질에는 arginine과 glycine이 반복적으로 나타나고 있었으며, D-E-A-D box 가 특징적으로 존재하였다 (그림 24). 넙치 Vasa 단백질을 3차원 공간충진모형으로 구성해 본 결과, ATP binding ste, Mg²⁺ binding site 등의 functional site들이 내부에 존재하고 있었다 (그림 26). 최종 결정된 넙치 Vasa cDNA의 서열은 accession number JQ070418로 GenBank에 등록하였다 (그림 27).

Clone	Sequence	Number	Clone	Sequence	Number
5-4	GTCTACCAGGCATTCGCTTCATGGGGGGATAGGG	33	5-4	ACAGAAGGATGCAGCTGAGGGTGAAAGACCAAAGGTCACCTACATTCCTCCAACTCT	CTG 634
5-5	GTCTACCAGGCATTCGCTTCATGGGGGGATAGGG	33	5-5	ACAGAAGGATGCAGCTGAGGGTGAAAGACCAAAGGTCACCTACATTCCTCCAACTCT	CTG 634
5-3	GTCTACCAGGCATTCGCTTCATGGGGGGATAGGGGGC	36	5-3	ACAGAAGGATGCAGCTGAGGGTGAAAGGCCAAAGGTCACCTACATTCCTCCAACTCT	TG 648
5-2		CTOGCAACOCT 58	5-2	ACAGAAGGATGCAGCTGAGGGTGAAAGACCAAAGGTCACCTACATTCCTCCAACTCT	TG 718
5-1		36	5_1		TC 653
51	*****	50	51		***
5-4		A 34	5-4	TGAQGATGAAGAGQCCATTTTTGCCCACTATGAACGTGGCATCAACTTTGACAAGTAT	[GA 694
5-5		A 34	5-5	TGAGGATGAAGAGGCCATTTTTGCCCCACTATGAACGTGGCATCAACTTTGACAAGTAT	GA 694
5-3	6	CCGACACGAGA 48	5-3	TGAGGATGAAGAGGCCATTTTTGCCCACTATGAACGTGGCATCAACTTTGACAAGTAT	GA 708
5-2	GGGCACCTGTCCCCGTGCACGGTGCGCGCTCTGCTGTCTGCACACGCGC	CCGACACGAGA 118	5-2	TGAGGATGAAGAGGCCATTTTTGCCCACTATGAACGTGGCATCAACTTTGACAAGTAT	GA 778
5-1		CCGACACGAGA 53	5-1	TGAGGATGAAGAGGCCATTTTTGCCCACTATGAACATGGCATCAACTTTGACAAGTAT	GA 713
0 1	100000	*	0 1	***************************************	***
5-4	CGTGACCCACGAGCTGAAGTGCACCGCGACGGCACGAGACGACCACCGA	GCTCTTCCCCA 94	5-4	TGACATTATGGTGGACATCAGTGGAACCAACCCACCGCAAGCAA	AGA 754
5-5	CGTGACCCACGAGCTGAAGTGCACCGCGACGGCACGAGACGACCACCGA	GCTCTTCCCCA 94	5-5	TGACATTATGGTGGACATCAGTGGAACCAACCCACCGCAAGCAA	AGA 754
5-3	CGTGACCCACGAGCTGAAGTGCACCGCGACGGCACGAGACGACCACCGA	GCTCTTCCTCA 108	5-3	TGACATTATGGTGGACATCAGTGGAACCAACCCACCGCAAGCAA	GA 768
5-2	CGTGACCCACGAGCTGAAGTACACCGCGACGGCACGAGACGACCACCGA	GCTCTTCCTCA 178	5-2	TGACATTATGGTGGACATCAGTGGAACCAACCCACCGCAAGCAA	GA 838
5-1	CGTGACCCACGAGCTGAAGTGCACCGCGACGGCGCGCGAGGGCGACGACCACCGA	GCTCTTCCTCA 113	5-1	TGACATTATGGTGGACATCAGTGGAACCCAACCCACCGCAAGCAA	GA 773
0 1	*****	*******	0 1	*****	***
5-4	CAAACATTTGCAAATAAATAAATAAAAAATGGACGAGTGGGAGGAAACG	GAAACTACTAA 154	5-4	GGTACAATTGTGCGAATCCCTGGCAAAAAATGTCAACAAATCTGGTTACGTGAAGCCC	GAC 814
5-5	CAAACATTTGCAAATAAATAAATAAAAAATGGACGAGTGGGAGGAAACG	GAAACTACTAA 154	5-5	GGTACAATTGTGCGAATCCCTGGCAAAAAATGTCAACAAATCTGGTTACGTGAAGCCG	GAC 814
5-3	CAAACATTTGCAAATAAATAAATAAAAAAATGGACGAGTGGGAGGAAACG	GAAACTACTAA 168	5-3	GGTACAATTGTGCGAATCCCTGGCAAAAAATGTCAACAAATCTGGTTACGTGAAGCCC	AC 828
5-2	CAAACATTTGCAAATAAATAAATAAAATAGACGACGACGAGGGAGG	GAAACTACTAA 238	5-2	GGTACAATTGTGCGAATCCCTGGCAAAAAATGTCAACAAATCTGGTTACGTGAAGCCC	SAC 898
5_1		CAAACTACTAA 172	5_1		AC 000
51		****	51		***
5-4	TGGTTGTGTTGCACCAACCAGCTACGCATCAAGTGAAGCCCCCACAAGGA	GACTCCTGGAA 214	5-4	CCCTGTGCAGAAGCATGGCATTCCAATCATTTCTGCTGGCAGAGATCTCATGGCGTGT	GC 874
5-5	TOGTTOTOTOCO CONCORRECTOR CONTOUR AND A CONCORRECT A CONCORRECTA A	GACTOCTOGAA 21/	5-5	CCCTGTGCAGAAGCATGCCATTCCAATCATTTCTGCTGGCAGAGATCTCATGGCGTG	GC 874
5_3	Teetteteteteconcondentacentennetaneen acternetaneen acternetate	CACTCCTCCAA 228	5_3	CONTRIGUNALINGUN TOURNI UNIT TO TRUTING AUXILIARIA AUXILIA	CC 888
5-0	TOTTOTOTOTOTOCACCAACCACCTACCCATCAACTCAACCCACCACCAACCA	CACTOCTOCIAN 200	5-0		
5-2		CACTOCTOCAA 220	5-2		100 900
5-1	**************************************	46166166AA 200	5-1	**************************************	190 093
5-4	COTGATTGTGGTGGATTTGGAAAAGGCCCTGGAGGAAGAGGCGAGGAGGA	GGAGGATTITC 274	5-1	000000000000000000000000000000000000000	200 034
5-5	CGGTGATTGTGGTGGATTTGGAAAAGGCCCTGGAGGAAGAGCCAGACGA	GGAGGATTITC 274	5-5	CCABACTRGATCCGGTABABACCGCTGCATTTCTCCCCCATCCTGCAGCAGCTGATC	200 004
5_3	CCCTCATTGTCGTCGATTTCCAAAAACCCCCTCGACGAACAACACCACCA	CCACCATTITC 288	5_3	CCA AACTREATCORRETA AA ACRECTECATTECTCCTCCCCATCCTRCARCARCTRATC	200 004
5-0	CONTRATTOTOTOTATTTCCAAAAACCCCCTCCACCACCACCCAC	COACCATTITO 200	5-0	00000000000000000000000000000000000000	1010 040
5-2			5-2	001 AD 1 00A 00 A 001 001 A000 001 001 01 11 A 001 000 0 A A A TOCCOTA 001 0A A A 00	
5-1	ADADADAADAADADADA U JJJJDAAAAADD I I I I ADD I DD I DI I ADD I DD I DD I DD I ADADAAAADA A A A	44444411116 293	5-1		***
5-4		TCGAACAAAAC 334	5-4	AGACGGTGTGGCAGCCAGTCGCTTCAGTGAGCTGCAGGAGCCTGAAGCCATCATCGTG	GC 994
5-5	AGGCTCCTTTTCCTCAGTTGGGGATGAGAATGGTAATGATGGGGACAGC	TCGAACAAAAC 334	5-5	AGACGGTGTGGCAGCCAGTCGCTTCAGTGAGCTGCAGGAGCCTGAAGCCATCATCGTG	200 001
5-3	ACCOUNT		5-3	AGACGGTGTGGCAGCCAGTCGCTTCAGTGAGCTGCAGGAGCCTGAAGCCATCATCGTG	3GC 1009
5-0	ACCOLOCITATION ACTOR ACT		5-0		200 1000
5-2	ACCOLOCITITICO ICACITICO CONTONO ANTO CALA TOCOLO CALCO CALC		5-2		200 10/0
5-1	******C*******************************	TCGAACAAAAC 303 T*****	5-1	AGAUGUTUTUTUTUTUTUTUTUTUTUTUTUTUTUTUTUTU	3GC 1013
5-4		COCAGAGTOGA 304	5-4	COCGACCAGGGAGCTCATCTGCCAGATCTTCCTGGAGGCCAGGAAGTTTGCCTTTGG	AC 1054
5-5	AGGAGGAGAAAACAGGTGGTTTCAGAGGAAGAGGACGTGGCAGAGGGTTT	GGCAGAGTGGA 39/	5-5	CCCGACCAGGGAGCTCATCTGCCAGATCTTCCTGGAGGCCAGGAAGTTTGCCTTTGGA	AC 1054
5-3		CCCACACTOCA 409	5-0		MC 1004
5-3			5-0		WG 1100
5-2			5-2		WO 1070
5-1	**************************************	413 ****	5-1	**************************************	446 1073 ***
5-4	CAGAAGTGAAAATGACTGGAGAGGAGGAGGGAATGTGTGGGGTTTAGAGGG	GGAAGTCGAGG 454	5-1		AT 1114
5-5	CAGAAGTGAAATGACTGGAGACGATGACGAAATGTGTGGGTTTACACCA	GGAAGTCGACC AFA	5-5		VI 1114 VAT 1114
5-3	CACAACTCAACTCACCACCACCATCACCCAATCTCTCCCCCTTTACACCCA		5-0	A TO TO TO CONCERNMENT OF THE TOTAL OF TO A CARGE AND A CARGE AT A CARGE A CAR	VAT 1100
5-3	CAGAAGIGAAA IGACIGGAGAGAGAGAGAGAGAGAGGA	GUAAUTUUAUU 408	5-3		VAI 1128
5-2	CAGAAGIGAAA IGACIGGAGACGA IGACGGAA IGIGIGGGIIIAGAGGA	GGAAGICGAGG 538	5-2		WI 1198
5-1	CAGAAGI GAAA I GAC I GGAGACGA I GACGGAA I GI GI GGGI I I AGAGGA	GGAAGICGAGG 4/3	5-1	A I G I G I G CG I CCAG I GG I I G I I A I GG I GG	VAI 1133 ***
5_4	ACCAACACCCACCACCACCACCTTTCACACCACCTCACCAC	CONCONCTION 514	5-4	CTCAACACCATCTAATATACTCTCTCCCACACCACCACCA	1174
0-4 5-5			5-4 5-5		100 11/4 100 1174
5-5		GUAGUACIIGU 514	5-5		100 11/4
5-3		GUAUUAUTTOO 528	5-3		AUG 1188
5-2	AGGAAGAGGCAGCAGAGGAGGTTTCAGACAAGGTGACCAGGGTGGCAGA	GGAGGACTIGG 598	5-2	C I CAAGAGGA I G I AA I A I AC I G I G I GGAACACCAGGAAGAC I G I I GGACA I GA I I GGA	ACG 1258
5-1	AGGAAGAGGCAGCAGAGGAGG111CAGACAAGG1GACCAGGG1GGCAGA	GGAGGACIIGG 533	5-1	C T CAAGAGGA I G I AA I A I A C I G I G I GGAACACCAGGAAGAC I G I I GGACA I GA I I GGA	ACG 1193 ***
5-4	ACCACCTTACCCTCCAAAACATCAACAAAATCTTTTCTCAACCTAAACAT	AAAATCCACA 574	5.4	ACCAAACCTC 1194	
5-4 5-5		MANATOCACA 574	0-4 5 5	ACCAAACCTC 1194	
5-5		AAAATCOACA 5/4	5-5		
5-3	AGGAGGTTACCGTGGAAAAGATGAACAAATCTTTTCTCAAGGTAAAGAT	AAAAAAAUUUAGA 588	5-3	AGGAAAGGTG 198	
5-2	AGGAGGI I ACCGI GGAAAAGA I GAACAAATCTTTTCTCAAGGTAAAGAT	AAAAATCCAGA 658	5-2	AGGAAAGGIC 1268	
5-1	AGGAGGTTACCGTGGAAAAGATGAACAAATCTTTTCTCAAGGTAAAGAT	AAAAATCCAGA 593	5-1	AGGAAAGGTC 1203	
	*****	****		******	

그림 21. 5'-RACE PCR product가 형질전환된 각 clone들의 insert nucleotide 서열.

