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Abstract

Intelligent optimized energy management and prediction model in residential buildings
received attraction of the researchers in last couple of years. Various techniques and models
have been proposed in the literature for optimized energy management and prediction, but the
trade-off between occupant comfort index and energy consumption is still a great challenge to
the research community. Previously we have proposed power consumption optimization and
prediction models based on particle swarm optimization (PSO) and genetic algorithm (GA).
Our proposed models accomplished good performance results up to some extent, but still
there is room for more improvements. In this thesis we proposed hybrid optimization of
energy management and power control models based on preprocessing mechanisms for
occupants comfort index, energy saving and energy consumption. The focus of our proposed
hybrid optimized and prediction models is to increase occupant’s comfort index and reduce
energy consumption using hybrid optimization, power prediction and preprocessing of power
consumption data. The proposed single and multi-preprocessing hybrid optimization based
power control models provides energy efficient environment by reducing power consumption
and improving occupant’s comfort index as compared to GA and PSO based power prediction
models.

Our proposed hybrid energy optimization based prediction models are simple and
maintains better user’s comfort index and minimized the energy consumption without
compromising the occupants comfort index. User set parameters plays a vital role in deciding

the occupants comfort index. In [23, 26-30], user is not involved to determine the occupants

XXil



comfort index, while our proposed models consider user set parameters to decide the
occupants comfort index. So our proposed models are user friendly. In [23, 31, 32], the energy
efficiency is not addressed, while our proposed models gives attention to energy savings and
our models are energy efficient by reducing energy consumption. In [29, 30], the occupants
comfort index is not considered while our proposed approach addressed occupants comfort
index. So the bottom line is, our proposed hybrid energy optimized models based on
prediction and preprocessing addressed energy efficiency, occupants comfort index and user
set parameters, while other approaches mentioned above either provides energy efficiency or

occupants comfort index without considering user set parameters.

XX1il



Acknowledgements

First of all I would like to express my utmost thanks and gratitude to Almighty Allah S.w.T
for giving me the ability to finish this thesis successfully.

I am very grateful to my supervisor Professor DoHyeun Kim, for his continued support
and guidance over the past four and half years. His persistence and support was key to the
successful completion of this work. The research environment he provided was greatly
beneficial in provoking analytical thinking and nurturing ideas.

I would like to thank thesis committee members for their fruitful suggestions on my thesis
work.

I would like to thank my parents, my wife and other family members for their love,
constant encouragement and support. I would also like to thank my kids for their love during
hard time of this thesis.

I would like to thank my colleagues Rashid Ahmad, Muhammad Sohail Khan, Faiza
Sohail Khan, Fazli Wahid, Chen Nan, Chen Sue Wenquan Jin, Lei Hang, Azzaya Galbazar,
Doyeon Kim, Bo Gyeong Kim, Hyeoun Bok Kim and Sahon for their support by creating a

good academic and cooperative environment in the lab.

XX1V



1. Introduction

1.1. Research background

Energy consumption management and user’s comfort index are two foremost design
objectives in forthcoming energy efficient building models. The fundamental reason is that,
power consumption increases day by day while its sources of generations are limited and
expensive as well. On the other side users wants is to consume minimum power without
compromising the occupants comfort index. This prerequisite of minimum power
consumption without compromising users comfort index is an interesting problem to the
research community to cope with. This leads to the trade-off between energy consumption
and user comfort index [1-4]. To address this trade-off, an intelligent and optimized control

model is needed to maintain both energy consumption and occupants’ comfort index.

1.1.1. What is Energy management system (EMS)?

An energy management system (EMS) is a computer-aided tool used by machinists of
electric smart grids to monitor, control, optimize and predict the performance of the
generation and/or transmission system. EMS is a vital module of the smart grid to insure

smooth operation of the electricity and smart grid.



1.1.2. Why we need energy efficient system?

An energy efficient system is needed to avoid extra consumption of energy. The basic aim
of energy efficient systems is to satisfy occupants comfort index without consumption of
extra energy. This will help in smooth operation of the smart grid and it will also put a

positive impact on the energy generation companies.

