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<Abstract>

TERM RANK PRESERVERS
BETWEEN DIFFERENT GENERAL BOOLEAN

MATRIX SPACES

In this thesis we consider linear transformations from m × n general
Boolean matrices into p × q general Boolean matrices that preserve term
rank. We study linear transformation that preserve term rank between dif-
ferent general Boolean matrix spaces. This results extend the results on the
linear operators from m×n binary Boolean matrices into itself that preserve
term rank.

The term rank of a matrix A is the minimal number k such that all the
nonzero entries of A are contained in h rows and k − h columns. The term
rank of a matrix A is denoted by τ(A).

Let Ξ
(r,s)
k denote the set of all matrices in Mr,s(Bk) whose term rank is k.

Let T : Mm,n(Bk) →Mp,q(Bk) be a linear transformation from m×n gen-
eral Boolean matrices into p× q general Boolean matrices. If f is a function
defined on matrix spaces, then T preserves the function f if f(T (A)) = f(A)
for all A in a matrix space. If X is a subset of a matrix space and Y is a
subset of a matrix space, then we say T preserves the pair (X,Y) if A ∈ X
implies T (A) ∈ Y. And, we also say T strongly preserves the pair (X,Y) if
A ∈ X if and only if T (A) ∈ Y. Further, we say that T (strongly) preserves

term rank k if T (strongly) preserves the pair (Ξ
(m,n)
k ,Ξ

(p,q)
k ).

Song and Beasley characterized linear transformation that preserve term
rank on an antinegative semirings without zero-divisor. But in this paper, we
characterize linear transformations that preserve term rank between different
general Boolean matrix spaces with zero-divisor.

The main results are the following:



Theorem. Let T : Mm,n(Bk) → Mp,q(Bk) be a linear transformation.
Then the following are equivalent:

1. T preserves term rank;
2. T preserves term rank k and term rank l, with 1 ≤ k < l ≤ m ≤ n

and k + 1 < m;
3. T strongly preserves term rank h, with 1 ≤ h < m ≤ n;
4. T has the form T (X) = P (X ⊕ O)Q, where P , Q are permutation

matrices of order p and q, respect.



1 Introduction

There are many papers on linear operators on a matrix space that preserve matrix

functions over various algebraic structures ([8]). But there are few papers of linear

transformations between another matrix spaces that preserve matrix functions

over an algebraic structure([11]).

Let F be a field andMm,n(F) denote the vector space of all m×n matrices over

F. Over the last century, a great deal of effort has been devoted to the following

problem. Characterize those linear operators T : Mm,n(F) → Mm,n(F) which

leave a function or set invariant. We call this a Linear Preserver Problem(LPP)

([7], [8]). There are four general types of LPP. The most typical and oldest type

of LPP is as follows ([10]):

I. Let f be a function on Mm,n(F). Characterize those T on Mm,n(F) such

that f(T (A)) = f(A) for all A ∈Mm,n(F).

The study of these operators began in 1897 ([8]) when Frobenius characterized

the linear operators that preserve the determinant over complex matrices and over

real symmetric matrices.

Another types of LPP is as follows:

II-1. Let S ⊂Mm,n(F). Characterize those T onMm,n(F) such that T (S) ⊂ S

or T (S) = S.

II-2. Let r be a relation(or an equivalent relation) overMm,n(F). Characterize

those T on Mm,n(F) such that ArB if and only if T (A)rT (B).

II-3. Let f be a transformation fromMm,n(F) toMm,n(F). Characterize those

T on Mm,n(F) such that f(T (A)) = T (f(A)) for all A ∈Mm,n(F).

We now turn our attention to matrices over semirings, in particular Boolean

algebra.

Boolean algebra is named after the British Mathematician George Boole (1813

- 1864). The Boolean algebra of two elements is most frequently used in com-

binatorial applications, and all other finite Boolean algebras are direct sums of

copies of it ([6]).
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Applications of the theory of Boolean matrices are of fundamental importance

in the formation and analysis of many classes of discrete structural models which

arise in the physical, biological, and social sciences. The theory is also intimately

related to many branches of mathematics, including relation theory, logic, graph

theory, lattice theory and algebraic semigroup theory ([4], [6]).

The study of the characterization of linear operators that preserve invariants

of matrices over semirings is a counterpart for the study of preservers over fields,

and it has its own importance.

In [1], Beasley and Pullman established analogous results over Boolean algebra

to many preserver problems for matrices over field.

At the most recent, studying for characterization of linear operator(and lin-

ear transformation) that preserve term rank performed by Beasley, Song and

Kang([3], [5], [11]).

In this paper we consider linear transformations from m× n general Boolean

matrices into p× q general Boolean matrices that preserve term rank. We study

linear transformation that preserve term rank between different general Boolean

matrix spaces. This results extend the results on the linear operators from m×n

binary Boolean matrices into itself that preserve term rank.
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2 Preliminaries and Definitions

Definition 2.1. A semiring is a set S equipped with two binary operations + and

· such that (S, +) is a commutative monoid with identity element 0 and (S, ·) is a

monoid with identity element 1. In addition, the operations + and · are connected

by distributivity of · over +, and 0 annihilates S.