Clone	Sequence	Number	Clone	Sequence	Number
3-2	CAGGAAGTTTGCCTTTGGAACATGTGTGCGTCCAGTGGTTGTTTATGGTGGAGTCAGTAC	60	3-2	CCACCGTATTGGGAGAACTGGCCGCTGTGGTAATACTGGGAAGGCTGTGTCTTTCTACGA	780
3-5	CAGGAAGTIIGCCIIIGGAACAIGIGIGCGICCAGIGGIIGIIIAIGGIGGAGICAGIAC	60	3-5	CCACCGIAIIGGGAGAACIGGCCGCIGIGGIAAIACIGGGAAGGCIGIGICIIICIACGA	780
3-3		00	0.0		700
3-2	TGGACACCATATAAGAGAAATCTCAAGAGGATGTAATATACTGTGTGGAACACCAGGAAG	120	3-2	CCCAGATGTTGATGGTCAGTTGGCCCGCTCTTTGGTTACAATCCTGTCCAAGGCCCAGCA	840
3–5	TGGACACCATATAAGAGAAATCTCAAGAGGATGTAATATACTGTGTGGAACACCAGGAAG	120	3–5	CCCAGATGTTGATGGTCAGTTGGCCCGCTCTTTGGTTACAATCCTGTCCAAGGCCCAGCA	840
3–3	TGGACACCATATAAGAGAAATCTCAAGAGGATGTAATATACTGTGTGGAACACCAGGAAG	120	3–3	CCCAGATGTTGATGGTCAGTTGGCCCGCTCTTTGGTTACAATCCTGTCCAAGGCCCAGCA	840
	***************************************			*****	
3-2	ACTGTTGGACATGATTGGACGAGGAAAGGTCGGGTTGCAGAAGCTGCGGTACTTAGTGCT	180	3-2	AGTAGTTCCCTCGTGGTTAGAAGAGTATGCGTTCAATGCCCCCAGTAGTAATGATGCCAA	900
3-5	ACTGTTGGACATGATTGGACGAGGAAAGGTCGGGTTGCAGAAGCTGCGGTACTTAGTGCT	180	3-5	AGTAGTTCCCTCGTGGTTAGAAGAGTATGCGTTCAATGCCCCCAGTAGTAATGATGCCAA	900
3-3	ACTGTTGGACATGATTGGACGAGGAAGGTCGGGTTGCAGAAGCTGCGGTACTTAGTGCT	180	3-3	AGTAGTTCCTCGTGGTTAGAAGAGTATGCGTTCAATGCCCCCAGTAGTAATGATGCCAA	900
3-2	GGATGAGGCTGACCGCATGTTGGACATGGGCTTTGAGCCAGACATGCGCCGTCTGGTGGG	240	3-2	CCCTTCCAGGAGGAACTTTACTTCCACAGACTCCAGAAAGGGTCATGAACGAGGATTCTC	960
3-5	GGA I GAGGET I GACCEGCA I G I I GGGCA I GEGET I I GAGCCAGACA I GEGEGGT I GGG CCA TE ACCETTA COCCA TE TECEACA TE COCCETTE CACCE ACA TE COCCETTE COCCETTE CACCETA CATEGORIE A CA	240	3-5	CCCTTCCAGGAGGAACTTTACTTCCACAGACTCCAGAAAGGGTCATGAACGAGGATTCTC	960
3-3		240	3-3		900
3-2	CTCCCCTGGAATGCCATCCAAAGAGAACCGCCAGACTCTGATGTTCAGTGCCACGTACCC	300	3-2	TCAGGACAGCACAGCGAAGAGCCCAGCTGCGGCGGCTCCGGCTGCATCTGATGAGGAAGA	1020
3-5	CTCCCCTGGAATGCCATCCAAAGAGAACCGCCAGACTCTGATGTTCAGTGCCACGTACCC	300	3-5	TCAGGACAGCACAGCGAAGAGCCCAGCTGCGGCGGCTCCGGCTGCATCTGATGAGGAAGA	1020
3–3	CTCCCCTGGAATGCCATCCAAAGAGAACCGCCAGACTCTGATGTTCAGTGCCACGTACCC	300	3–3	TCAGGACAGCACAGCGAAGAGCCCAGCTGCGGCGGCTCCGGCTGCATCTGATGAGGAAGA	1020
	***************************************			***************************************	
3-2	TGAGGACATCCAGAGGTTGGCAGCAGACTTTCTCAAGATTGACTACCTGTTCTTAGCTGT	360	3-2	CTGGGAGTAGAGGGAATATTGGTGCAGCCCAGCCACCCAC	1080
3-5	TGAGGACATCCAGAGGTTGGCAGCAGACTTTCTCAAGATTGACTACCTGTTCTTAGCTGT	360	3-5	CTGGGAGTAGAGGGAATATTGGTGCAGCCCAGCCACCCAC	1080
3-3	I GAGGACAT CCAGAGGT I GGCAGCAGACT I T CT CAAGAT I GAC TACC I G I T CT TAGC I GT	360	3-3	C I GGGAG I AGAGGGAA I A I I GG I GCAGCCCACCACCACACA I GGACC I GAGC I GC I	1080
3-2	GGGTGTGGTGGGCGGAGCCTGCAGTGATGTAGAGCAGTCATTTGTCGAAGTTACCAAATT	420	3-2	TATTICCTGTTTACCTGTTGCGGTCCTATCACTGATTTGTTTCAATGGAAAACAGAAT	1140
3-5	GGGTGTGGTGGGCGGAGCCTGCAGTGATGTAGAGCAGTCATTTGTCGAAGTTACCAAATT	420	3-5	TATTTGCTGTTTAGCTTGTTGCGGTTCTATCACTGATTTTGTTTCAATGGAAAAACAGAAT	1140
3–3	GGGTGTGGTGGGCGGAGCCTGCAGTGATGTAGAGCAGTCATTTGTCGAAGTTACCAAATT	420	3–3	TATTTGCTGTTTAGCTTGTTGCGGTTCTATCACTGATTTTGTTTCAATGGAAAACAGAAT	1140
	**********			***************************************	
3-2	CTTAAAGCGGGAGCAGCTTCTTGACCTGCTGAAGATCACGGGAATGGAACGCACCATGGT	480	3-2	ATGTCAAGTGAGATGTTTAAATAGAGAAACCAGATATTTCTCCCTAACGTTCTTAATCTT	1200
3–5	CTTAAAGCGGGAGCAGCTTCTTGACCTGCTGAAGATCACGGGAATGGAACGCACCATGGT	480	3-5	ATGTCAAGTGAGATGTTTAAATAGAGAAAACCAGATATTTCTCCCTAACGTTCTTAATCTT	1200
3-3	CTTAAGGCGGGAGCAGCTTCTTGACCTGCTGAAGATCACGGGAATGGAACGCACCATGGT	480	3-3	ATGTCAAGTGAGATGTTTAAATAGAGAAACCAGATATTTCTCCCTAACGTTCTTAATCTT	1200
	······				
3-2	GTTTGTGGAGACCAAGAGACAAGCTGATTTTATTGCGGCTTTCTTGTGCCAGGAGAAAGT	540	3-2	CACAGACCTGCATGTTGTGGAAAGTTTTTTTGTTTTATTCTATTTTTTAAATTATCAC	1260
3-5	GTTTGTGGAGACCAAGACAAGCTGATTTATTGCGGCTTTCTTGTGCCAGGAGAAAAGT	540 540	3-3		1260
0.0		540	00		1200
3-2	TCCAACCACCAGCATACATGGTGACCGTGAGCAGCGGGAACGAGAGCTGGCACTGACAGA	600	3-2	TTGCATGAAAATGGTTAATGTCTGAGAAGAGAGAACAATAAATA	1320
3–5	TCCAACCACCAGCATACATGGTGACCGTGAGCAGCGGGAACGAGAGCTGGCACTGACAGA	600	3–5	TTGCATGAAAATGGTTAATGTCTGAGAAGAGAGAGAACAATAAATA	1320
3–3	TCCAACCACCAGCATACATGGTGACCGTGAGCAGCGGGAACGAGAGCTGGCACTGACAGA	600	3–3	TTGCATGAAAATGGTTAATGTCTGAGAAGAGAGAGAACAATAAATA	1320
2.0		660	2.0	ACACTTCAACATTAAAACCAACTTCCAACTCTAAAAAAAA	1000
3-5	CTTCCGCTCTGGCAAATGTCCAGTCCTGGTTGCAACCTCTGTAGCTGCCGCGCGGTCTGGA	660	3-2 3-5		1374
3-3	CTTCCGCTCTGGCAAATGTCCAGTCCTGGTTGCAACCTCTGTAGCTGCCCGCGGTCTGGA	660	3-3	AGACTTGAAGATTAAAAGCAAGTTCCAACTGTAAAAAAAA	1376
	******			*****	
3-2	TATTCCAGATGTGCAGCATGTGGTGAACTTTGACCTCCCCAACAACATCGATGAGTATGT	720	3-2	AGTCGCAGCATTCACAG 1397	
3-5	TATTCCAGATGTGCAGCATGTGGTGAACTTTGACCTCCCCAACAACATCGATGAGTATGT	720	3-5	AGTCGCAGCATTCACAG 1391	
3–3	TATTCCAGATGTGCAGCATGTGGTGAACTTTGACCTCCCCAACAACATCGATGAGTATGT	720	3–3	AGTCGCAGCATTCACAG 1393	

그림 22. 3'-RACE PCR product가 형질전환된 각 clone들의 insert nucleotide 서열.

	5'-RACE Primer		
	>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	daptor	
	CTACCAGGCATTCGCTTCATGGG	GGATAGGG	
		GGCGAAGGCAGCGGAACTGGCAACCC ⁻	58
	GGGCACCTGTCGCCGTGCACGGTGC	GCGCTCTGCTGTCTGCACACGGCCCCGACACGAG/	118
	CGTGACCCACGAGCTGAAGTGCACC	GCGACGGCACGAGACGACCACCGAGCTCTTCCTC/	178
	CAAACATTTGCAAATAAATAAATAA	AAAATGGACGAGTGGGAGGAAACGGAAACTACTA	1 238
	TGGTTGTGTTGCACCAACCAGCTAC	GCATCAAGTGAAGCCCCACAAGGAGACTCCTGGAA	298
	CGGTGATTGTGGTGGATTTGGAAAA	GGCCCTGGAGGAAGAGGCAGACGAGGAGGATTTT(358
	AGGCTCCTTTTCCTCAGTTGGGGGAT	GAGAA I GG I AA I GA I GGGGACAGC I CGAACAAAA(; 418
5'-RACE		GGAAGAGGACGTGCAGAGGGTTTGGCAGAGTGGA	4/8
			1 000 E00
		40464406104664006100640400460461100	1 090
		CAARTETTTTETCAAQQTAAAQATAAAAATCCAQA AGACCAAAGGTCACCTACATTCCTCCAACTCTCT	2 718
	TGAGGATGAAGAGGCCATTTTTGCC	CACTATGAACGTGGCATCAACTTTGACAAGTATG	778
	TGACATTATGGTGGACATCAGTGGA	ACCAACCCACCGCAAGCAATCATGACTTTTGAAG	838
	GGTACAATTGTGCGAATCCCTGGCA	AAAAATGTCAACAAATCTGGTTACGTGAAGCCGA	898
	CCCTGTGCAGAAGCATGGCATTCCA	ATCATTTCTGCTGGCAGAGATCTCATGGCGTGTG	958
	CCAAACTGGATCCGGTAAAACGGCT	GCATTTCTCCTCCCCATCCTGCAGCAGCTGATGG	01018
	AGACGGTGTGGCAGCCAGTCGCTTC	AGTGAGCTGCAGGAGCCTGAAGCCATCATCGTGGG	078
	CCCGACCAGGGAGCTCATCTGCCAG	ATCTTCCTGGAGGC	
	(Over les e		1100
Overlap			1100 T
Overrap		GGAGCACCAGGAAGACTGTTGGACATGATTGGACA	1258
	AGGAAAGGTO	(Overlap end)	1268
		GGGTTGCAGAAGCTGCGGTACTTAGTGC	180
	GGATGAGGCTGACCGCATGTTGGAC	ATGGGCTTTGAGCCAGACATGCGCCGTCTGGTGG	G 240
	CTCCCCTGGAATGCCATCCAAAGAG	AACCGCCAGACTCTGATGTTCAGTGCCACGTACCO	300
	TGAGGACATCCAGAGGTTGGCAGCA	GACTTTCTCAAGATTGACTACCTGTTCTTAGCTG	360
	GGGTGTGGGGGGGGGGGGGGGCCTGCAGT	GATGTAGAGCAGTCATTTGTCGAAGTTACCAAAT	420
			480
			540
		UUIUAUUAUUUUUAAUUAUAUUIUUUAUIUAUIUAUIUA	1 660
	TATTCCAGATGTGCAGCATGTGGTG	AACTTTGACCTCCCCAACAACATCGATGAGTATG	720
	CCACCGTATTGGGAGAACTGGCCGC	TGTGGTAATACTGGGAAGGCTGTGTCTTTCTACG	1 780
	CCCAGATGTTGATGGTCAGTTGGCC	CGCTCTTTGGTTACAATCCTGTCCAAGGCCCAGC/	840
3 -RACE	AGTAGTTCCCTCGTGGTTAGAAGAG	TATGCGTTCAATGCCCCCAGTAGTAATGATGCCAA	900
	CCCTTCCAGGAGGAACTTTACTTCC		C 960
	TO A OO A OA OO A OA OO OA A OA OOOO A	nonuno i oonun nuuu i oni u nounuuni i oi	
	ICAGGACAGCAGCGAAGAGCCCA	GCTGCGGCGGCTCCGGCTGCATCTGATGAGGAAG/	1020
	CTGGGAGTAGAGGGAATATTGGTGC	GCTGCGGCGGCTCCGGCTGCATCTGATGAGGAAG/ AGCCCAGCCACCCACACATGGACCTGAGCTGCTC	1020 No. 1080
	TCAGGAGTAGAGGGAATATTGGTGC CTGGGAGTAGAGGGAATATTGGTGC TATTTGCTGTTTAGCTTGTTGCGGT	CALCAGE CONCENTRATION CONTRATION CONTRATION CONTRATION CONCENTRATION CONTRATION	1020 1080 1140
	TCAGGACAGGACAGGGAAGAGGCCA CTGGGAGTAGAGGGGAATATTGGTGC TATTTGCTGTTTAGCTTGTTGCGGT ATGTCAAGTGAGATGTTTAAATAGA	GCTGCGGCGGCTCCGGCTGCATCTGATGAGGAAG/ AGCCCAGCCACCCACATGGACCTGAGCGACCTC TCTATCACTGATTTGTTTCAATGGAAAACAGAA GAAACCAGATATTTCTCCCCTAACGTTCTTAATCT	1020 1080 1140 1200
	TCAUGACAGCACAGCGAAGAGCCCA CTGGGAGTAGAGGGAATATTGGTGC TATTTGCTGTTTAGCTTGTTGCGGT ATGTCAAGTGAGATGTTTAAATAGA CACAGACCTGCATGTTTGGGAAGGT	AGCIGOGOCOGOCTOCOGOCTOCOGOCTOCOGOCOGOCOGOCOG	1020 1080 1140 1200 1260
	TCAUGACAGCACAGCGAAGAAGCCCA CTGGGAGTAGAGGGAATATTGGTGC TATTTGCTGTTTAGCTTGTTGCGGT ATGTCAAGTGAGATGTTTAAATAGA CACAGACCTGCATGTTTAAATAGA TTGCATGAAAATGGTTAATGTCTGA	AGCIGOGGCGGCTCCGGCTGCATCTGATGAGGAAG/ AGCCCAGCCACCCACACATGGACCTGAGGAGGAAG/ AGCCCAGCCACCCACACATGGACCTGAGCTGCTC TCTATCACTGATTTTGTTCAATGGAAAACAGAA GAAACCAGATATTTCTCCCCTAACGTTCTTAATCT TTTTTTGTTTTATTCTATTTTTTTAAATTATTACA GAAGAGAAACAATAAATAATTGTGTTCCAAGCA/	A 1020 1080 1140 1200 1260 A 1320
	CAUGACAUCAUCAAUCUCAAUCUCA CTGGGAGTAGAGGGAATATTGGTGC TATTTGCTGTTTAGCTGTTGTGCGGT ATGTCAAGTGAGATGTTTAAATAGA CACAGACCTGCATGTTGTGGAAGT TTGCATGAAAATGGTTAATGTCTGA AGACTTGAAGATTAAAAGCAAGTTC ATGCTAGCCGCACCATTCAAC	CAACTGCAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	A 1020 1080 1140 1200 1260 A 1320
	CAUGACAUCAUCAAUGAAUCUA CTGGGAGTAGAGGGAATATTGGTGC TATTTGCTGTTTAGCTTGTTGCGGT ATGTCAAGTGAGATGTTTAAATAGA CACAGACCTGCATGTTGTGGAAGAT TTGCATGAAAAATGGTTAATGTCTGA AGACTTGAAGATTAAAAGCAAGTTC ATCGTAGTCGCAGCATTCACAG	AGCIGOGOCOCOCCACCACCACACTGATGAGGAAG/ AGCCCAGCCACCCACACATGGACCTGAGGAGGAAG/ AGCCCAGCCACCCACACATGGACACCTGAGCTGCTC TCTATCACTGATTTTGTTTCAATGGAAAACAGAA GAAACCAGATATTTGTTCCCCTAACGTTCTTAATCT TTTTTTGTTTTATTCTCATTTTTTTTAAATTATCA(GAAGGAGAGAACAATAAATAATAATTGTGTTCCAAGCA/ CAACTGTAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	A 1020 1080 1140 1200 1260 A 1320