1.2. Proposed idea

In this section proposed idea of hybrid energy optimization methodologies for users
comfort index and energy saving is described. Proposed techniques address both energy
savings and occupants comfort index simultaneously. Proposed hybrid techniques integrates
in its fitness function the indoor occupants’ comfort index and the corresponding energy
consumption. The proposed hybrid energy optimization techniques also targets to satisfy the
occupant’s requirement along with minimal energy consumption. A range of user set
parameters (temperature, illumination, air-quality) which constitute occupants’ comfort index
[5] in building are selected and then optimized using proposed hybrid energy optimization
algorithms according to the user’s comfort index.

The error difference of optimal parameters and real environmental parameters is input to
the fuzzy controller. The output of the fuzzy controller is the minimum required power

according to the user’s comfort index. Coordinator agent takes as input required power and



optimal parameters. The coordinator agent adjusts the input power of the building on the basis

of available power, required power and user comfort index. The adjusted power is compare

with the required power to get the actual consume power. The consumed power is input to the

Kalman filter and ARIMA prediction algorithms to predict consume power. The predicted

consume power is used by the actuators.

Proposed hybrid energy optimization based prediction models are simple and maintains

better user’s comfort index, and minimized the energy consumption without compromising

the occupants comfort index. User set parameters plays a vital role in deciding the occupants

comfort index. In [23, 26-30], user is not involved to determine the occupants comfort index

while proposed models are user friendly and consider user set parameters to decide the

occupants comfort index. In [23, 31, 32], the energy efficiency is not addressed while

proposed models give attention to energy efficiency by reducing energy consumption. In [29,

30], the occupants comfort index is not considered while proposed approach addressed

occupants comfort index. So the bottom line is, proposed hybrid energy optimization models

based on prediction and preprocessing addressed energy efficiency, occupants comfort index

and user set parameters while other approaches mentioned above either provides energy

efficiency or occupants comfort index without considering user set parameters.

Major components of proposed models included sensors data; single preprocessing, multi-

preprocessing, hybrid energy optimization, fuzzy logic controllers, coordinator, comparator,

energy consumption predictions and post-processing. Figure 1.1 shows the proposed hybrid
3



energy optimization and prediction simulated model.
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Figure 1.1. Proposed hybrid energy optimization and prediction simulation model

Before discussing each component of the proposed hybrid energy optimization and

prediction models we first discuss conceptual model and building model.

1.2.1 Conceptual model

In this section we are going to described conceptual model of the energy consumption

reduction and increase of occupants comfort index. Figure 1.2 shows the conceptual



configuration of the building energy management system, where the comfort index of the user
increases and consumed power decreases. Although these two concepts are opposite to each
other, but using optimization we maintained both parameters simultaneously. Temperature,
illumination and air-quality of the building calculated using sensor devices. [llumination is the
visual display (subjective) inside the building and air-quality is the CO, emission inside the

building. CO, concentration is used as an index to measure the air-quality in the building

environment.
W
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Figure 1.2. Conceptual model
1.2.2. Building model

In this section we presented the building model Figure 1.3. The building model is

classified into different comfortable zones. Each comfortable zone named room spacel and
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room space?2 up-to room space n. Each room space installed sensors and actuators. Installed
sensors are temperature sensor, illumination sensor and air-quality sensor. Each of these
sensors is responsible to collect respective environmental temperature, illumination and air-
quality data for each individual room space. Four actuators are considered for each room
space in the building. Building actuators are the devices which actually use the power inside
the building. The actuators considered here are AC (Air-condition) used for cooling the room
space and Boiler used for heating room space, and light for lighting system (visual comfort)
and fan for providing air-quality comfort. Each of these actuators receives message

information to turn on/off during different hours of the day.

Room space n

Room space ...

Room space 2

Room space 1

Sensors Actuators
Temperature Air-condition
lumination Boiler

Air-quality Light
Fan

Figure 1.3. Building model
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1.2.3. Sensor data

The sensors data considered to be included in proposed models are Temperature,
[llumination and Air-quality. These three sensors data are selected to satisfy users comfort
index with respect to the thermal, visual and air-quality comfort. These three parameters

jointly defined the occupants comfort index.

1.2.4. Single preprocessing

Three out of six proposed models are based on single preprocessing mechanisms. In single
preprocessing only sensing data are smooth. The sensing data is also checked against the
noise of outlier, zero cell data, standard form and normalization. If the data is found to be
noisy then simply removes the outlier’s data, zero cell data and bring the data into the
standard form. When the data becomes processed and in the standard form, it is then input to

the optimization component.