Definition 2.2. A semiring S is called antinegative if 0 is the only element to

have an additive inverse.

The following are some examples of antinegative semirings which occur in

combinatorics. Let B = {0, 1}. Then (B, +, ·) is an antinegative semiring (the

binary Boolean semiring) if arithmetic in B follows the usual rules except that

1 + 1 = 1. If P is any subring of R with identity, the reals (under real addition

and multiplication), and P+ denotes the nonnegative part of P, then P+ is an an-

tinegative semiring. In particular Z+, the nonnegative integers, is an antinegative

semiring.

Definition 2.3. Let Bk = P ({1, 2, · · · , k}). (P (A) means the power set of set A.)

Union is denoted by + and intersection by · (or juxataposition); 0 denotes the null

set and 1 the set{1, 2, · · · , k}. Then (Bk, +, ·) is an antinegative semiring (the

general Boolean semiring([12])). In particular, if k = 1, B1 is a binary Boolean

semiring.

Definition 2.4. A nonzero s ∈ S is a zero-divisor if s′s = 0 for some nonzero

s′ ∈ S. The binary Boolean semiring is an antinegative semiring without zero-

divisor, but the general Boolean semiring is not.

Hereafter, S will denote an arbitrary commutative and antinegative semiring.

Definition 2.5. LetMm,n(S) andMp,q(S) be the set of all m×n and p×q matrices

respectively with entries in a semiring S. Algebraic operations on Mm,n(S) and

Mp,q(S) are defined as if the underlying scalars were in a field.
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Definition 2.6. The term rank, of a matrix A is the minimal number k such

that all the nonzero entries of A are contained in h rows and k−h columns. The

term rank of a matrix A is denoted by τ(A).

From now on we will assume that 2 ≤ m ≤ n. It follows that 1 ≤ τ(A) ≤ m

for all nonzero A ∈Mm,n(Bk).

Let Ξ
(r,s)
k denote the set of all matrices in Mr,s(S) whose term rank is k.

Definition 2.7. Let T : Mm,n(S) → Mp,q(S) be a linear transformation. If f is

a function defined on Mm,n(S) and on Mp,q(S), then T preserves the function f

if f(T (A)) = f(A) for all A ∈ Mm,n(S). If X is a subset of Mm,n(S) and Y is a

subset of Mp,q(S), then T preserves the pair (X,Y) if A ∈ X implies T (A) ∈ Y.

Further, T strongly preserves the pair (X,Y) if A ∈ X if and only if T (A) ∈ Y.

Further, we say that T (strongly) preserves term rank k if T (strongly) preserves

the pair (Ξ
(m,n)
k ,Ξ

(p,q)
k ).

Song and Beasley characterized linear transformation on an antinegative semir-

ings without zero-divisor, but in this paper, we characterize linear transforma-

tions that preserve term rank between different general Boolean matrix spaces

with zero-divisor.

Definition 2.8. The matrix A(m,n) denotes a matrix in Mm,n(Bk), O(m,n) is the

m × n zero matrix, In is the n × n identity matrix, I
(m,n)
k = Ik ⊕ Om−k,n−k, and

J (m,n) is the m × n matrix all of whose entries are 1. Let E
(m,n)
i,j be the m × n

matrix whose (i, j)th entry is 1 and whose other entries are all 0, and we call

E
(m,n)
i,j a cell. An m× n matrix L(m,n) is called a full line matrix if

L(m,n) =
n∑

l=1

E
(m,n)
i,l or L(m,n) =

m∑

k=1

E
(m,n)
k,j

for some i ∈ {1, . . . , m} or for some j ∈ {1, . . . , n}; R
(m,n)
i =

n∑
l=1

E
(m,n)
i,l is the

ith full row matrix and C
(m,n)
j =

m∑
k=1

E
(m,n)
k,j is the jth full column matrix. We

will suppress the subscripts or superscripts on these matrices when the orders

are evident from the context and we write A, O, I, Ik, J , Ei,j, L, Ri and Cj

respectively.
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The following is obvious by the definition of term rank of matrices over an-

tinegative semirings.

Lemma 2.9. For matrices A and B in Mm,n(Bk), we have

τ(A + B) ≤ τ(A) + τ(B)

and

τ(A) ≤ τ(A + B).

Proof. Let τ(A + B) = k. Then minimal number of lines that contains nonzero

entries of A + B is k. Let τ(A) = l. Since Mm,n(Bk) is an antinegative, there

isn’t an inverse for addition without zero. So k− l ≤ τ(B). And if there exist an

entry of B that located out of any A’s minimal cover lines, τ(A) < τ(A + B). If

not, then τ(A) = τ(A + B).

Definition 2.10. If A and B are matrices in Mm,n(S), we say that B dominates

A (written A v B or B w A) if bi,j = 0 implies ai,j = 0 for all i and j. This

provides a reflexive and transitive relation on Mm,n(S).