그림 23. 5'- 및 3'-RACE 결과의 overlap 및 분리된 넙치 Vasa cDNA의 최종 서열.

1 GGCGAAGGCAGCGGAACTGGCAACCCTGGGCACCTGTCGCCGTGCACGGTGCGCGCTCTG 61 CTGTCTGCACACGGCCCCGACACGAGACGTGACCCACGAGCTGAAGTGCACCGCGACGGC 2 N G C V Δ S 22 E A P Q G D S W N G D C G G F G K G P G 241 TGAA<u>G</u>CCCCACAAGGAGACTCCTGGAACGGTGATTGTGGTGGATTTGGAAAAGGCCCTGG 42 G R R G G G S F S G D 62 301 AĞGAÁGAĞGCÁGAĊGAĞGAĞGAŤGTTŤCAĞGCŤCCŤTTŤCCŤCAĞTTĞGGĞATĞAGÁATĞG 82 102 122 142 D Q G G **H** G G L G G G Y **H** G K D E Q I F 541 TGACCAGGGTGGCAGAGGAGGAGGAGGTTGCGAGAAAAGATGAACAAAATCTT S Q G K D K N P E Q K D A A E G E R P K 601 TTCTCAAGGTAAAGATAAAAATCCAGAACAGAAGGATGCAGCTGAGGGTGAAAGACCAAA V T Y I P P T L C E D E E A I F A H Y E 162 182 661 GTCACCTACATTCCTCCCAACTCTCTGTGAGGATGAAGAGGCCATTTTTGCCCACTATGA R G I N F D K Y D D I M V D I S G T N P 202 721 ACGTĞGCATCAACTTTĞACAAGTATĞATĞACATTÄTGĞTGĞACATCAGTĞGAACCAACCC M Ē V S 222 F F Q 781 ACCGCAAGCAATCATGACTTTTGAAGAGGTACAATTGTGCGAATCCCTGGCAAAAAATGT N K S G Y V K P T P V Q K H G I P I I S 242 841 CÁACÁAATCTĞGTTACĞTGÁAGCCGÁCCCCTĞTGČAGÁAGCATĞGCÁTTCCAÁTCÁTTTC A G R D L M A C A Q T G S G K T A A F L 901 TGCTGGCAGAGATCTCATGGCGTGTGCCCAAACTGGATCCGGTAAAACGGCTGCATTTCT 262 V Q D G 282 Α 961 CCTCCCCATCCTGCAGCAGCAGCTGATGGCAGACGGTGTGGCAGCCAGTCGCTTCAGTGAGCT Q E P E A I V A P T B E I I C Q I E I 302 1021 GČAGĞAGĊĊŢĞAAĞĊĊĂĊĊĂĊĊĠĠĊĊĊĠĂĊĊĂĠĠĞAĠĊŢĊĂĊŢĠĊČAĠĂŢĊŢŢĊĊŢ E A R K F A F G T C V R P V V V G G V 1081 GGAGGCCAGGAAGTITGCCTTTGGAACATGTGTGGCGTCCAGTGGTTGTTTATGGTGGAG 322 R 342 Н H R G N 1141 CĂGTÁCTĞGAĊAĊĊATÁTAÁGAĞAAÁTCŤCAÁGAĞGAŤGTÁATÁTAČTGŤGTĞGAÁCAĊC 362 382 G M P K F N R Ω Μ 402 1321 GĞTGĞGCTCCCCTĞGAÄTGCCATCCÄAAĞAGÄACCGCČAGACTCTGÄTGTTCÄGTĞCCAC Y P E D I Q R L A A D F L K I D Y L F L 422 1381 GTACCCTGAGGACATCCAGAGGTTGGCAGCAGACTTTCTCAAGATTGACTACCTGTTCTT 442 R Q D 462 1501 CÂAATTCTTAÂAGCGGĞAGČAGČTTČTTĞACČTGČTGÂAGATCÁCGĞGAÄTGĞAAČGCÁC M V F V E T K R Q A D F I A A F L C Q E 482 1561 CATGGTGTTTGTGGAGACCAAGAGACAAGCTGATTTTATTGCGGCTTTCTTGTGCCAGGA G D R Q R 502 ς н R А R 522 1681 GACAGACTTCCGCTCTGGCAAATGTCCAGTCCTGGTTGCAACCTCTGTAGCTGCCGCGG L D I P D V Q H V V N F D L P N N I D E 542 1741 TCTGGATATTCCAGATGTGCAGCATGTGGTGAACTTTGACCTCCCCAACAACATCGATGA R Ν 562 G G 1801 GTATGTCCACCGTATTGGGAGAACTGGCCGCTGTGGTAATACTGGGAAGGCTGTGTCTTT V 582 D D V D GQ IAR S Т 1 1861 CTACGACCCAGATĞTTĞATĞGTČAGTTGGCCCGCTCTTTGĞTTACAATCCTGTCCAGGC Q V V P S W L E E Y A F N A P S S N D 602 1921 ССАССААЎТАЎТТСССТССТССТАБААЎААЎААЎАСТСССТССАТССССССССТАТАТО A N P S R R N F T S T D S R K G H E R G 1981 TGCCAACCCTTCCAGGAGGAACTTTACTTCCACAGACTCCAGAAAGGGTCATGAACGAGG F S Q D S T A K S P A A A A P A A S D E 2041 ATTCTCTCAGGACAGCACAGCGAAGAGCCCAGCTGCGGCGGCTCCGGCTGCATCTGATGA 622 642 646 CAGAATATGTCAAGTGAGATGTTTAAATAGAGAAACCAGATATTTCTCCCTAACGTTCTT 2281 AATCTTCACAGACCTGCATGTTGTGGAAAGTTTTTTTGTTTTATTCTATTTTTTAAAT

그림 24. 넙치 Vasa 서열 및 특징. 우측번호 및 지시서열은 아미노산, 좌 측번호 및 지시서열은 nucleotide 서열이다. DEAD-box는 box로, arginine-glycine rich region들은 진한 기울임체로, 개시 및 종결코돈은 진한 청색, poly A signal은 적색 문자에 밑줄로 표시되었다.

그림 25. 넙치 Vasa 및 타 종의 Vasa amino acid에 대한 phylogenetic tree. 넙치 Vasa의 결과는 적색 밑줄로 표시하였다.

그림 26. 넙치 Vasa protein의 공간충진모형. ATP binding ste, Mg2+ binding site 등의 functional site들이 내부에 존재하고 있다.

S NCBI RE	sources 🕙 How To 🖸		My NCBI Sign In
Nucleotide	Nucleotide -		
	I inite Advanced	rcn	Help
			The
Display Setting	<u>is:</u> ⊙ GenBank <u>Send:</u> ⊙	Change region shown	-
Paralicht	hys olivaceus vasa mRNA, complete cds		
GenBank: JQ0	70418.1	Customize view	
FASTA Grap	lics		
Go to: 🖸		Analyze this sequence	
LOCUS	J0070418 2461 bp mRNA linear VRT 25-JAN-2012	Run BLAST Bials Drivers	
DEFINITION	Paralichthys olivaceus vasa mRNA, complete cds.	Highlight Sequence Features	
ACCESSION VERSION	JQ070418 J0070418.1 GI:373427214	Find in this Sequence	
KEYWORDS			
ORGANISM	Paralichthys olivaceus (Japanese Flounder) Paralichthys olivaceus		
	Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;	Related Information	
	Actinopterygli; Neopterygli; Teleostel; Euteleostel; Neoteleostel; Acanthomorpha; Acanthopterygli; Percomorpha; Pleuronectiformes;	Taxonomy	
DEFENENCE	Pleuronectoidei; Paralichthyidae; Paralichthys.	Taxonomy	
AUTHORS	Jeong, HB., Lim, BS. and Song, CY.		
TITLE	Isolation and tissue-specific expression of vasa gene in the	Recent activity	Turn Off Clear
JOURNAL	Unpublished		Turn Off Clear
REFERENCE	2 (bases 1 to 2461) Jeong H -B Lim B -S and Song C -Y		BLAST
TITLE	Direct Submission	Q UNKNOWN13137	
JOURNAL	Submitted (24-NOV-2011) Marine and Environmental Research Institute, Jeju National University, 3288 Hamdeok-Ri, Jocheon-Eup,		BLAST
	Jeju, Jeju-Do 695-965, South Korea	Paralichthys olivaceus vas complete cds	a mRNA, Nucleotide
FEATURES	Location/Qualifiers 12461	Q UNKNOWN16738	
	/organism="Paralichthys olivaceus"		BLAST
	/mb1_type="mkNA" /db_xref="taxon: <u>8255</u> "		See more
	/tissue_type="ovary" /country="South Korea, Jain"		
	/collected_by="Hyung-Bok Jeong"		
230	/identified_by="Hyung-Bok Jeong and Bong-Soo Lim"		
CDS	1/62116 /note="DEAD (Asp-Glu-Ala-Asp) box polypeptide 4"		
	/codon_start=1		
	/protein_id=" <u>AEY68604.1</u> "		
	/db_xref="GI:373427215" /translation="MDEWEETETINGCVAPTSYASSEAPOGDSWNGDCGGEGKGEGGR		
	GRRGGFSGSFSSVGDENGNDGDSSNKTGGETGGFRGRGRGFGRVDRSEMTGDDDGM		
	CGFRGGSRGGRGSRGGFRQGDQGGRGGLGGGYRGKDEQIFSQGKDKNPEQKDAAEGER PKVTYIPPTLCEDEEAIFAHYERGINFDKYDDIMVDISGTNPPQAIMTFEEVQLCESL		
	AKNVNKSGYVKPTPVQKHGIPIISAGRDLMACAQIGSGKTAAFLLPILQQLMADGVAA		
	CNILCGTPGRLLDMIGRGKVGLQKLRYLVLDEADRMLDMGFEPDMRRLVGSPGMPSKE		
	NRQTLMFSATYPEDIQRLAADFLKIDYLFLAVGVVGGACSDVEQSFVEVTKFLKREQL LDLLKITGMERTMVFVETKROADFIAAFLCOEKVPTTSIHGDREORERELALTDFRSG		
	KCPVLVATSVAARGLDIPDVQHVVNFDLPNNIDEYVHRIGRTGRCGNTGKAVSFYDPD		
	VDGQLARSLVTILSKAQQVVPSWLEEYAFNAPSSNDANPSRNFTSTDSRKGHERGFS QDSTAKSPAAAAPAASDEEDWE"		
ORIGIN			
61 c	tgtotgcac acggccccga cacgagacgt gacccacgag ctgaagtgca ccgcgacggc		
121 a 181 c	cgagacgac caccgagete tteeteaaa acattigeaa ataaataaat aaaaaatgga gagtgggag gaaacggaaa etaetaatgg tigigitgea ceaaccaget acgeateaag		
241 t	gaageeeca caaggagaet eetggaaegg tgattgtggt ggatttggaa aaggeeetgg		
301 a 361 t	ggaagaggc agacgaggag gattitcagg ciccilitcc icagiigggg atgagaatgg aatgatggg gacagcicga acaaaacagg aggagaaaca ggiggiitca gaggaagagg		
421 a	cgtggcaga gggtttggca gagtggacag aagtgaaatg actggagacg atgacggaat		
481 g 541 t	tgtgggttt agaggaggaa gtogaggagg aagaggoago agaggaggtt toagacaagg gaccagggt ggcagaggag gaottggagg aggttacogt ggaaaagatg aacaaatott		
601 t	totoaaggt aaagataaaa atooagaaca gaaggatgca gotgagggtg aaagaccaaa		
661 g 721 a	goodoolaa attoottaa otoottyiya yyatyaayay yotattittiy GCCaCtatya cgiggcato aactitgaca agtatgatga cattatggig gacatcagig gaaccaacco		
781 a 841 c	cogcaagea atcatgactt ttgaagaggt acaattgtge gaateeetgg caaaaaatgt		
901 t	getggeaga gateteatgg egtgtgeeea aactggatee ggtaaaaegg etgeattet		
961 c	stesseate stgsagsags tgatggsaga sggtgtggsa gssagtsgst tsagtgagst		

그림 27. 넙치 Vasa cDNA nucleotide 및 deduced amino acid sequence의 GenBank 등록결과 capture 일부. Accession number JQ070418.