1.2.5. Multi-preprocessing

Other three proposed models are based on multi-preprocessing mechanisms. In multi-
preprocessing each major component is preprocessed using smoothing. The sensing data is
also checked against the noise of outlier, zero cell data, standard form and normalization. If

the data is found to be noisy then simply removes the outlier’s data, zero cell data and bring



the data into a standard form. When the sensing data becomes processed and in the standard
form, it is then input to the optimization component. After optimization smoothing is again
applied to smooth the optimal parameters but this time conditional smoothing is applied.
Conditional smoothing means, if the parameters to be smooth results in degrading occupants
comfort index then those parameters are not candidates for smoothing. Otherwise the
parameters are smooth when it results in increase of occupants comfort index. After
smoothing optimal parameters, the updated optimal parameters results in improved occupants
comfort index. The error difference between updated optimal parameters and smooth

environmental data is input to the fuzzy controllers.

1.2.6. Comfort index

In residential buildings, the important parameters which manage occupant’s quality of
lives are thermal comfort, visual comfort and air-quality [5]. Temperature identifies the
thermal comfort of the occupant’s in a residential building. The heating or cooling system is
used to preserve the temperature in building’s comfortable zone. The illumination level is
used to identify the visual comfort of the occupants in the residential building [6]. The
electrical lighting system is used to accomplish the visual comfort. CO, concentration is used
as an index to measure the air-quality in the building. Ventilation system is utilized to keep
low CO, concentration [7]. So the combination of these three parameters serves as occupant’s

comfort index in the residential building. We considered these three parameters to assess the

8



occupant’s comfort index and energy savings in residential buildings.

We have calculated comfort index using Eq. (1.1).

Comfort = By [1-(err/Ty) 2] + B2 [1-(erry/Lee) 2] + B3 [1-(erra/Ace) °] (1.1)

Where “Comfort” is the objective function and the aim is to maximize this function. It
denotes the overall comfort level (temperature, illumination and air-quality) of the user. The
range of comfort index is between [0, 1]. The comfort index varies between ‘0’ and ‘1°. ‘0’
means lowest or minimum comfort index and ‘1’ means highest or maximum comfort index.
p1, p2, p3 are the user defined factors which solve any possible conflict between the three
comfort factors (temperature, illumination and air-quality). At any time f/+52+43 = 1. In
(Eq. 1.1) er is the error difference between optimal parameter of hybrid energy optimization
(temperature in this case) and actual sensor temperature. The minimum error difference, the
maximum will be the comfort index. So we can say there is an inverse relationship between
comfort index and error difference of the parameters (temperature, illumination and air-
quality). As the error difference is the input to the fuzzy controller which confirms, the
minimum error difference, the minimum will be the consumed power.

So in this aspect comfort index also has inverse relationship with power consumption. The
minimum consume power, the highest will be the comfort index. So the comfort index is
depended on the error difference for each of the temperature, illumination and air-quality
parameters. If the error difference for each of the parameters minimize, the maximum will be

the comfort index and vice versa. This fulfills our basic design objectives to minimize the
9



power consumption and maximize the comfort index.

erry is the error difference between optimal parameter of hybrid energy optimization
(illumination in this case) and actual sensor illumination. err, is the error difference between
optimal parameter of hybrid energy optimization (air-quality in this case) and actual sensor
air-quality. Ty, Le, As are the user set parameters of temperature, illumination and air-

quality.

1.2.7. Hybrid energy optimization

Based on serial and parallel hybrid energy optimization algorithms, three hybrid energy
optimization algorithms in two different models (single preprocessing and multi-
preprocessing) are described in this section. First hybrid energy optimization algorithm is
based on PSO and GA. This hybrid energy optimization is the parallel hybrid energy
optimization algorithm. This algorithm is applied in both single preprocessing and multi-
preprocessing model. In single preprocessing hybrid parallel energy optimization, PSO and
GA optimizes user set parameters. When both GA and PSO finished optimization, then both
the optimization solutions PSO and GA are combined to get the best solution. After getting
best solutions, the next iteration population included individuals of both PSO and GA. The
process is continued until we get optimal solutions. The optimal solution of hybrid parallel
energy optimization based on PSO and GA is used to calculate the occupant’s comfort index.