The following is also obvious by the definition of term rank of matrices over

antinegative semirings.

Lemma 2.11. For matrices A and B in Mm,n(Bk), A v B implies that

τ(A) ≤ τ(B).

Proof. It is clear by definition of dominating.

Definition 2.12. As usual, for any matrix A and lists L1 and L2 of row and

column indices respectively, A(L1 | L2) denotes the submatrix formed by omitting

the rows L1 and columns L2 from A and A[L1 | L2] denotes the submatrix formed

by choosing the rows L1 and columns L2 from A.
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Definition 2.13. For matrices A and B in Mm,n(S), the matrix A ◦ B denotes

the Hadamard or Schur product. That is, the (i, j)th entry of A ◦B is ai,jbi,j.

Definition 2.14. If 1 ≤ m,n and 1 ≤ p, q and T : Mm,n(Bk) → Mp,q(Bk)

is a linear transformation, then T is a (P, Q)-block-transformation if there are

permutation matrices P ∈Mp(Bk) and Q ∈Mq(Bk) such that

• m ≤ p and n ≤ q, and T (A) = P [A⊕O]Q for all A ∈Mm,n(Bk) or

• m ≤ q and n ≤ p, and T (A) = P [At ⊕O]Q for all A ∈Mm,n(Bk).

Definition 2.15. If S is a commutative antinegative semiring, 1 ≤ m,n and

1 ≤ p, q and T : Mm,n(S) → Mp,q(S), then T is a (P,Q, B)-block-transformation

if there are permutation matrices P ∈ Mp(S) and Q ∈ Mq(S), and B ∈ Mm,n(S)
which has not zero element such that

• m ≤ p and n ≤ q, and T (A) = P [(A ◦B)⊕O]Q for all A ∈Mm,n(S) or

• m ≤ q and n ≤ p, and T (A) = P [(A ◦B)t ⊕O]Q for all A ∈Mm,n(S).
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3 Term rank preservers of General Boolean ma-

trices

In this section, we obtain some results on the term-rank preservers of general

Boolean matrices. All most of these results were studied on the binary Boolean

matrices by Song and Beasley([11]).

Definition 3.1. For a linear transformation T : Mm,n(Bk) → Mp,q(Bk) , we say

that T

(1) preserves term rank k if τ(T (X)) = k whenever τ(X) = k for all X ∈
Mm,n(Bk), or equivalently if T preserves the pair (Ξ

(m,n)
k ,Ξ

(p,q)
k );

(2) strongly preserves term rank k if τ(T (X)) = k if and only if τ(X) = k

for all X ∈ Mm,n(Bk), or equivalently if T strongly preserves the pair

(Ξ
(m,n)
k ,Ξ

(p,q)
k );

(3) preserves term rank if it preserves term rank k for every k(≤ m).

Lemma 3.2. Let 2 ≤ k ≤ m ≤ n. If T : Mm,n(Bk) →Mp,q(Bk) is a linear trans-

formation that preserves term rank k and term rank 1, then T strongly preserves

term rank 1.

Proof. First to show when k = 2, and next k ≥ 3.

Case 1. Let τ(T (A)) = 1. If k = 2 and τ(A) ≥ 2, then A = B + C + D

with τ(B) = 1, τ(C) = 1 and τ(D) ≥ 1 with τ(B + C) = 2. Since B + C v
A, T (B + C) v T (A) and 2 = τ(T (B) + T (C)) ≤ τ(T (A)) = 1. This is a

contradiction. So T strongly preserves term rank 1.

Case 2. Assume that k ≥ 3. Suppose a term rank 2 matrix is mapped to

a term rank 1 matrix. Without loss of generality, τ(T (E1,1 + E2,2)) = 1. But

then, since T preserves term rank 1, τ(T (E1,1 + E2,2 + E3,3 + · · · + Ek,k)) =

τ(T (E1,1 + E2,2) + T (E3,3) + · · · + T (Ek,k)) ≤ τ(T (E1,1 + E2,2)) + τ(T (E3,3)) +

· · ·+ τ(T (Ek,k))) = 1 + (k − 2) < k, a contradiction. Thus, T strongly preserves

term rank 1.
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Lemma 3.3. Let 2 ≤ k ≤ m ≤ n. Let T : Mm,n(Bk) → Mp,q(Bk) be a linear

transformation that preserves term rank k. If T does not preserve term rank 1,

then there is some term rank 1 matrix whose image has term rank at least 2.