2) Vasa 유전자의 primer set 개발

(1) Primer design

분리된 넙치 vasa full-length cDNA 서열로부터 생식소 특이적인 Real-Time PCR용 primer set을 구상하였다. Primer는 NCBI primer design tool과 primer3 (http://bioinfo.ut.ee/primer3-0.4.0/primer3/)를 참고하여 선택하였다 (표 4). 선택된 서열 로 primer 제작을 의뢰하였고, HPLC grade로 정제하여 PCR에 사용하였다. 제작된 primer stock은 100 pmole/µl의 농도로, working primer는 10 pmole/µl의 농도로 neclease-free water에 녹였다.

Primer Name	Sequence	Length	Tm	G.C%
Vasa-Real F1	5' - CAGGAAGTTTGCCTTTGGAA - 3'	20	60.22	45
Vasa-Real F2	5' - TACAGGAGCCTGAAGCCATC - 3'	20	60.36	55
Vasa-Real R1	5' - CGTCCAATCATGTCCAACAG - 3'	20	59.96	50
Vasa-Real R2	5' - GACCTTTCCTCGTCCAATCA- 3'	20	60.05	50

표 4. 본 연구에 사용한 Real-Time PCR용 primer set의 서열 및 정보

(2) RT-PCR

제작된 primer를 통하여 넙치 각 조직에서 합성된 cDNA에서의 PCR 증폭여부를 확인하였다. 기 보고된 넙치 *Ef1-alpha* 유전자의 서열을 바탕으로 primer를 합성하였 고 (표 5), house keeping gene으로 하여 각 조직별 발현양상을 비교하였다 (그림 28). 합성한 넙치 각 조직의 cDNA 5 ul를 주형으로 하여, 각 5 pmole의 primer set과 250 uM/each의 dNTP mix, 그리고 1 rxn/tube의 reaction buffer와 polymerase (PRIME-Taq Polymerase; T&I)를 사용하여 final 20 ul에 반응시켰다. 반응 조건은 95 ℃에서 pre-denature 후, 95 ℃에서 30 초 간 denature, 60 ℃에서 20 초 간 annealing, 72 ℃에서 30 초 간 extension을 1 cycle로 하여, 총 30 cycle을 반응시킨 뒤, 72 ℃에 서 5 분 간 post extension하였다. 증폭산물을 확인하기 위한 전기영동은 1 % agarose gel에 PCR 산물을 모두 loading 한 후, 100 volt에서 30 분 간 수행하였다 (그림 28). 증폭산물의 크기를 비교하기 위한 marker DNA는 100 bp Plus DNA Ladder (Bioneer) 4 ul를 사용하였다. 전기영동 결과, 예상 크기인 303 bp 정도의 산물이 넙치의 각 조직들 중, 정소 및 난소에서 매우 강하게 나타남이 확인되었으나, 나머지 다른 조 직들에서는 뇌에서 약하게 확인될 뿐 전혀 발현되지 않았다 (그림 28. upper). Housekeeping gene인 *Ef1-a*는 모든 조직에서 균일하게 발현되어 결과에 대한 신뢰성 을 확인하였고 (그림 28. lower), 이러한 결과는 분리된 넙치 *Vasa* 유전자가 넙치 암 컷 및 수컷 생식소에 특이적으로 발현함을 확인시켜주는 결과라 할 수 있다.

표 5. 본 연구에 사용한 Efl-a primer set의 서열 및 정보

Primer Name	Sequence	Length	Tm	G.C%
F-EF1a-F1	5'-GCA GCT CAT TGT TGG AGT CA-3'	20	53.2	50
F-EF1a-R1	5'-ACA CTT GCA GGG TTG TAG CC-3'	20	53.9	55

그림 28. 넙치 각 조직들에서 Vasa 유전자의 발현. Vasa 유전자의 발현을 housekeeping 유전자인 *Ef1-a*와 비교하였다. Negative control로는 주형으로 cDNA 대신 증류수를 사용하였다.

(3) Real-Time Quantitative RT-PCR

Real-Time RT-PCR 기법을 활용하여 넙치의 각 조직으로부터 Vasa 유전자의 발현 양상을 비교하였다. 분리된 넙치의 생식소 및 뇌, 간, 신장, 비장, 심장, 아가미, 소 장, 위, 근육, 그리고 피부 조직의 RNA를 사용하여 앞의 방법에 따라 cDNA를 합성 하여 RT-PCR을 수행하였다. 100 ng의 cDNA를 주형으로 하여 각 5 pmole의 PO Vasa-RT F1/R1 primer set 및 internal control로 house keeping gene인 Ef1-a에 대한 primer set을 사용하여 DyNAmo ColorFlash SYBR Green gPCR Kit (FINNZYMES)로 최종 20 ul에 반응시켰다. 반응 조건은 95 ℃에서 7분 간 pre-denature 후, 95 ℃에서 20초 간 denature, 60 ℃에서 20초 간 annealing, 72 ℃에서 30초 간 extension을 1 cycle로 하여, 총 45 cycle을 반응시킨 뒤, 72 ℃에서 5분 간 post extension하였다. 매 extension 반응이 끝나면 증폭산물과 결합한 SYBR의 형광값을 측정하였다. Melting curve는 최종 증폭산물 65 ℃에서 95 ℃까지 증가시키며 형광값을 측정함으로 확인 하였다. Vasa 발현값은 Efl-a의 발현값으로 normalize시킨 후, 생식소의 값을 1로 하 였을 때의 각 조직의 상대적 발현량을 3반복하여 측정하였다. 분석결과, 넙치 Vasa 유전자는 생식소에서 매우 강하게 발현하였고, 뇌에서 아주 약하게, 그리고 나머지 다른 조직들에서는 전혀 발현하지 않는 것으로 나타났다 (그림 29). 이는 conventional RT-PCR의 결과와 일치하는 것이며, Real-Time RT-PCR을 통하여서도 넙치 Vasa 유전자의 생식소 특이적 발현 특징을 명확히 확인할 수 있음을 의미한다.

그림 29. Real-Time RT-PCR을 통한 넙치 치어 각 조직들에서 Vasa 유전자 의 발현. Vasa 유전자의 발현을 housekeeping 유전자인 *Ef1-a*로 normalization한 후 생식소의 발현값을 1로 각 조직의 발현량을 비교하였다. * bar: Standard Error of triplicates.

3) Aromatase 유전자의 primer set 개발

(1) Genomic DNA sequence (intron) spaning primer design

생식소에서 넙치의 자성화를 유도하는 *aromatase*-target primer가 genomic DNA의 intron 서열을 함유하도록 구상하기 위하여 *aromatase* genomic DNA partial nucleotide sequence를 cloning하였다. Partial cloning에 사용한 primer는 기 보고된 넙치의 aromatase nucleotide 서열을(*Paralichthys olivaceus* P450arom mRNA for P450 aromatase, complete cds. AB017182) 참고하여 제작하였다 (표 6).

Primer Name	Sequence	Length	Tm	G.C%
FArom-F1	5' - CTCCCACAGACCAACAACCT - 3'	20	53.4	55
FArom-F2	5' - AGGCACAGCCTGCAACTACT - 3'	20	53.8	55
FArom-F3	5' - TGGCTACAGGGTACCAAAGG - 3'	20	53.8	55
FArom-R1	5' - GAGTGTTTGCCAGCTTCCTC - 3'	20	53.6	55
FArom-R2	5' - TCCCAAAACGTGACGTGTAA - 3'	20	53.6	45
FArom-R3	5' - GAACCGAATGGCTGGAAGTA - 3'	20	53.9	50

표 6. 본 연구에 사용한 넙치 aromatase primer set의 서열 및 정보

(2) 넙치 aromatase와 vasa partial genomic DNA cloning

법치 간 조직 20 mg을 액체질소를 담은 막자사발에 넣고, 미세한 가루가 될 때까 지 빻은 후 Wizard Genomic DNA Purification Kit (Promega)를 사용하여 DNA를 분 리하였다. 얼음에 꽂아둔 Nuclei Lysis buffer 600 ul를 첨가한 후, 65 ℃에서 30분 간 반응시켜 세포핵을 파괴하였고, 3 ul의 RNase를 추가한 뒤 37 ℃에서 30분 간 반응 시켜 혼합되어있는 RNA를 제거하였다. 상온으로 식은 시료에 200 ul Protein Precipitation Solution을 넣어 20초 간 vortex한 뒤 얼음에 5분 간 꽂아둠으로 단백질 을 제거하기 위하여 응집시켰다. 응집된 단백질과 조직의 잔여물들은 15,000 rpm에 서 4분간 원심분리시켜 pellet화 하고, 상등액을 새 tube에 옮긴 후 600 ul의 isopropanol을 첨가하여 genomic DNA를 침전시켰다. 침전된 DNA는 15,000 rpm에서 1분 간 원심분리한 뒤, 600 ul의 70 % 에탄올로 남아있는 salt들을 제거하고, 상온에 서 10분 간 건조시킨 후, 100 ul의 Nuclease-free water에 녹였다. 분리된 genomic DNA는 260 nm 파장에서의 흡광도를 측정하여 정량하였고, 260/280 nm 값이 1.7 이 상인 DNA를 실험에 사용하였다. 분리된 Genomic DNA 및 이전 실험에서 사용하였 던 생식소 cDNA를 주형으로 하고 VASA-Real primer set 또는 aromatase의 primer set을 사용하여 PCR을 수행하였다. 이하 실험방법은 앞의 방법을 응용하였고, 1 % agarose gel 전기영동을 통하여 확인하였다. VASA-Real primer set에 대한 cDNA 및 genomic DNA의 PCR 결과, cDNA에서 예상했던 크기의 증폭산물을 확인할 수 있었 고, genomic DNA를 주형으로 한 결과에서는 cDNA의 크기보다 큰 산물을 확인하였 다 (그림 30). 이 중, genomic DNA를 주형으로하여 증폭된 PCR 산물을 앞서 기술 한 방법대로 cloning 및 sequencing한 결과, design한 넙치 Vasa-target primer로 증폭된 genomic DNA에는 106 bp의 intron sequence가 포함되어 있었다 (그림 31). 따라서, 본 primer를 통하여 Real-Time RT-PCR을 수행할 시, melting curve 및 Tm 값을 확인 함으로써, 결과에 큰 영향을 미치는 genomic DNA의 오염여부를 쉽게 확인할 수 있 어 성판별 실험의 오류를 줄이고, 더욱 정확한 검사를 할 수 있을 것으로 기대된다. 넙치 aromatase primer set에 대한 cDNA 및 genomic DNA의 PCR 결과 역시 cDNA 에서 예상되는 크기의 증폭산물보다 큰 산물을 genomic DNA를 주형으로 한 결과에 서 확인할 수 있었다 (그림 32, 33). 넙치 aromatase gene의 nucleotide sequence 역시 앞의 방법대로 cloning 및 sequencing한 결과, design한 넙치 aromatase primer로 증폭 된 genomic DNA에는 384 bp의 intron sequence가 포함되어 있었다 (그림 34). 따라 서, 본 primer를 통하여 Real-Time RT-PCR을 수행할 시, Vasa primer와 함께 넙치 치 어에 대한 성판별 검사를 더욱 정확하게 할 수 있을 것으로 기대된다.

그림 30. cDNA 및 genomic DNA를 주형으로 한 Vasa 유전자의 PCR 결과. * M: Marker, G: Genomic DNA

그림 31. 보유 Vasa primer set을 사용하여 분리된 넙치 genomic DNA의 nucleotide sequence 및 관련 primer 정보. Primer 대응 sequence는 적색 및 화 살표로 표시했고, intron 영역은 녹색 및 밑줄로 나타냈다.

그림 32. 넙치 genomic DNA로부터의 aromatase gene에 대한 PCR결과.