The error difference between these optimal parameters and environmental parameters is input

10



to the fuzzy controllers.

In multi-preprocessing hybrid parallel energy optimization, PSO and GA optimizes user

set parameters. When both GA and PSO finished optimization then both the optimization

solutions are combined to get the best solution from both PSO and GA. After getting best

solution, the next iteration population included individuals of both PSO and GA. The process

is continued until we get optimal solution. The optimal solution of hybrid parallel energy

optimization based on PSO and GA is used to calculate the occupant’s comfort index. The

optimal parameters are preprocessed using smoothing to smooth the optimal parameters and

improve the occupants comfort index. After smoothing, the optimal parameters are updated.

The comfort index is recalculated based on the updated optimal parameters to get the

improved occupants comfort index. The updated optimal parameters are then used along with

environmental parameters to calculate the error difference. The resultant error difference is

then input to the fuzzy controllers.

Second hybrid energy optimization algorithm is based on PSO and GA. This hybrid energy

optimization is the serial hybrid energy optimization algorithm. This algorithm is applied in

both single preprocessing and multi-preprocessing models.

In single preprocessing hybrid serial energy optimization, PSO optimizes user set

parameters. When PSO finished optimization then GA algorithm starts optimization of user

set parameters with respect to the environmental parameters along with optimal parameters of

PSO to get the best solution. After getting best solution, the next iteration population for GA
11



included individuals of its own and optimal parameters of PSO. The process is continued until
we get optimal solution. The optimal solution of hybrid serial energy optimization based on
PSO and GA is used to calculate the occupant’s comfort index. The error difference between
these optimal parameters and environmental parameters is input to the fuzzy controllers.

In multi-preprocessing hybrid serial energy optimization, PSO optimizes user set
parameters. When PSO finished optimization then GA algorithm starts optimization of user
set parameters with respect to the environmental parameters along with optimal parameters of
PSO to get the best solution. After getting best solution, the next iteration population for GA
contains individuals of its own and optimal parameters of PSO. The process is continued until
we get optimal solution. The optimal solution of hybrid serial energy optimization based on
PSO and GA is used to calculate the occupant’s comfort index.

These optimal parameters are preprocessed using smoothing to smooth the optimal
parameters and improve the occupants comfort index. After smoothing, the optimal
parameters are updated. The comfort index is recalculated based on the updated optimal
parameters to get the improved comfort index. The updated optimal parameters are then used
along with environmental parameters to calculate the error difference. The resultant error
difference is then input to the fuzzy controllers.

Third hybrid energy optimization algorithm is based on PSO and MIGA. This hybrid
energy optimization is the serial hybrid energy optimization algorithm. This algorithm is

applied in both single preprocessing and multi-preprocessing model. In single preprocessing
12



hybrid serial energy optimization, PSO optimizes user set parameters. When PSO finished
optimization then MIGA algorithm starts optimization of user set parameters with respect to
the environmental parameters along with optimal parameters of PSO to get the best solution.
After getting best solution, the next iteration population for MIGA contains individuals of its
own and optimal parameters of PSO. The process is continued until we get optimal solution.
The optimal solution of hybrid serial energy optimization based on PSO and GA is used to
calculate the occupant’s comfort index. The error difference between these optimal
parameters and environmental parameters is input to the fuzzy controllers.

In multi-preprocessing hybrid serial energy optimization, PSO optimizes user set
parameters. When PSO finished optimization then MIGA algorithm starts optimization of user
set parameters with respect to the environmental parameters along with optimal parameters of
PSO to get the best solution of MIGA. After getting best solution, the next iteration
population for MIGA contains individuals of its own and optimal parameters of PSO. The
process is continued until we get optimal solution. The optimal solution of hybrid serial
energy optimization based on PSO and MIGA is used to calculate the occupant’s comfort
index.

These optimal parameters are preprocessed using smoothing to smooth the optimal
parameters and improve the occupants comfort index. After smoothing, the optimal
parameters are updated. The comfort index is recalculated based on the updated optimal

parameters to get the improved comfort index. The updated optimal parameters are then used
13



along with environmental parameters to calculate the error difference. The resultant error

difference is then input to the fuzzy controllers.