Proof. Suppose that T does not preserve term rank 1 and τ(T (A)) ≤ 1 if τ(A) =

1. Then, there is some cell Ei,j such that ai,jT (Ei,j) = O. Without loss of

generality, assume that T (E1,1) = O. Since τ(E1,1 + E2,2 + · · · + Ek,k) = k and

T preserves term rank k, we have τ(T (E2,2 + E3,3 + · · · + Ek,k)) = τ(T (E1,1 +

E2,2 + · · · + Ek,k)) = k. Let X = T (E2,2 + · · · + Ek,k) then we can choose a

set of cells Y = {F1, F2, · · · , Fk} such that X w Fi for all i = 1, · · · , k, and

τ(F1 + F2 + · · · + Fk) = k. Since T (E2,2 + · · · + Ek,k) = X, there is some cell in

{E2,2, · · · , Ek,k} whose image under T dominates two cells in Y , a contradiction.

This contradiction establishes the lemma.

Lemma 3.4. Let 1 ≤ k ≤ m ≤ n. Let T : Mm,n(Bk) → Mp,q(Bk) be a linear

transformation that preserves term rank k. If A ∈ Mm,n(Bk) and τ(A) ≤ k then

τ(T (A)) ≤ k.

Proof. If τ(A) = k, then τ(T (A)) = k since T preserves term rank k. Suppose

that τ(A) = h < k, and τ(T (A)) > k. Then there exist a matrix B ∈ Mm,n(Bk)

such that τ(A + B) = k and hence τ(T (A + B)) = k, but by Lemma 2.9,

τ(T (A+B)) = τ(T (A)+T (B)) ≥ τ(T (A)) > k, a contradiction. Thus τ(T (A)) ≤
k.

Lemma 3.5. Let 2 ≤ k ≤ m ≤ n and T : Mm,n(Bk) → Mp,q(Bk) be a linear

transformation that preserves term rank k. If T does not preserve term rank 1,

then τ(T (J)) ≤ k + 2.

Proof. By Lemma 3.3, if T does not preserve term rank 1, then there is some

rank 1 matrix whose image has term rank 2 or more. Without loss of generality,

we may assume that T (E1,1 + E1,2) ≥ E1,1 + E2,2.

Suppose that τ(T (J)) ≥ k + 3. Then, τ(T (J)[3, · · · , p|3, · · · , q]) ≥ k − 1.

Without loss of generality, we may assume that T (J)[3, · · · , p|3, · · · , q] w E3,3 +

E4,4 + · · · + Ek+1,k+1. Thus, there are k − 1 cells, F3, F4, · · · , Fk+1 such that

T (F3 + F4 + · · · + Fk+1) w E3,3 + E4,4 + · · · + Ek+1,k+1. Then, T (E1,1 + E1,2 +
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F3 + F4 + · · · + Fk+1) w Ik+1. But, τ(E1,1 + E1,2 + F3 + F4 + · · · + Fk+1) ≤ k

while τ(T (E1,1 + E1,2 + F3 + F4 + · · · + Fk+1)) ≥ k + 1, a contradiction. Thus,

τ(T (J)) ≤ k + 2.

Lemma 3.6. Let 1 ≤ k < r, s and A ∈Mm,n(Bk). If τ(E1,1+· · ·+Ek,k+A) ≥ k+1

and A[k + 1, · · · , r|k + 1, · · · , s] = O, then there is some i, 1 ≤ i ≤ k, such that

τ(E1,1 + · · ·+ Ei−1,i−1 + Ei+1,i+1 + · · ·+ Ek,k + A) ≥ k + 1.

Proof. Suppose that B = E1,1 + · · · + Ek,k + A ∈ Mm,n(Bk) and τ(B) ≥ k + 1.

Then there are k + 1 cells F1, F2, · · · , Fk+1 such that B w F1 + F2 + · · · + Fk+1

and τ(F1 + F2 + · · ·+ Fk+1) = k + 1. If F1 + F2 + · · ·+ Fk+1 w Ik ⊕ O then one

cell Fj must be a cell Ea,b where a, b ≥ k + 1, which contradicts the assumption

A[k + 1, · · · , r|k + 1, · · · , s] = O. Thus F1 + F2 + · · · + Fk+1 does not dominate

Ik ⊕ O. That is, there is some i, 1 ≤ i ≤ k, such that τ(E1,1 + · · · + Ei−1,i−1 +

Ei+1,i+1 + · · ·+ Ek,k + A) ≥ k + 1.

Lemma 3.7. Let 1 ≤ k < l ≤ m ≤ n. Let T : Mm,n(Bk) → Mp,q(Bk) be a linear

transformation that preserves term rank k and term rank l, then T preserves term

rank 1.

Proof. We prove this lemma by 3 cases according to distance between k and l.

Case 1. Let k + 3 ≤ l. Suppose that T does not preserve term rank 1. By

Lemma 3.3, there is some term rank 1 matrix whose image has term rank at

least 2. Let A be such a term rank 1 matrix. Then, A is dominated by a row or

column and the image of the sum of two cells in that line has term rank at least

two. Without loss of generality, we may assume that T (E1,1 +E1,2) w E1,1 +E2,2.

Now, by Lemma 3.5, if B = T (C) is in the image of T , τ(B) ≤ k + 2 < l. But if

we take B = T (Il), then T (Il) must have term rank l, a contradiction.