- * M: Marker
- * G: Genomic DNA

TGGCTACAGGGTACCAAAGGGCACAAACATCATCCTCAACACGGGCCGCATGCACCGCACAGAGTTCTTCTGCAAGCCTAATGAATTC

FArom F3 Primer

그림 34. *aromatase* primer set을 사용하여 분리된 넙치 genomic DNA의 nucleotide sequence 및 관련 primer 정보. Primer 대응 sequence는 적색 및 화살표로, intron 영역은 녹색 및 밑줄로 나타냈다.

(3) Real-Time RT-PCR을 통한 primer quality 평가

각각 10 개체의 넙치로부터 분리, 합성한 난소와 정소 cDNA 및 genomic DNA를 주형으로 하고 aromatase와 Vasa primer를 사용하여 Real-Time RT-PCR을 수행함으 로 결과분석 방법을 평가하였다. 실험은 앞의 방식을 기준으로 진행하였고, aromatase와 Vasa 각각에 대한 melting curve를 확인함으로 primer의 specificity와 cDNA 및 genomic DNA의 Tm 값을 확인하였다. 실험결과, aromatase와 Vasa 각각에 대하여 높은 specificity가 확인되었고, 난소 cDNA와 genomic DNA의 Tm 값이 구분 됨을 알 수 있었다 (그림 35). 난소 cDNA 및 genomic DNA에서의 aromatase 결과, 난소 cDNA에서는 모든 개체가 많은 증폭산물을 보이며 높은 specificity를 갖는 동 일한 Tm 값을 나타내는 반면, genomic DNA는 보다 높은 Tm 값을 보임을 알 수 있 어, 성판별 실험 시 주형 cDNA의 genomic DNA 오염여부를 쉽게 확인할 수 있었다 (그림 35A). 또한, 난소 cDNA 및 genomic DNA에서의 Vasa 결과, 모든 개체에서 Vasa 유전자가 높은 specificity를 보이며 발현되고 있었고, aromatase의 결과와 마찬 가지로 cDNA 및 genomic DNA의 Tm 값이 달라, 주형 cDNA의 genomic DNA 오염 여부를 쉽게 확인할 수 있었다 (그림 35B). 한편, 정소 cDNA 및 genomic DNA에서 의 aromatase 결과는 극명하게 나뉘었다. 정소 cDNA의 모든 개체에서 specific한 amplicon이 확인되지 않았으며 non-specific한 산물만이 보여졌다. Genomic DNA를 주형으로 한 결과는 specific한 aromatase의 amplicon이 확인되었으며, 이러한 결과들 은 넙치 aromatase 유전자의 암컷 특이적 발현특징을 본 실험방법으로도 훌륭히 판 별할 수 있음을 의미한다 (그림 35C). 정소 cDNA 및 genomic DNA에서의 Vasa 결 과는 모든 시료에서 예상 Tm 값과 함께 specific한 산물을 확인할 수 있었으며 cDNA 및 genomic DNA의 Tm 값이 다름을 보여주었다. 이는 본 실험방법을 통하여 적출된 조직 내의 생식선 포함여부를 효과적으로 판단할 수 있을 뿐 아니라, aromatase의 값을 normalization 시킬 때 기존의 housekeeping gene보다 더욱 정밀한 정보를 제공할 수 있을 것임을 추론케 하였다 (그림 35D).

그림 35. 넙치 난소와 정소 cDNA 및 genomic DNA를 주형으로 한 aromatase와 Vasa의 Real-Time PCR 결과. A: 난소 cDNA 및 genomic DNA에서의 aromatase 결과. B: 난소 cDNA 및 genomic DNA에서의 Vasa 결과. C: 정소 cDNA 및 genomic DNA에서의 aromatase 결과. D: 정소 cDNA 및 genomic DNA에서의 Vasa 결과.

3. 개발된 암수판별 marker를 이용한 넙치 종묘의 암수판별

1) 넙치 시료 Sampling

넙치 성 판별 기술개발을 위한 시료는 각기 다른 도내 양식장으로부터 사육중인 치어 30미 씩 확보하여 생식선 전체를 포함하여 주변 부위의 조직 약 100~200 mg 을 채취하여 분석하였다. 시료는 전장을 측정하여 크기별로 3개 그룹으로 구분하였 다. 각 실험구별 평균전장은 Exp-L 9.9 cm, Exp-M 8.1 cm, Exp-S 7.0 cm였다. Real-Time RT-PCR을 이용한 primer quality 측정에는 약 800 g 크기의 생식소 형태 로 암수 판별이 가능한 개체들을 사용하였다.

2) Total RNA의 분리, cDNA 합성, Real-Time RT-PCR

본 연구를 통하여 개발된 넙치 성판별기법을 사용하여 도내 양식어가의 넙치 성 어 및 치어에 대한 성판별 실증실험을 수행하였다. Total RNA 분리, cDNA 합성, R eal-Time PCR은 앞서 설명한 방식으로 Vasa-Real F1과 Vasa-Real R1 primer set, 그리고 F Arom F1과 FArom R1 primer set을 사용하여 수행하였다. 생식소의 육안검사를 통하여 성 판별이 명확하게 가능한 넙치 성어의 생식소 total RNA로부터 cDNA를 합성하 고, 개발된 마커를 활용하여 성판별 실험을 진행, 그 결과를 비교하였다. 검사결과, 생식소 육안검사를 통해 수컷으로 판명된 12 개체에서는 aromatase의 발현이 전혀 검출되지 않았고, 암컷으로 판명된 18개체에서는 매우 강하게 발현됨이 확인 되어 기능적 생식소의 육안검사 결과와 본 연구를 통해 개발된 마커를 활용한 유전자검 사 결과가 동일하게 나타났다 (표 7, 그림 36). 본 결과는 개발한 primer marker가 성 판별에 있어 매우 효과적이고 정확한 것임을 나타낸다고 할 수 있다. 또한 세 곳의 양식장에서 각각 넙치 치어 30미 씩을 구입하여 각 개체의 전장을 측정하고 앞의 방식대로 성판별 실험을 실시, 분석하였다. 실험결과, 각 시료들에 대한 암컷 특이적 aromatase 유전자의 발현양상을 거의 non or all 하게 판단할 수 있었고, 기 존의 housekeeping gene인 Efl-a를 사용할 때 문제가 되었던 normalization의 오류를 없앨 수 있었다 (표 8, 그림 37). 또한, genomic DNA의 오염여부 역시 최종 결과분 석을 통하여 다시 한 번 확인할 수 있어 성판별 기법의 많은 부분이 개선되었고, 보다 정확한 넙치 치어의 성판별을 가능케 한 것으로 평가된다.

시료번호	생식소 형태검사	유전자 검사	일치여부	시료번호	생식소 형태검사	유전자 검사	일치여부
1	4	4	일치	16	4	4	일치
2	9	4	일치	17	4	4	일치
3	8	8	일치	18	4	?	일치
4	4	4	일치	19	8	8	일치
5	8	8	일치	20	4	?	일치
6	8	8	일치	21	8	8	일치
7	4	4	일치	22	4	4	일치
8	4	4	일치	23	4	4	일치
9	8	8	일치	24	8	8	일치
10	8	\$	일치	25	4	4	일치
11	9	4	일치	26	4	4	일치
12	8	\$	일치	27	9	4	일치
13	4	4	일치	28	4	4	일치
14	9	4	일치	29	8	\$	일치
15	8	8	일치	30	8	\$	일치

표 7. 넙치 정소 및 난소 성판별의 육안검사 및 유전자 분석 결과 비교

그림 36. 넙치 정소 및 난소 조직에 대한 유전학적 성판별 결과. 발현량 (Amp. Plots)은 각 개체의 생식소에서 *aromatase* 유전자의 조직 내 발현정도를 나타내며, 발현산물의 정확성(Melting Curve)은 발현값이 정확한 target (*aromatase*) amplicon에 의한 것인지에 대한 quality를 보여준다.

	Site 1			Site 2			Site 3		
시료번호	전장(cm)	성별	시료번호	전장(cm)	성별	시료번호	전장(cm)	성별	
1	9.7	4	1	7.4	8	1	6.8	8	
2	9.0	4	2	8.3	4	2	6.8	8	
3	9.8	4	3	8.5	4	3	6.9	8	
4	10.2	4	4	8.0	8	4	7.4	8	
5	10.8	4	5	8.8	4	5	6.6	8	
6	10.0	8	6	7.9	8	6	7.6	8	
7	10.6	4	7	8.1	8	7	7.0	8	
8	10.0	4	8	8.4	8	8	7.5	9	
9	9.5	4	9	7.6	8	9	6.7	8	
10	10.2	8	10	7.8	4	10	7.0	?	
11	10.6	8	11	8.4	8	11	6.5	8	
12	10.7	8	12	8.3	8	12	6.9	8	
13	10.2	8	13	7.8	8	13	7.4	8	
14	9.8	8	14	7.8	8	14	6.8	8	
15	9.6	8	15	7.8	8	15	6.8	8	
16	9.8	8	16	8.2	8	16	6.9	8	
17	9.3	8	17	8.2	8	17	6.8	8	
18	10.0	8	18	8.3	8	18	6.9	?	
19	10.5	8	19	8.5	8	19	6.9	8	
20	10.5	8	20	8.2	8	20	7.4	8	
21	9.8	8	21	7.6	4	21	7.2	?	
22	9.5	8	22	8.3	8	22	7.4	8	
23	10.2	8	23	8.3	4	23	6.8	8	
24	10.3	8	24	8.8	8	24	6.4	8	
25	10.3	4	25	8.4	8	25	6.5	8	
26	9.2	4	26	7.4	8	26	7.0	9	
27	9.0	8	27	8.4	4	27	6.8	4	
28	8.8	8	28	7.8	4	28	7.2	8	
29	9.5	4	29	8.2	8	29	6.9	4	
30	9.0	8	30	8.3	8	30	7.0	8	

표 8. 넙치 치어 각 시료별 전장 및 유전자분석을 통하여 확인된 성별

그림 37. 도내 양식장 3 곳의 넙치 치어에 대한 성판별 검사결과. 각 패널 내 그 래프의 우측 황색 막대는 normalize된 housekeeping *Vasa* gene의 발현 값이며, 좌 측 보라색은 기능적 암컷으로의 분화를 유도하는 *aromatase* gene에 대한 각 개체 별 발현 값을 나타낸다.

Ⅲ.고 찰

포유류에서의 성결정(Sex determination)은 성염색체 상에 성결정유전자(SRY 등) 의작용에 의해 표현적 성(phenotype sex)이 결정되는 것을 말한다. 이에 비해 성분화 (sex differentiation)는 보통 성결정을 받은 생식선의 성분화, 생식선과 부속 분비기관 등의 내부 성징의 분화, 2차성징을 포함한 외부 성징의 분화, 그리고 중추신경계의 작용과 행동의 분화 등 일련의 현상을 일컫는다. 일반적으로 유전적으로 결정된 성에 따라 생식선과 내분 성징의 성분화가 일어나고, 분화한 생식선에서 분비되는 성스테로이드호르몬 작용에 의해 각각의 성에 따른 외부 성징과 신경계의 성분화가 진행된다. 그러나 어류에서는 유전적인 성결정 기작이 불안정하고 가역적으로 분화되는 경우에는 환경조건 등과 같은 요인의 작용에 영향을 받아 결과적으로 유전적 성과 표현적 성이 일치하는 경우가 종종 일어난다.

다른 척추동물과 마찬가지로 어류에서도 암수 성의 발현은 유전적 요소에서 기원하지만 어류에서는 성결정의 유전적 작용은 매우 불안정해서 예를 들어 환경요인의 작용 등에 의해 비교적 쉽게 성분화에 영향을 끼치는 걸로 생각된다. 이러한 근거 로서 현재 지구상에는 약 3만 여종의 어류가 있지만 이중 성염색체 (sex chromosome)가 확인되는 어종은 겨우 50여종에 불과하다. 또한 어류에서는 고등 척추동물과 달리 성을 결정하는 유전자(*DMRT*)가 송사리와 틸라피아의 일부 어종에 서만 확인이 되었다.

이제까지 조사된 어종은 얼마 되지 않지만, 어류에서는 XX-XY계가 가장 보편적인 성결정기작이라고 여겨진다. 그러나 ZW-ZZ계라고 추정되는 어종도 적지 않다. 예를 들어 틸라피아 종류에는 어떤 종에서는 XX-XY계의 다른 종에서는 ZW-ZZ계(Z염색 체는 Y염색체와 같고 여겨져서 YW-YY로 표현하기도 한다)의 성염색체상에 위치한 결정인자에 의해 제어된다. ZW-ZZ계의 성결정기작은 swordtail의 일종인 *Xiphophorus alvarezi*에서도 알려져 있고, 틸라피아류에서는 *Oreochromis niloticus*에서 는 XX-XY, *O. aureus*에서는 ZW-ZZ이기 때문에, 전자의 XX(우)과 후자의 ZZ(송)과 교잡하면 이론적으로는 100% XZ(송)이 된다. 이처럼 틸라피아류의 종간교잡에 의해 성장이 빠른 수컷만을 생산하는 기법은 이미 실용화되어 있다. 포유류에서는 여러 가지 이유에서 태생기에 생식선이 형성되지 않은 경우, 성체는 외관적으로 반듯이 암컷이 된다. 이는 배발생 과정중인 성적으로 미분화생식선은 생식선조직을 정소로 분화를 유도하는 인자(성분화유도물질)의 작용이 없는 한, 아마도 난소 결정인자의 작용하에서 자율적으로 난소로 분화하는 성질을 갖는 것으로 생각된다. 이와 같은 정소유도인자는 Y염색체상의 결정유전자의 작용에 의해 발현 되지만, Y염색체가 있으면 수컷으로 없으면 암컷이 된다.