1.2.7.1. Hierarchy of energy optimization and prediction

algorithms

In this section we are going to introduce the conceptual and detailed hierarchy of the
optimization algorithms applied to energy consumption optimization. Figure 1.4 shows the
conceptual hierarchy of the proposed hybrid energy optimization algorithms. The basic
optimization algorithms applied to energy optimization is divided into two types of
optimization models. One is single energy optimization and prediction models and second is
hybrid optimization and prediction models. As the names describes, the former one uses
single optimization technique to optimize the user set parameters while the latter one uses
combination of two techniques to form a hybrid optimization algorithms. The latter one is
further divided into two types of optimization and prediction models. One is single
preprocessing optimization and prediction models and second one is multi-preprocessing
optimization and prediction models.

The earlier one uses preprocessing of the environmental data while second one uses
preprocessing at multiple stages in the model i.e. before each of optimization, fuzzy control
and prediction components. Similarly post-processing is applied only at the end of the single

preprocessing optimization and prediction models while for the multiple preprocessing

14



optimization and prediction models it is applied after each stage of the model. Preprocessing
involves smoothing of the data while post-processing involves analysis, results
communication with the users and visualization of the results for each part (Optimization,

Fuzzy control and Prediction) of the model.

Basic energy optimization
model based on prediction

Single energy Hybrid optimization
optimization model model based on
based on prediction prediction
GA optimization PSO optimization Single preprocessing IIVl'ultil—preprocessing
optimization model based on optimization “'“)fie' based on
prediction prediction
Serial Parallel Serial Parallel
optimization optimization imizati imizati

Figure 1.4. Conceptual hierarchy of optimization algorithms

Figure 1.5 shows the detailed hierarchy of the proposed hybrid energy optimization
algorithms. In single energy optimization model based on prediction, two kinds of
optimization algorithms have been used. PSO based optimization and GA based optimization
of parameters. Proposed hybrid energy optimization is divided into two parts, single
preprocessing and multi-preprocessing. Single preprocessing optimization models use three
scenarios of optimizations. One is (PSO and GA based parallel hybrid optimization), second
is (PSO and GA based serial hybrid optimization) and third is (PSO and MIGA based serial
hybrid optimization).
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In PSO and GA based parallel hybrid optimization, initially PSO particle’s positions and

velocities along with GA individuals is populated. The size of initial population is 100. In the

next step, the particles and individuals are evaluated against the fitness function defined in

(Eq. 1.1). In the next step, particles local best fitness and local best position is defined.

Individuals are selected for recombination based on the rank based selection method. In the

next step, global best fitness is initialized with local best fitness. In the next step, particles

position and velocities are updated using (Eq. 3.1 and Eq. 3.2). Crossover is performed for the

individuals to get create offspring’s. In the next step, fitness of particles and individuals is

evaluated using (Eq. 1.1). In the next step, a mutation criterion is checked and if it met then

mutation is performed by creating a random individual. If the mutation criterion does not met

then combined updated particles and updated individuals to select the best solution. If the

current best fitness is bad than the combined fitness, then update particles position and

velocities along with creation of off-springs using crossover. If this is not the case and current

fitness is best than the global fitness then assigned current best to the global best fitness. In

the next step if the stopping criterion met then stop the evaluation of the algorithm and we get

optimal solution otherwise update particles position and velocities along with creation of off-

springs using crossover until stopping criterion is met.

In PSO and GA based serial hybrid optimization, initially GA individuals are randomly

populated. The size of initial population is 100. In the next step, individual from initial

population of GA and PSO optimal solutions is selected based on the minimum error
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difference against the environmental parameters. In the next step, individuals are evaluated

against the fitness function defined in (Eq. 1.1). In the next step, individuals are selected for

recombination based on the rank based selection method.

Basic energy optimization

model based on prediction

Single energy optimization Hybrid optimization model

‘model based on prediction

based on prediction

Single preprocessing ‘Multi-preprocessing
model based on imizati

wiodel based on
prediction prediction
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Figure 1.5. Detailed hierarchy of optimization algorithms
In the next step, crossover is performed for the individuals to create offspring’s. In the next
step, individuals are evaluated using (Eq. 1.1). In the next step, a mutation criterion is
checked and if it met then mutation is performed by creating a random individual. If mutation
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criterion is met then perform mutation by creating a random individual otherwise check

stopping criterion. If stopping criterion arises then stop evaluation of algorithm and we will

get optimal solution, otherwise create off-springs using crossover until stopping criterion is

met.