That is, τ(T (A)) ≤ 1. Since A was an arbitrary term rank 1 matrix, T

preserves term rank 1.

Case 2. Let k + 1 = l. If k = 1, the lemma vacuously holds. Suppose that

k ≥ 2.

Suppose that T does not preserve term rank 1. Then there is some matrix of

term rank 1 whose image has term rank at least 2. Without loss of generality,
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we may assume that T (E1,1 + E1,2) w E1,1 + E2,2. By Lemma 3.5, we have that

τ(T (J)) ≤ k + 2. Since T preserves term rank k + 1, τ(T (J)) ≥ k + 1.

Thus, τ(T (J)) = k + i for either i = 1 or i = 2. Now, we may assume

that for some r, s with r + s = k + i, T (J)[r + 1, · · · , p|s + 1, · · · , q] = O.

Further, we may assume, without loss of generality, that there are k + i cells

F1, F2, · · · , Fk+i such that T (Fl) w El,k+i−l+1 for l = 1, · · · , k + i. Suppose

the image of one of the cells in F1, F2, · · · , Fk+i dominates more than one cell

in {E1,k+i, E2,k+i−1, · · · , Ek+1,i}. Say, without loss of generality, that T (F1) w
E1,k+i +E2,k+i−1, then, T (F1 +F3 + · · ·+Fk+1) w E1,k+i +E2,k+i−1 + · · ·+Ek+1,i,

a contradiction since τ(F1 + F3 + · · ·+ Fk+1) ≤ k, and hence τ(T (F1 + F3 + · · ·+
Fk+1)) ≤ k, and τ(E1,k+i + E2,k+i−1 + · · · + Ek+1,i) = k + 1. It follows that for

each j = 1, · · · , k + 1, if T (Fl) w Ej,k+i−j+1 then l = j since T (Fj) w Ej,k+i−j+1

is unique. Further, by permuting we may assume that F1 + F2 + · · · + Fk v[
Jk Ok,n−k

Om−k,k Om−k,n−k

]
.

Now, let O 6= A ∈Mm,n(B) have term rank 1, and suppose that A[1, 2, · · · , k|1,

2, · · · , n] = O and A[K = 1, · · ·m|1, · · · , k] = O. So that A =

[
Ok Ok,n−k

Om−k,k A1

]
.

If T (A)[k + 1, · · · , p|1, i] = O, then, since τ(F1 + · · · + Fk + A) = k + 1,

τ(T (F1+· · ·+Fk+A)) = k+1. Applying Lemma 3.6, we have that there is some j

such that τ(T (F1+· · ·+Fj−1+Fj+1+· · ·+Fk+A)) = k+1. But τ(F1+· · ·+Fj−1+

Fj+1 + · · ·+Fk +A) = k while τ(T (F1 + · · ·+Fj−1 +Fj+1 + · · ·+Fk +A)) = k+1,

a contradiction. So we must have that T (Ek+1,1)[k + 1, · · · , p|1, i] 6= O. If

T (Ek+1,1)[k + 1, · · · , p|1, i] 6= O then τ(T (F1 + · · · + Fk + Ek+1,1)) = k + 1, a

contradiction since τ(F1 + · · ·+Fk +Ek+1,1 = k. Suppose that the (k, i+1) entry

of T (Ek,k+1) is nonzero, then, τ(T (F1 + · · ·+ Fk−1 + Ek,k+1 + Ek+1,k+1)) = k + 1,

a contradiction, since τ(F1 + · · ·+ Fk−1 + Ek,k+1 + Ek+1,k+1) = k.

Consider T (F1 + · · · + Fk−1 + Ek,k+1 + Ek+1,k+2). This must have term rank

k +1 and dominates E1,k+i +E2,k+i−1 + · · ·+Ek−1,i+2 +Ek+1,j for some j ∈ {1, i}.
Thus, by Lemma 3.6, there is some cell in {F1, · · · , Fk−1}, say Fj such that

τ(T (F1 + · · · + Fj−1 + Fj+1 + · · · + Fk−1 + Ek,k+1 + Ek+1,k+2)) = k + 1. But

τ(F1 + · · ·+ Fj−1 + Fj+1 + · · ·+ Fk−1 + Ek,k+1 + Ek+1,k+2) = k, a contradiction.

It follows that T must preserve term rank 1.

Case 3. Let k + 2 = l and A ∈Mm,n(Bk).
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Subcase 3-1. Suppose that τ(A) = k+1 and τ(T (A)) ≥ k+2. Let A1, A2, · · · ,

Ak+1 be matrices of term rank 1 such that A = A1 + A2 + · · · + Ak+1. Without

loss of generality we may assume that T (A) w E1,1 + E2,2 + · · · + Ek+2,k+2 and,

since the image of some Ai must have term rank at least 2, we may assume

that τ(T (A1 + A2 + · · · + Ai)) ≥ i + 1, for every i = 1, 2, · · · k + 1. But then

τ(A1 +A2 + · · ·+Ak) = k while τ(T (A1 +A2 + · · ·+Ak)) ≥ k+1, a contradiction,

Thus if τ(A) = k + 1, τ(T (A)) ≤ k + 1.