자웅동체의 어종중에서 자성선숙형이 압도적으로 많으며, 유시자웅동체형 등에서 볼 수 있는 생식선의 변화도 성적 미성숙생식선에서 난소로, 그 다음 정소로 변한다. 물론 어류에는 웅성선숙형의 자웅동체현상을 보이는 어종도 다수 존재한다. 하지 만 웅성선숙형 자웅동체에 있어서도 성적 미분화생식선은 먼저 난소로 분화하려는 경향을 보여 어류에서도 자성의 우월성(primacy of femaleness)이 보편적인 현상으로 받아들여진다.

어류의 표현적 성의 분화 출발점은 생식선의 성분화이다. 생식선의 성분화는 보통 유전적으로 결정된 과정에 따라 진행되지만, 환경적 요인과 인위적인 조작등에 의해서 유전적 결정과는 다른 방향으로 진행되기도 한다. 그러나 얼마 전까지만 하더라도 이와 같은 환경요인의 효과를 실험적으로 입증한 예는 의외로 적었다. 이는 환경의 효과가 한 개의 요인에 의한 것이 아니라, 그 성질을 정량화하기 어려운 여러 개의 요인에 의한 것이고, 이 요인들을 정확하게 실험조건으로 잡아내기 힘들 었기 때문이다.

관상어의 일종인 Betta splendens의 성비는 온도, 사료, 사육밀도, 수질조건 등이 적절하면 1:1이지만, 이중 어느 조건이든 부적절하게 되면 웅성화가 촉진된다. 뱀장 어류에 있어서는 번식생태가 아직 잘 알려지지 않았지만, 유럽산 뱀장어, Anguilia anguilla는, 라인강에서의 조사에 의하면, 하구에서 포획된 것은 87%가 수컷이지만, 상류로 갈수로 수컷 비율이 감소해서 100km상류 지점에서는 76%이 되며, 650 km 상류에서는 암컷만 포획되었다. 이 성비의 편중현상의 원인은 명확하지는 않지만, 암컷의 행동력이 수컷보다 크거나, 성적 미분화기가 긴 유럽산 뱀장어의 성분화가 하천의 상류에서는 자성화가 일어나거나, 소하(遡河)에 따라서 수컷에서 암컷으로 성전환이 일어날 가능성 등이 추측되고 있다. Kuhlman(1975)는 유럽산 뱀장어의 생식선 성분화과정을 조사하면서 유생을 서로 다른 온도조건과 사료조건에서 사육 하여 성분화에 미치는 영향을 조사하였다. 그 결과 환경조건에 대해서는 명확한 결과를 얻지 못했지만, 성분화가 연령, 수온, 영양과는 관계없이 체장 15~25cm에서 시작하여, 대형 유생은 암컷으로, 소형 유생은 수컷이 되는 경향이 있다고 보고했지만, 그 후 Wiberg(1983)은 유럽산 뱀장어의 성결정에 환경에 영향을 받아, 어떤 생육 조건하에서는 성전환이 일어날 수 있음을 시사했다. 한편 우리나라에서 서식하는 뱀장어 Anguilla japonica에 있어서도 거의 같은 체장에서는 암수의 비가 자연산에서 는 3:5인데 비해 양식산에서는 1:28이 되었다. 이는 양만지에서는 보통 상대적으로 고수온과 고밀도가 수컷으로 분화를 조장하는 것으로 생각된다.

성비에 일정한 계절적 변동을 보이는 것으로 알려진 대서양산의 Menidia menidia 의 성분화에도 온도가 큰 영향을 가져, 자어기의 특정단계에서의 상대적 고온(17~2 5℃)에서는 수컷의 비율이 높아지고, 반대로 상대적 저온(11~19℃)에서는 암컷의 비율이 높다. 또한 모계 친어가 다르면 성비도 현저히 달라지고 온도에 대한 반응성 에도 차이가 보이는 등, 온도효과에 있어 유전적 요인의 영향이 현저하다. 태생어인 Poeciliopsis lucida에서의 성분화도 유전과 환경의 양쪽 영향을 받는다. 어떤 계통의 친어는 고온(30℃)에서 93%의 수컷을 출산하지만, 저온(24℃)에서는 수컷이 38%에 그친다. 계통간의 교잡실험의 결과에서, 이 온도의존방식의 성분화가 모계의 유전자 기작이 성비에 영향을 주도록 난소환경에서 생기는 것이 아니라, 발생도중의 유전 자형에 근거하다는 것을 알았다. 더욱이 이 온도의존형의 형질이 부계에 의해서 전달되는 우성 형질임이 시사되었다. 또한 최근에 넙치을 비롯해 아메리카 메기 Ictalurus punctatus, zebrafish Danio rerio, 그리고 송사리 Oryzias latipes 등 많은 어종 에 있어서 수온의존성 성결정기작을 갖음을 알게 되었다.

넙치의 성은 통상적으로 유전적으로 결정되어 XX개체는 암컷으로, XY개체는 수컷으로 분화한다. 하지만 유전적 암컷(XX)개체에 androgen(17*α*-methyltestosterone) 투여 하게 되면 생리적 수컷으로, 유전적 수컷(XY)개체에 estrogen(estradiol-17β; E₂) 투여를 실시하면 생리적 암컷으로 분화하는 것으로 알려졌다. 또한 유전적 암컷(XX 개체)라 하더라도 고수온 사육을 하거나 저수온에서 사육을 하면 생리적 수컷으로 성분화가 이루어지며, 이와 같이 넙치에서 유전적 암컷에서 수컷으로의 성전환과정 에서 estrogen량의 감소 현상의 원인은 아직 구체적으로 밝혀진 것은 없으나, 고수온에 의해 estrogen의 생성에 중요한 효소인 aromatase 발현이 억제되어 E₂의 감소가 주요 한 요인으로 작용하는 것으로 사료되고 있다. 최근 제주지역에서는 여름철 고수온기에 생산된 하계 종묘를 입식한 넙치 양성 양식어가에서 눈에 띠는 성장둔화로 불만이 고조되고 있다. 이는 종묘 본래의 유전 적 형질의 문제가 아니라 넙치의 암수간에 나타나는 차이로, 성분화시기에 고수온 사육으로 인해 성장이 더딘 수컷으로 분화가 촉진되어 일어나는 현상이다.

또한 같은 가자미과 어류인 노랑가자미의 경우, 인공 사육시 암컷의 출현율이 약 10%로 매우 낮다. 노랑가자미의 성도 수온의 영향을 받아 전장 4cm까지 14℃이하 에서 사육하면 암수비가 1:1이 된다고 보고되었다. 또한 수조의 명도에 따라서도 성비가 변화됨이 보고되었다. 따라서 가지미과 어류에서는 수온과 더불어 다른 환경적인 요인이 성분화에 영향을 미칠 가능성이 높다.

상업적으로 중요한 어종인 넙치는 암컷이 수컷보다 성장이 빠른 특징이 있기 때문에, 암컷만 생산하는 것이 양식에 있어 유리하다. 하지만 기본적으론 유전적으로 전암컷이라 하더라도 성분화시기의 사육수온에 따라서는 수컷이 높은 비율로 출현 하기 때문에 종묘단계에서 적정 수온관리를 통해 암컷으로 분화를 유도하는 것이 매우 중요하다. 하지만 아직까지 넙치의 자성화 유도에 적절한 수온이나 수온관리 시기에 대한 연구보고는 이루어지지 않고 있는 것이 현실이다.

국내 넙치양식산업의 생산면에서는 사육기술이나 생산량에서는 상당히 높은 수준까지 올라와 있지만 양식현장을 자세히 들여다보면 아직도 개선해야할 점들이 많이 있으며 수온이나 수조의 명도 등과 같은 환경적 요인이 성분화, 특히 자성화에 미치는 영향에 대해서는 거의 연구가 진행되지 않은 상태이며 넙치의 자성화 종묘 생산을 위한 가이드라인도 없어 제주산 양식넙치의 국제경쟁력 약화의 한 요인으로 작용하고 있다.

생식선의 성 판별은 상업적인 양식에서는 매우 중요하며, 생식생태 등을 연구하 는데도 필수 불가결해서 쉽고 정확한 판정법의 확립이 필요하다.

예를 들어 뱀장어나 넙치 등에서는 암컷이 체성장이 더 나으며 반대로 틸라피아 에서는 수컷의 체성장이 더 빠르다. 또한 암수간의 체색에 있어서도 연어나 참돔의 경우 암컷에 대한 기호성이 더 높으며, 생식소를 식용하는 숭어와 은어에서는 알을 가지고 있는 암컷에 대한 산업적 가치가 높다. 종묘단계에서 산업적 가치가 있는 성만을 선별하여 사육하는 것이 양식에 있어서 매우 중요하지만 어류의 성을, 특히나 치어단계에서 육안적으로 구별하기란 불가능하다. 어류는 일반적으로 자웅이체이지만, 체색(놀래기, 붉돔, 납자루 등)이나 형태(연어, 해마 등)로 암수를 구별할 수 있는 어류는 적고, 식용으로 익숙한 정강이, 정어리, 고등어, 넙치, 복어류 등에서는 외견만으론 구별할 수 없다.

연어, 쥐치, 쏨뱅이 등과 같이 자웅이 함께 산란하는 어종에서는 상대방의 성별을 알리기 위해 외관상의 차이를 보이는 경우도 있다. 암컷이 몸에 기생하는 일부 아귀류를 제외하고 어류의 자웅은 몸의 크기로 구별되지 않지만, 암수간에 성장속도가 다르거나, 최대체장이 다른 경우가 있다. 예를 들어 아귀와 넙치는 암컷이 최소 성숙 체장이 크다.

또 산란기의 성숙개체의 경우에는 비뇨생식공 근처의 복부를 앞쪽에서 꼬리쪽을 향해 압박하면 정액 또는 난이 배란되어 정확한 성을 판별할 수 있다. 그러나 미숙 한 개체나 번식기 이외의 성어에서는 이 방법을 적용할 수 없다. 발달도중의 생식 선은 외과적으로 체벽의 작은 구멍을 내서 생식선의 외형이나 색깔의 정도로 판단 하는 개복법이 있지만, 가장 확실한 방법은 생식선의 조직표본을 관찰하여 난소와 정소를 식별하는 것이다. 또 어종에 따라서는 가는 실리콘 튜브를 생식공안으로 삽입하여 조직을 주사기로 흡입채집하는 방법이 사용되기도 한다. 놀래기류와 철갑 상어류의 성판별에는 이렇게 채취한 조직을 포르말린에 고정 후, acetocarmine액과 슬라이드글래스 위에 놓고 커버글래스로 눌러서 바로 현미경 관찰을 한다(Squash method). 대서양연어(*Salmo salar*)에서는 초음파도형법(ultrasonography)에 의해서 간접 적으로 생식선의 형태를 조사하여 성을 판별하기도 하고, 오오츠크숭어 *Micropterus salmoides*에서는 개조된 otoscope(耳鏡)을 생식공으로 삽입해서 생식선을 직접 관찰하기도 하지만, 내시경을 이용 등을 포함해 기술적인 문제점이 많다.

성숙도중 또는 성숙어의 성은 성호르몬의존 2차성징에 근거해서 판별할 수 있지만, 이것이 가능한 경우는 그다지 많지 않다. 외형형태에 암수간의 차이가 있는 어종에 서는 이것을 성판별의 지표로 사용하기도 한다. 틸라피아류에서는 비뇨생식공부분이 암컷은 2개, 수컷은 3개로 되어 있어, 비뇨생식돌기부분을 식용색소 Azorubin 수용 액에 담그면 식별이 용이하다. 이처럼 비뇨생식돌기나 비뇨생식공의 형태적 차이도 성판별의 지표가 된다.

성에 상대적으로 특이적인 생리활성물질의 생화학적 검출도 성판별에 사용된다. 난황단백질의 전구체로서 간에서 합성되어 혈액을 통해 난모세포로 운반되는 vitellogenin은 외인성난황형성기, 다시말해 성숙도중의 암컷의 혈장중에는 높은 농도로 존재하지만, 수컷이나 미성숙 암컷의 혈장내에서는 소량밖에 존재하지 않기 때문에 생식주기의 특정한 시기에는 성판별에 이용된다. 은연어 Oncorhynchus kisutch에서는 산란전 8개월이전에 암컷의 피부점액에서도 vitellogenin이 검출되어 성숙전 연어류 의 성을 판별할 수 도 있다. 이외에도 어류의 특유 androgen인 11-ketotestosterone의 혈중량이 성판별의 지표가 되기도 한다. 하지만 이와 같은 암컷 특유의 단백질이나 혈중 호르몬량의 측정을 통한 방법은 생식선이 어느 정도 성숙한 이후에나 가능하기 때문에, 조기 성판별이 어려운 문제점이 있어 현실적으로는 성어가 된 이후 외견상의 특징 및 생식선의 형태로 구별하는 수밖에 없었다.

넙치의 경우 단일 품목으로 우리나라 수산물 생산의 8%를 차지할 정도로 비중인 생물자원임에도 불구하고 아직까지 양식산업화로 가기 위한 기초적인 연구가 거의 되지 않은 상태이다. 이번 연구를 통해서 넙치 성장과 성분화에 관련된 환경요인과 의 상관관계에 대한 기초 연구와 현장 실용화 기술을 개발을 통해 양식어가의 실질적 기술 지원 및 소득 증대가 기대된다.

양식의 생산 효율성을 위해서는 육종학적 방법이 매우 중요하며, 넙치는 암수에 따라 성장차가 현저하여 암컷의 성장이 좋다. 또한 수컷의 성장 정체는 양식효율을 저해할 뿐만 아니라 넙치의 대형어 생산에 장애가 된다. 기존의 염색체 조작이나 호르몬 투여에 의한 성제어 기술은 기술적인 측면에서 평가될 수 있는 부분도 있지만 법적 규제나 식품안정성 등 사회적인 문제를 가지고 있다. 따라서 이번 사육수온과 같은 친환경적인 방법을 이용한 넙치 양식용 종묘생산 기술개발로 이와 같은 문제를 해결할 수 있을 것으로 기대된다.