Subcase 3-2. Suppose that τ(A) = k+1 and τ(T (A)) = s ≤ k. Without loss of

generality, we may assume that A = E1,1+E2,2+· · ·+Ek+1,k+1 and T (A) w E1,1+

E2,2+· · ·+Es,s. Then there are s members of {T (E1,1), T (E2,2), · · · , T (Ek+1,k+1)}
whose sum dominates E1,1 +E2,2 + · · ·+Es,s. Say, without loss of generality, that

T (E1,1 +E2,2 + · · ·+Es,s) w E1,1 +E2,2 + · · ·+Es,s. Now, τ(A+Ek+2,k+2) = k +2

so that τ(T (A + Ek+2,k+2)) = k + 2. But since τ(T (A + Ek+2,k+2)) = τ((T (A) +

T (Ek+2,k+2)) ≤ τ(T (A)) + τ(T (Ek+2,k+2)), it follows that τ(T (Ek+2,k+2)) ≥ k +

2− s and there are s members of {T (E1,1), T (E2,2), · · · , T (Ek+1,k+1)} whose sum

together with T (Ek+2,k+2) has term rank k + 2, say τ(T (E1,1 + E2,2 + · · ·+ Es,s +

Ek+2,k+2)) = k + 2. Since s ≤ k, τ(E1,1 + E2,2 + · · · + Es,s + Ek+2,k+2) ≤ k + 1

and τ(T (E1,1 + E2,2 + · · ·+ Es,s + Ek+2,k+2)) = k + 2. By Case 1, we again arrive

at a contradiction.

Therefore T strongly preserves term rank k + 1. And by Case 2, T preserves

term rank 1.

Thus we prove completely the lemma by 3 cases.

Lemma 3.8. Let 2 ≤ k ≤ m ≤ n. If T : Mm,n(Bk) → Mp,q(Bk) is a linear

transformation that strongly preserves term rank k, Then T preserves term rank

k − 1.

Proof. If k = 2, the lemma holds. Suppose that k ≥ 3.

Let A ∈ Mm,n(B) and τ(A) = k − 1, and suppose that τ(T (A)) = s < k − 1.

Without loss of generality, we may assume that τ(T (E1,1 + · · ·+Ek−1,k−1)) = s <

k−1. Since τ(T (E1,1+· · ·+Ek,k)) = k, we have that τ(T (Ek,k)) ≥ k−s. Without

loss of generality we may assume that T (E1,1 + · · · + Ek,k) w E1,1 + · · · + Ek,k

and that T (Ek,k) w Et+1,t+1 + · · · + Ek,k for some t ≤ s. Then, there are t

cells {Ei1,i1 , · · · , Eit,it} in {E1,1, · · · , Ek,k} such that T (Ei1,i1 + · · · + Eit,it) w
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E1,1 + · · · + Et,t. Then T (Ei1,i1 + · · · + Eit,it + Ek,k) w E1,1 + · · · + Ek,k. Thus

τ(T (Ei1,i1 +· · ·+Eit,it +Ek,k)) = k. But τ(E1,1+· · ·+Et,t+Ek,k) = t+1 ≤ s+1 <

(k− 1) + 1 = k, which contradicts the assumption of T . Hence τ(T (A)) ≥ k− 1.

Further, τ(T (A)) ≤ k − 1, since T strongly preserves term rank k. Thus, T

preserves term rank k − 1.

Lemma 3.9. Let 2 ≤ k < m ≤ n. If T : Mm,n(Bk) → Mp,q(Bk) is a linear

transformation that strongly preserves term rank k, then T preserves term rank

1.

Proof. By Lemma 3.8, T preserves term rank k − 1. By Lemma 3.7, T preserves

term rank 1.

Now we provide characterizations of linear transformations T : Mm,n(B) →
Mp,q(B) that preserve term ranks k and l, where 1 ≤ k < l ≤ m ≤ n.

Theorem 3.10. Let 1 ≤ m,n and 1 ≤ p, q and T : Mm,n(Bk) →Mp,q(Bk). Then

T strongly preserves term rank 1 if and only if T is a (P,Q)-block-transforma-

tion. (Necessarily, either m ≤ p and n ≤ q, or m ≤ q and n ≤ p.)

Proof. It is routine to show that if T is a (P,Q)-block transformation, then T

strongly preserves term rank 1.

Assume that T strongly preserves term rank 1. Then, the image of each line

in Mm,n(Bk) is a line in Mp,q(Bk). We may assume that either T (R
(m,n)
1 ) ≤ R

(p,q)
1

or T (R
(m,n)
1 ) ≤ C

(p,q)
1 .

Case 1. T (R
(m,n)
1 ) ≤ R

(p,q)
1 . Suppose that T (C

(m,n)
j ) ≤ R

(p,q)
i . Then, since

E
(m,n)
1,j is in both R

(m,n)
1 and C

(m,n)
j and since T (E

(m,n)
1,j ) 6= O, we must have i = 1.

But then, for j 6= k T (E
(m,n)
2,j + E

(m,n)
1,k ) ≤ R

(m,n)
1 and hence, has term rank 1.

But τ(E
(m,n)
2,j + E

(m,n)
1,k ) = 2, a contradiction. Thus the image of any column

is dominated by a column. Similarly, the image of any row is dominated by a

row. Further, since the sum of two rows (columns) has term rank 2, the image

of distinct rows (columns) must be dominated by distinct rows (columns). Let

φ : {1, · · ·m} → {1, · · · , p} be a mapping defined by φ(i) = j if T (R
(m,n)
i ) ≤ R

(p,q)
j

and define θ : {1, · · ·n} → {1, · · · , q} by θ(i) = j if T (C
(m,n)
i ) ≤ C

(p,q)
j . Then, it

is easily seen that φ and θ are one-to-one mappings, and hence, m ≤ p and n ≤ q.

12



Let φ′ : {1, · · · , p} → {1, · · · , p} and θ′ : {1, · · · , q} → {1, · · · , q} be one-to-one

mappings such that φ′ |{1,···m}= φ and θ′ |{1,···n}= θ. Let Pφ′ and Qθ′ denote the

permutation matrices corresponding to the permutations φ′ and θ′.

In this case we have that m ≤ p and n ≤ q, and T (A) = Pφ′ [A⊕O]Qθ′ for all

A ∈Mm,n(Bk), that is T is a (P, Q)-block-transformation.

Case 2. T (R
(m,n)
1 ) ≤ C

(p,q)
1 . As in case 1, a parallel argument shows that m ≤ q

and n ≤ p, and T (A) = P [At⊕O]Q for all A ∈Mm,n(Bk), and consequently that

T is a (P, Q)-block-transformation.

Corollary 3.11. Let 1 < k ≤ m,n and 1 ≤ p, q and T : Mm,n(Bk) → Mp,q(Bk)

be a linear transformation. Then T preserves term rank 1 and term rank k if and

only if T is a (P,Q)-block-transformation.

Proof. By Lemma 3.2, T strongly preserves term rank 1. By Theorem 3.10, the

corollary follows.

Theorem 3.12. Let 1 ≤ k < l ≤ m ≤ n and k + 1 < m. If T : Mm,n(Bk) →
Mp,q(Bk) is a linear transformation that preserves term rank k and term rank l,

or if T strongly preserves term rank k, then T is a (P, Q)-block-transformation.

Proof. By hypothesis, Lemma 3.7 or Lemma 3.9, T preserves term rank 1. By

Corollary 3.11, the theorem follows.

Theorem 3.13. Let 1 ≤ k < l ≤ m ≤ n and k + 1 < m. If T : Mm,n(Bk) →
Mp,q(Bk) is a linear transformation that strongly preserves term rank k, then T

is a (P,Q)-block-transformation.

Proof. By Lemma 3.2, T strongly preserves term rank 1. By Theorem 3.10, the

theorem follows.
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4 Equivalent conditions of term rank preservers

on the general Boolean matrices

Throughout this section, we characterize term rank preservers over different gen-

eral Boolean matrix spaces.

At first, provide two examples.

Example 4.1. Let T (A) = P [(A ◦B)⊕O]Q, and

P =

(
0 1

1 0

)
, Q =




1 0 0

0 0 1

0 1 0


 , B =

(
{a} {b}
{a} {a, b}

)
.

Then for A =

(
{b} {b}
{b} {b}

)
, T (A) =

(
0 0 {b}
0 0 {b}

)
. So τ(A) = 2, but

τ(T (A)) = 1.

Thus, in general Boolean algebra, (P, Q, B)-block-transformation does not pre-

serve term rank.

Example 4.2. Let T (A) = P [(A ◦B)⊕O]Q, and

P =

(
0 1

1 0

)
, Q =




1 0 0

0 0 1

0 1 0


 , B =

(
1 1

1 1

)
= J.

Then for A =

(
{a} {a}
{b} {b}

)
, T (A) =

(
{b} 0 {b}
{a} 0 {a}

)
. Thus τ(A) = 2, and

τ(T (A)) = 2. Actually, (A ◦ J) is a A.

That is , for any general Boolean algebra, (P, Q)-block transformation preserve

term rank, which is a special case of (P, Q, B)-block-transformation with unit bij.

We provide characterizations of linear transformations T : Mm,n(Bk) →Mp,q(Bk)

that preserve term rank.
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Definition 4.3. Let A ∈Mm,n(Bk) and define A ∈Mm,n(B) to be the matrix [ai,j]

where ai,j = 1 if and only if ai,j 6= 0. A is called the support or pattern of A.

Clearly τ(A) = τ(A). Let T : Mm,n(Bk) → Mp,q(Bk) be a linear transformation.