양식효율을 높이기 위한 이제까지의 많은 노력들이 있었음에 불구하고 현장에서 실제로 사용되지 않고 있는 것은 현장에서 적용하기 어려운 복잡한 기술이나 막대한 시설 투자를 필요로 하는 실용성이 많이 떨어진 기술 개발들이었다. 하지만 이번 연구 개발되는 기술은 현장에서 쉽게 이해하고 이용할 수 있는 내용들이면서 번식 생리 연구기법의 선진화도 기대가 된다. 친환경적인 방법으로 종묘단계에서 생산성이 높은 암컷만을 생산하게 된다면 넙치양식에서 생산의 효율성을 극대화 할 수 있어 생산단가를 현재의 수준보다 현저히 낮출 수 있을 것으로 기대된다. 2012년 기준 제주도내 어류양식 생산량은 24,989톤으로 전국 생산량(76,308톤)의 32.7%에 이르는 것으로 전국 1위이다. 생산금액도 2,754억원으로 국내 전체 생산량 의 37.5%를 점유했다. 이중 넙치의 생산량은 24,575톤으로 전체의 98%를 차지하고 있다. 지역내 양식장을 대상으로 한 사전 암수판별실험 결과, 암수의 비율이 약 7:3 정도였다. 따라서 단순히 자성화 유도만을 통해서 지금보다 약 30% 이상의 생산성 향상을 가정하더라도 약 3,580 여억원으로 약 826억원의 추가 생산액 증대가 가능 하며, 이는 단순한 생산액 증대뿐만 아니라, 생산원가의 절감으로 이어져 추후 넙치의 가공산업 및 해외수출에도 큰 도움을 줄 것으로 예상된다.

아직 국내에서 환경요인이 어류의 성분화에 미치는 영향이나 환경요인을 이용한 성분화 제어에 대한 연구개발은 미진한 상태이다. 환경요인이 성분화에 미치는 영향에 대해서는 어류보다는 다른 양서류, 파충류와 조류 등을 중심으로 연구가 일부 진행중에 있으며, 환경요인을 이용한 기술에 있어서는 성숙시기와 배란시기의 조절에 관한 연구개발은 일부 어종에서 이루어지고 있지만 성분화 제어에 관한 연구개발이나 현장에서 적용될 수 있는 기술보급은 이루어지지 않고 있다.

어류의 성분화 특성, 넙치처럼 이 성분화시기에 외부 환경요인에 의해 성분화가 조절되는 어종에 있어서, 특히 암수의 성에 따라 산업적 가치가 차이가 나는 어종에 있어서는 다른 염색체 조작이나 호르몬 투여에 의한 인위적인 성제어보다, 종특이 적인 생리적 특성을 이용한 기술개발을 통해 보다 양식현장의 효율적인 양식생산과 소비자들의 식품안전성에 대한 높은 기대를 충족시킬 수 있는 기술 개발이 필요하다.

본 연구에서는 넙치에서 밝혀지지 않았던 Vasa cDNA를 최초로 분리, 그 서열을 확인하였다. 넙치 Vasa cDNA는 2461 bp 크기인 것으로 나타났으며 (그림 19) Deduced amino acid는 이중 176-2116 bp 구간에서 암호화되어 646개의 amino acid를 갖는 단백질을 만들어 내는 것으로 확인되었다. 또한, 175개의 5'-UTR과 345개의 3'-UTR을 갖고 있고, 넙치 Vasa 단백질에는 arginine과 glycine이 반복적으로 나타나고 있었으며, D-E-A-D box가 특징적으로 존재하였다. 최종 결정된 넙치 Vasa cDNA의 서열은 accession number JQ070418로 GenBank에 등록하였다. 본 결과는 넙치에서 뿐만 아니라 타 어종에 대한 연구자료로서 활용도가 높은 정보를 제공할 수 있을 것으로 기대된다. 본 연구를 통해 분리한 넙치 Vasa 유전자가 생식소 특이적 발현특징을 보이는 유전자임을 밝혔다. Conventional RT-PCR과 Real-Time RT-PCR을 통하여 넙치 치어 및 성어의 여러 조직들 중 생식소에서 특이적으로 발현됨을 보여주었다. 분리된 넙치의 Vasa 유전자는 정소와 난소 및 뇌, 간, 신장, 비장, 심장, 아가미, 소장, 위, 피부, 그리고 근육들 중, 정소와 난소에서 특이적으로 강한 발현을 보였다. 본 결과 는 Y 염색체가 있으나, 성장과정에 있어 환경 및 상염색체상의 유전자에 의해 기능 적 성이 바뀌게 되는 넙치의 성 분화 특성에 비추어 볼 때, 생식소 유전자 분석에 있어 최적의 housekeeping gene으로서 본 연구결과에서 얻어진 Vasa 유전자가 활용 될 수 있음을 보여주고 있다.

본 연구에서 넙치 Vasa cDNA 뿐 아니라 Vasa 및 aromatase genomic DNA의 partial nucleotide sequence도 분리하였다. Genomic DNA를 주형으로하여 증폭된 PCR 산물을 cloning 및 sequencing한 결과, design한 넙치 Vasa 및 aromatase primer로 증폭 된 genomic DNA에는 각각 106 bp 및 384 bp의 intron sequence가 포함되어 있었다. 본 결과들은 학술적 의의 뿐 아니라 진단 primer의 specificity를 높이고 성판별기술의 정확성을 더욱 높이는 데 응용될 수 있었다.

본 연구를 통하여 분리, 확인된 넙치 Vasa와 aromatase의 cDNA 및 genomic DNA 서열을 바탕으로 성판별 Real-Time PCR에 사용되는 primer set의 specificity를 높이고 진단기술의 정확성을 더욱 높일 수 있었다. 한 개체의 모든 체세포는 동일한 유전 자를 가지고 있으나 성장시기, 생리주기 및 조직별로 발현되는 유전자의 종류에는 차이가 있으며, 넙치의 기능적 성분화는 생식소에서 작용하는 핵심 유전자들에 의해 유도된다. 따라서, 분자생물학적 유전자 분석 기법을 적용하기 위한 생식소 조직만 의 정확한 적출이 요구되지만 넙치 치어에서부터 생식선 조직만을 적출해 내기는 거의 불가능하다. 본 연구의 핵심은 다른 조직으로 오염된 생식선 조직에서 분리된 RNA라 할지라도 온전히 생식선에서만 발현되는 특이적인 유전자를 찾아내고 성판 별의 목적 유전자로 활용할 수 있다는 것이다. 본 연구에서 사용한 primer는 넙치 생식선에서만 발현하는 Vasa와 aromatase 유전자를 목적 유전자로 하기에, 조직 적출 과정에서 다른 조직과 섞인다 하더라도 생식선에만 제한된 유전자 발현 현상을 검출할 수 있다. 넙치 Vasa 유전자는 발생 초기 생식선 분화가 시작되는 시기에서 부터 성체시기에 이르기까지 생식선 또는 생식소에서 꾸준히 발현되는 유전자이다.

또한, 넙치 aromatase 유전자는 치어시기에 암컷으로의 성분화가 유도될 때부터 성숙한 난소상태의 시기에 이르기까지 높게 발현되는 유전자이다. 결국, 생식선에서 의 aromatase 유전자 발현정도를 확인함으로 성판별이 가능하며, Vasa 유전자로 normalization 함으로 실험의 오류를 배제시킬 수 있는 것이다. 한편, 넙치 Vasa와 aromatase 유전자의 발현 값 모두는 genomic DNA의 오염과 매우 밀접한 관계에 있다. 모든 체세포에는 한 개체가 지닐 수 있는 유전정보 전체가 포함되어 있으며, 모든 체세포는 동일한 양의 genomic DNA를 가지고 있다. 따라서, 비록 넙치 Vasa와 aromatase 유전자가 성분화시기 및 생식선 조직에 특이적으로 발현된다 하더라도 분리된 RNA에 genomic DNA가 조금이라도 섞여있다면 그 분석결과는 신뢰할 수 없는 것이 된다. 일반적 방법에서 오염된 genomic DNA를 제거하는 과정을 거치 지만, 그럼에도 불구하고 genomic DNA를 완벽하게 제거하기란 쉽지 않은 과정이며, genomic DNA를 제거하는 과정에서 부차적인 오염으로 RNA의 quality가 떨어질 수 있다. 본 연구를 통하여 넙치 Vasa와 aromatase genomic DNA의 nucleotide sequence를 분리, 보고하였고, 성판별 진단실험과정에서 쉽게 검출할 수 있는 방법을 개발하여 진단 결과의 정확성 및 분석의 효율을 높일 수 있었다. 본 기술에서 사용하는 primer set은 RNA로부터 합성된 cDNA에 존재할 수 있는 genomic DNA오염 여부를 melting curve 분석을 통하여 쉽게 가려낼 수 있도록 제작되었다. 이러한 연구결과들을 토대로 더욱 정확하고 편리한 넙치 치어 성판별 기술을 개발한 것이 큰 의의라 하겠다.

IV. 요 약

일부 파충류와 양서류, 그리고 어류의 성 결정은 환경적인 요인에 의해 크게 영 향을 받는다고 알려져 있다.

Aromatase는 estrogen 생성에 있어 핵심적인 효소로 작용하여 암컷으로의 분화를 유도함으로, 성 분화의 방향을 확인하는데 있어 좋은 마커이다.

척추동물의 aromatase cytochrome P450 (P450arom)은 androgen을 estrogen으로 전환 시키는 단백질이다. 따라서, aromatase는 일부 어류에 있어 난소로의 분화가 유도될 때 특이적으로 발현된다. 넙치는 상업적으로 중요한 어류인데, 암컷이 수컷보다 빨 리 자라며 그 성 결정이 수온에 민감하게 반응하는 어종이다. 넙치의 난소에서 P450arom 유전자를 cloning하고 정량 RT-PCR을 수행하는 방법으로 넙치의 초기 성 분화를 확인할 수 있는 바이오마커를 개발하였다. 분리된 넙치 aromatase 유전자는 다른 경골어류의 aromatase가 암호화하고 있는 아미노산 서열과 매우 유사했다.

생식소의 일부분을 본 연구에서 개발한 marker를 사용하여 성 판별을 수행하였 고, 나머지 부분을 조직학적 방법으로 그 성을 구분하였다. 그 결과, 본 연구를 통 해 개발된 방법은 조직학적 방법의 결과와 모두 일치함을 확인하였고, 성 판별 marker로서 유용함을 확인시켜 주었다. 넙치 치어에서 생식소의 조직학적 분석결과 는 aromatase의 발현에 의해 구분한 성과 일치하여 그 발현양상이 성 특이적임을 확 인시켜 주었다. 또한, 본 연구결과의 현장적용을 위한 실험의 일환으로, 도내 양식 장에서 사육중인 넙치 치어에 적용해 본 결과, 입식 초기의 넙치의 암수 구분이 가 능하였다. 본 연구는 넙치의 성을 판별하는데 유용하게 활용될 수 있을 것이며, 넙 치의 성 결정 기작을 이해하는데 도움을 줄 것이다.

V. 참 고 문 헌

- Adams, B.M., Sakurai, H., and Adams, T.E. (1996). Concentrations of gonadotropin-releasing hormone (GnRH) receptor messenger ribonucleic acid in pituitary tissue of orchidectomized sheep: effect of estradiol and GnRH. Biol. Reprod. 54, 407-412.
- Kato, K., Hayashi, R., Ishitani, Y., Yamamoto, S., Miyashita, S., Murata, O. and Kumai, H. (1999). Gonadal sex differentiation of red seabream of a selected strain. Suisanzoshoku, 47(1), 29-34.
- Kim, B.-H. (1998). Sex differentiation and gonad development of the parrot fish, Oplegnathus fasciatus. Master Thesis, Cheju National Univ., Cheju. 72pp.
- Suppression of P450 aromatase gene expression in sex-reversed males produced by rearing genetically female larvae at a high water temperature during a period of sex differentiation in the Japanese flounder (Paralichthys olivaceus). J. Mol. Endocrinol. 23(2), 167-176.
- Matsuyama, M., Lara, R.T. and Matsuura S. (1988). Juvenile bisexuality in the red seabream, Pagrus major. Environmental biology of fishes, 21(1), 27-36.
- Nakamura, M. and Takahashi, H. (1973). Gonadal sex differentiation in Tilapia mossambica, with special regard to the time of estrogen treatment effective in inducing complete feminization of genetic males. Bell. Fac. Fish. Hokkaido Univ., 24, 1-13.
- Nakamura, M. and Nagahama, Y. (1985). Steroid producing cells during ovarian differentiation of the tilapia Sarotherodon niloticus. Develop. Growth and Differ., 27, 701-708.
- Nakamura, M. and Nagahama, Y. 1989. Differentiation and development of Leydig cells, and changes of testosterone levels during testicular differentiation in tilapia, Oreochromis niloticus. Fish Physiol. Biochem., 7: 211-219.