Define T : Mm,n(B) → Mp,q(B) by T (Ei,j) = T (Ei,j), and extend linearly. Then

T : Mm,n(B) →Mp,q(B) is a linear transformation over binary Boolean semiring.

Lemma 4.4. Let T : Mm,n(Bk) → Mp,q(Bk) be a linear transformation. Then T

preserves term rank k if and only if T preserves term rank k, for any 1 ≤ k ≤ m.

Proof. Let A ∈ Mm,n(B) with τ(A) = k. There exist A ∈ Mm,n(Bk) with

τ(A) = k. Then τ(T (A)) = k. Since T (A) has the same zero pattern as T(A),

τ(T (A)) = k. Conversely, let A ∈ Mm,n(Bk) with τ(A) = k. There exist A ∈
Mm,n(B) with τ(A) = k. Then τ(T (A)) = k. Since T(A) has the same zero

pattern as T (A), τ(T (A)) = k.

Theorem 4.5. Let T : Mm,n(Bk) → Mp,q(Bk) be a linear transformation. Then

the following are equivalent:

1. T preserves term rank;

2. T preserves term rank k and term rank l, with 1 ≤ k < l ≤ m ≤ n and

k + 1 < m;

3. T strongly preserves term rank h, with 1 ≤ h < m ≤ n;

4. T is a (P, Q)-block transformation.

Proof. 1 implies 2 and 3 by definition of preserving term rank. Let A be any

matrix inMm,n(B) with τ(A) = k. τ(T (A)) = τ(P [(A⊕O)]Q = τ(A⊕O) = τ(A).

Thus 4 implies 1, 2 and 3. In order to show that 2( or 3 ) implies 4, assume that

T preserves term rank k and term rank l, with 1 ≤ k < l ≤ m ≤ n. By Lemma

4.4, T preserves term rank k and term rank l, with 1 ≤ k < l ≤ m ≤ n.. Thus, by

Theorem 3.12, T is a (P,Q)-block transformation. Thus, T is a (P,Q, B)-block

transformation. But the entries of B must be unit. Thus B = J and T is a

(P,Q)-block transformation.
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In order to show that 3 implies 4, if we apply Lemma 4.4 and Theorem 3.13,

the proof is parallel to the above.
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<국문초록>

서로 다른 일반적인 부울 行列 空間 사이의 項 係數 保存者

 본 논문에서는 일반적인 × 부울 行列 空間에서 일반적인 × 부울 行列 空間

으로의  線型 變換을 연구하였다. 서로 다른 일반적인 부울 行列 空間들 사이의 項 

係數를 保存하는 線型 變換을 특성화하였다. 이 결과는 ×인 二項 부울 行列 空

間상의 項 係數를 保存하는 線型 演算子에 대한 연구 결과를 확장한 것이다.

 行列 의 項 係數는 行列 의  아닌 성분들을 모두 포함하는 개의 行들과 

개의 列들에 대해 最小의 를 의미한다. 의 項 係數는 로 표시한다.

 
 는 × 부울 行列들의 집합   상의 項 係數가 인 모든 부울 行列들

의 집합이라고 하자.

   →를 × 부울 行列 空間에서 일반적인 × 부울 行列 空

間으로의 線型 變換이라고 하자. 만일 가 行列 空間들에서 정의된 함수일 때, 가 

行列 空間의 모든 行列 에 대하여  를 만족하면 는 함수 를 保存

한다고 한다. 그리고 行列 空間의 부분집합 와 行列 空間의 부분집합 에 대하여, 

∈이면 ∈를 만족할 때 는 順序雙  를 保存한다고 한다. 더욱이 

가 順序雙 
  

 를 (강하게) 保存하면, 는 項 係數 를 (강하게) 保存한다

고 한다.

 宋錫準 교수와 Beasley 교수는 零因子를 포함하지 않는 非陰의 半環들 상에서 項 

係數를 保存하는 線型 變換을 특성화하였다. 그러나 이 논문에서는 零因子를 포함

하는 서로 다른 일반적인 부울 行列 空間상에서의 項 係數를 保存하는 線型 變換을 

특성화하였다. 이 논문의 주요 연구 결과는 다음과 같다.

定理. Let   → be a linear transformation. Then

the following are equivalent:

1.  preserves term rank;

2.  preserves term rank  and term rank , with ≦ ≦≦ and

;

3.  strongly preserves term rank , with ≦≦;

4.  has the form ⊕, where   are permutation 

matrices of order  and , respect.
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사의 마음을 전합니다. 

 같이 공부하면서 많은 나이 차 때문에 대하기 힘들었을 310호 동기들과 학우들에게도 감

사하다는 말을 전합니다.

 마지막으로 나이 먹고 공부를 다시 시작한 저를 곁에서 응원해준 저의 사랑하는 어머님, 

남동생 진석이, 여동생 예진이에게 고맙고, 감사한다는 말을 전하고, 이렇게 공부를 다시 시

작할 수 있게 동기를 부여해준 우리 나영이에게 고맙고, 사랑한다는 말을 전합니다.

2013년 12월 
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