- Nakamura, M. and Nagahama, Y. (1993). Ultrastructural study on the differentiation and development of steroid-producing cells during ovarian differentiation in the amago salmon, Oncorhynchus rhodurus. Aquaculture, 112, 237-251.
- Nakamura, M., Specker, J.L. and Nagahama, Y. (1996). Innervation of steroid-producing cells in the ovary of tilapia, Oreochromis niloticus. Zool. Sci., 13, 603-608.
- Satoh, N. (1974). An ultrastructural study of sex differentiation in the teleost, Oryzias latipes. J. Embroyl. Exp. Morph., 32(1), 195-215.
- Suzuki, N., Tamura, M., Ohuchi, I., Hiroshima, K. and Sugihara, T. (1992). Gonadal sex differentiation of hatchery-reared flounder, Limanda yokohamae. Suisanzoshoku, 40(2), 189-199.
- Strüssman, C.A., Cota, J.C.C., Phonlor, G., Higuchi, H. and Takashima, F. (1996a). Temperature effects on sex differentiation of two South American atherinids, Odontesthes argentinensis and Patagonina hatcheri. Envirom. Bio. Fish., 47, 143-154.
- Strüssman, C.A., Takashima, F. and Toda, K. (1996b). Sex differentiation and hormonal feminization in pejerrey, Odontesthes bonariensis. Aquaculture, 139, 31-45.
- Strüssman, C.A., Saito, T. and Takashima, F. (1998). Heat-induced germ cell deciciency in the teleosts Odontesths bonariensis and Patagonina hatcheri. Comp. Biochem. Physiol., 199A, 637-644.
- Takahashi, H. and Iwasaki, Y. (1973). Histochemical demonstration of ?5-3?-hydroxysteroid dehydrogenase activity in the testis of the medaka, Oryzias latipes. Endocrinol. Japon., 20, 529-534.
- Takahashi, H. (1977). Juvenile hermaphroditism in the zebrafish, Brachydanio rerio. Bull. Fac. Fish. Hokkaido Univ., 28(2), 57-65.
- Van den Hurk, R., Lambert, J.G.D., Peute, J. (1982). Steroidogenesis in the gonads of rainbow trout fry(Salmo gairdneri) before and after the onset of gonadal sex differentiation. Reprod.Nutr.Develop., 22, 413-425.

- Witschi, E. (1957). The inductor theory of sex differentiation, J. Fac. Sci., Hokkaido Univ., 13, 428-439.
- Rohar et al., 2001 : Rohar DH, Lokman PM, Davie PS, Young G. 11-Ketotestosterone induces silvering-related changes in immature female short-finned ells, Anguilla australis. Comp. Biochme. Physiol. 2001; 130A: 701-714.
- Lokman PM, Harris B, Kusakabe M, Kime DE, Schulz RW, Adachi S, Young G. 11-Oxygenated androgens in female teleosts: prevalence, abundance, and life history implications. Gen. Comp. Endocrinol. 2002; 129: 1-12.
- Lockman PM, Rohr DH, Davie P, Young G. The physiology of silvering in Anguillid eels: Androgens and control of metamorphosis from the yellow to silver stage. In Eel Biology, Aida K, Tsukamoto K, Yamauchi K. eds., Springer Tokyo, pp.331-349. 2003.
- Miura T, Miura C, Yamauchi K. Spermatogenesis in the Japanese eel. In Eel Biology, Aida K, Tsukamoto K, Yamauchi K. eds., Springer Tokyo, pp.319-330. 2003.
- Rothbard et al.:Rothbard S, Moav B, Yaron Z. Changes in steroid concentrations during ontogenesis in tilapia. Aquaculture 1987, 61: 59-74.
- Fitzpatrick MS, Pereira CB, Schreck CB. In vitro steroid secretion during early development of mono-sex rainbow trout: sex differences, onset of pituitary control, and effects of dietary steroid treatment. Gen. Comp. Endocrinol. 1993; 91: 119-215.
- Tanaka H, Kagawa H, Okuzawa K, Hirose K. Purification of gonadotropins (PmGTH I and II) from red seabream (Pagrus major) and development of a homologous radioimmunoassay for PmGTH II. Fish Physiol. Biochem. 1993; 10: 409-418.
- Gen K, Okuzawa K, Senthilkumaran B, Tanaka H, Moriyama S, Kagawa H. Unique expression of gonadotropin-I and II in male and female red seabream (Pagrus major) during sexual maturation. Biol. Reprod. 2000; 63: 308-319.
- Okuzawa K, Kumakura N, Mori A, Gen K, Yamaguchi S, Kagawa H. Regulation of GnRH and its receptor in a teleost, red seabream. In Progress in Brain Research

Vol 141, Parhar IS ed., Elsevier Science, pp. 95-110. 2002.

- Yamamoto, T. 1969. Sex differentiation. In "Fish Physiology" (W.S.Hoar and D.J.Randall, eds.), Academic Press, N.Y., 3, 117-175.
- Kwon, J. Y., Haghpanah, V. Kogson-Hurtado, L. M., McAndrew, B. J. and Penman, D. J., 2000. Masculinization of genetic female Nile tilapia (*Oreochromisniloticus*)bydietaryadministrationofanaromataseinhibitorduringsexualdiffernt iation.J.Exp.Zool.287,46–53.
- Lance, V. A. and Bogart, M. H., 1992. Disruption of ovarian development in alligator embryos treated with aromatase inhibitor. Gen. Comp. Endocrinol. 86, 59-71.
- Li, C. J., Li, Z., Yang, W., Hong, Y. H., Gui, J. F., 2005. Molecular and expression characteriaztion of three gonadotropin subunits common α , FSH- β and LH- β in groupers. Mol. Cell. Endocrinol. 233, 33-46.
- Li, G. L., Liu, X. C., Zhang, Y., Lin, H. R., 2006. Gonadal development, aromatase activity and P450 aromatase gene expression during sex inversion of protogynous red-spotted grouper *Epinephelusakkara*(TemminckandSchlegel)afterimplantationofthearomataseinhibitor,fadro zole.Aqua-cultureResearch.37,484–491.
- Lim, B.S., 2004, A study on endocrinological mechanisms during sex differentiation in Red seabream, *Pagrusmajor*.Ph.D.Dissertation,Dept.ofAppliedMarineBiosciences,TokyoUniversityofMar ineScienceandTechnology,Tokyo.
- Miura, T., Miura, C., Ohta, T., Nader, M. R., Todo, T. and Yamauchi, K., 1999.
 Estradiol-17 β stimulates the renewal of spermatogonial stem cells in males.
 Biochem. Biophys. Res. Commun. 264, 230–234.
- Miura, T., Ohta, T., Miura, C., Yamauchi, K., 2003. Complementary deoxyribonucleic acid cloning of spermatogonial stem cell renewal factor. Endocrinol. 144, 5004– 5510.

- Nagahama, Y., Yoshikuni, M., Yamashita, M., Sakai, N., and Tanaka, M., 1993. Molecular endocrinology of oocyte growth and maturation in fish. Fish Physiol. Biochemem. 11, 3-14.
- Nakamura, M., Hourigan, T. F., Yamauchi, K., Nagahama, Y., Grau, G. E., 1989. Histological and ultrastructural evidence for the role of gonadal steroid hormones in sex change in the protogynous wrasse (*Thalassomaduperrey*).Env.Biol.Fish.24,117– 136.
- Nakamura, M., Kobayashi, T., Chang, X. T., Nagahama, Y., 1989. Gonadal sex differentiation in teleost fish. J. Exp. Zool. 281, 362–372.
- Pankhurst, N. W., 1998. Reproduction. In: Black, K. D. and Pikering, A. D. (eds.), Biology of Farmed Fish. CRC Press, Boca Raton, FL, 1-26.
- Piferrer, F., Baker, I. J., and Donaldson, E. M., 1994. Brief treatment with an aromatase inhibitor during sex differentiation causes chromosoally female salmon to develop as normal, functional males. J. Exp. Zool. 270, 255–262.
- Schulz, R.W., Vischer, H.F., Cavaco, J.E., Santos, E.M., Tyler, C.R., Goos and H.J., Bogerd, J., 2001. Gonadotropins, their receptors, and the regulation of testicular functions in fish. Comp. Biochem. Physiol. B. 129, 407–417.
- Schieweck, K., Bhatnagar, A. S. and Matter, A., 1988. CGS 16949A, a new non -steroidal aromatase inhibitor: Effects on hormone-dependent and indepen -dent tumors in vivo. Cancer Res. 48, 834–838.
- Steele, R. E., Mellor, L. B., Sawyer, W. K., Wasvary, J. M., Browne, L. J., 1987. In vitro and in vivo studies demonstrating potent and selective estrogen inhibition by the nonsteroidal aromatase inhibitor CGS16949A. Steroids. 50, 147–161.
- Swanson, P., Suzuki, K., Kawauchi, H., Dickhoff, W. W., 1991. Isolation and characterization of two coho salmon gonadotropins, GtH I and GtH II. Biol. Reprod. 44, 29–38.
- Weil, C., Bougoussa-Houadec, M., Gallais, C., Itoh, S., Sekine, S., Valotaire, Y., 1995.

Preliminary evidence suggesting variations of GtH 1 and GtH 2 mRNA levels at different stages of gonadal development in rainbow trout *Oncorhynchusmykiss*.Gen.Comp.Endocrinol.100,327–333.

- Weltzien, F. A., Norberg, B., Helvik, J. V., Andersen, O., Swanson, P. and Anders -son, E., 2003. Identification and localization of eight distinct hormone -producing cell types in the pituitary of male Atlantic halibut (*HippoglossushippoglossusL.*),Comp.Biochem.Physiol.A.134,315–327.
- Yamazaki, F., 1983. Sex control and manipulation in fish. Aquaculture, 33, 329-354.
- Yeung, W. S., Chen, H., Chan, S. T. H., 1987. A ridioimmunoassay study of the plasma levels of sex steroid profiles in the freshwater, sex-reversing teleost fish, *Monopterusalbus*(Zuiew).Gen.Comp.Endocrinol.66,353–363.

감사의 글

아름다운 자연과 전통이 살아 숨쉬는 성산읍 오조리에서 태어나고 자란 고향을 자랑스럽게 생각하면서 지방공무원으로서 40여년간 한평생 사명감과 인내심 그리고 확고한 철학과 열정을 가지고 공직생활을 하고 부이사관으로 명예스럽게 마치면서 정부로부터 홍조근정훈장을 수여 받게되여 지금까지 공직생활 하는동안 항상 저를 아껴 주시고 성원하여 주신데 대하여 모든 분들께 진심으로 감사 드립니다

1972년 성산수산고등학교를 졸업하는해 공무원 생활을 시작하여 남제주군청에 근무하다가 1974년도 휴직을 하고 육군에 입대하여 1977년 만 34개월 병역의무를 마치고 복직을 하면서 남제주군청과 제주도청을 근무하면서 1979년 사무관으로 승진 남제주군 해양수산과장. 성산읍장. 제주도청 .어선어업육성. 수산자원개발. 해양개발 . 수산증양식. 해양수산정책계장등 근무하면서 일선 종합행정과 해양수산 전반에 대한 행정경험과 그동안 업무 공적을 인정받았습니다

2006년 7월 제주특별자치도 출범과 함께 서기관으로 승진하면서 해양수산국 해양수산정책과장으로 임명 받고 공직생활 하면서 제주특별자치도의 간부공무원으 로서 책임감을 갖고 제주양식어업육성으로 지역경제발전은 물론 지역특성에 맞는 연안자원조성 시책으로 잠수어업인 소득증대와 수산물 가공산업 육성에 기여하였으며 특히 동양최대의 해양수족관을 포함한 해양과학관 민자유치를 성공적으로 추진하면서 제주특별자치도 발전에 크게 기여하였다는 해양수산인들이 좋은 평가를 하여 주신데 대하여 감사 드립니다

공직생활을 하면서 제주산업정보대학. 탐라대학 경영학과를 졸업하였지만 해양 수산연구원장으로 임명 받고 해양수산관련 연구분야 업무 추진을 하다보니 늦은감이 있었지만 제주대학교 산업대학원 해양생물공학과를 지원 석사과정을 다니게 되는 동기가 되었습니다

제주대학교 산업대학원에서 헌신적으로 지도해주신 해양과학대학 전유진 교수님 송춘복 교수님. 최광식 교수님. 이제희 교수님. 허문수 교수님. 여인규 교수님. 정준범 교수님. 이승헌 교수님 이경준 교수님. 김기영 교수님. 정석근 교수. 박상율 교수님. 그리고 해양과학대학 교직원 여러분 진심으로 감사 합니다 특히 제주미래의 양식산업을 한단계 발전 시킬수 있도록 넙치 조기 암수판별기법 개발에 관한 연구를 하고 논문을 완성할수 있도록 공동으로 연구하고 지도하여주신 제주대학교 해양과환경연구소 임봉수(이학박사) 교수님 감사합니다

또한 논문을 완성할수 있도록 심사해주신 전유진 교수님. 이재희 교수님. 정준범 교수님께 깊은 감사를 드립니다

제주특별자치도 해양수산연구원에서 같이 근무하면서 본 연구 과제를 도와주신 해양수산연구원 김문관. 고형범 과장님. 고경민. 홍성완. 양병규. 강봉조. 현재민. 오성립. 김필연. 원승환. 박용석. 김수광. 장영환. 연구사를 비롯한 직원 여러분 그리고 제주양식산업발전 협의회에 참여하여 도움을 주신 양식업체 대표님들 모두 진심으로 감사드립니다

한평생 공직생활하는 동안 온갖 난관과 역경을 이겨내며서 아들 딸을 훌륭히 키워 부산. 서울 명문대학을 졸업시켜 당당한 사회인으로서 좋은 직장과 배필을 만나 영리한 자식을 두고 걱정없이 살아갈수 있도록 뒷바라지한 아내 전순금 고맙고 사랑합니다 그리고 병든 어머니를 모시면서 갑상선암. 신장암 두 번이나 수술 하면서 투병중인 아내의 쾌유를 빌면서 이 논문을 전합니다

자랑스런 아들 강경혁. 며느리 김윤정 손녀 강다은 귀여운 딸 강미정. 사위 고경섭. 외손자 고한결 건강하고 성실하게 살아줘서 고맙고 사랑한다