PSO and MIGA based serial hybrid optimization; initially GA individuals are randomly

populated. The size of initial population is 100. In the next step, individual from initial

population of MIGA, and PSO optimal solutions is selected based on the minimum error

difference against the environmental parameters.

In the next step, the population is divided into two islands. In the next step, individuals of

both islands are evaluated against the fitness function defined in (Eq. 1.1). In the next step,

individuals from each island are selected for recombination based on the rank based selection

method. In the next step, crossover is performed for the individuals of each island to create

offspring’s. In the next step, individuals of each island are evaluated using (Eq. 1.1). In the

next step, migration and mutation criterion is checked and if it met then migrations and

mutation is performed by migrating individuals between the islands and randomly creating

individual respectively. If migration and mutation criterion does not is met then check

stopping criterion. If stopping criterion arises then stop evaluation of algorithm and we will

get optimal solution, otherwise create off-springs using crossover until stopping criterion is

met.
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1.2.7.2. Algorithms complexity

Most evolutionary algorithms (EA) have, at each iteration, a complexity of O(n*p +
Cof*p), where n is the dimension of the problem and p is the population size and Cof is the
cost of the objective function, CM is the crossover and mutation O(CM), S is the Selection of
parents O(S), PV is the particle and velocities updates O(PV), U is the update of optimal
parameters and comfort index (T, L, A). The complexity of objective functions are of O(n).

Furthermore, EA usually perform FEs/p iterations, where FEs is the maximum amount of
function evaluations allowed. Thus, the complexity cost becomes O (n*FEs + Cof*FEs).
Once again, the second term tends to determine the time complexity and this complexity is
determined by the cost of evaluating the objective function and the amount of evaluations we
perform. That’s why in EA, the quality of an algorithm is frequently measured by the amount
of evaluations it performs. Eq (1.2 to 1.11) shows the complexities of each of the model
algorithm.

Where n =3, FEs =1, Cof=9, p=100, CM =PV =100 * 3, S=0 (p*0.9) = 100 * 0.9 =
90 and U = Update optimal parameters = 3, (T, L, A) and update comfort (T, L, A) =3

1. PSO based model complexity/Algorithm 1

O (n*FEs + Cof*Fes + PV) (1.2)

=3*1+9*1+100*3=312

2. GA based model complexity/Algorithm 2
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O (n*FEs + Cof*FEs + CM + S)

=3*1+9*1+100*3+90=402

3. PSO and GA based single preprocessing parallel based algorithm complexity

O (n*FEs + Cof*FEs + PV + CM + S)

=3*1+9*1+100*3+100*3+90=702

4.  PSO and GA based single preprocessing serial algorithm complexity

O ((n*FEs + Cof*FEs + PV) + (n*FEs + Cof*FEs + CM + S))

=3*1+9*1+100*3+3*1+9*1+100*3+90="714

5. PSO and MIGA based single preprocessing serial algorithm complexity

O ((n*FEs + Cof*FEs + PV) + (n*FEs + Cof*FEs + (CM + S + S))

=3*1+9*1+100*3+3*1+9*1+100*3+90+90=2802

6.  PSO based multi-preprocessing algorithm complexity

O (n*FEs + Cof*Fes + PV + U*n)

=3*1+9*1+100*3+3*3=321

7. GA based multi-preprocessing algorithm complexity

O (n*FEs + Cof*FEs + CM + S + U*n)

=3*]1+9*1+100*3+90+3*3=411

8. PSO and GA based multi-preprocessing parallel algorithm complexity

O (n*FEs + Cof*FEs + PV + CM + S + U*n)

=3*1+9*1+100*3+100*3+90+3*3="711
20

(1.3)

(1.4)

(1.5)

(1.6)

(1.7)

(1.8)

(1.9)



9. PSO and GA based multi-preprocessing serial algorithm complexity

O ((n*FEs + Cof*FEs + PV) + (n*FEs + Cof*FEs + CM + S)) + U (1.10)

=3*%1+9*1+100*3+3*1+9*1+100*3+90+3*3="723

10. PSO and MIGA based multi-preprocessing serial algorithm complexity

O ((n*FEs + Cof*FEs + PV) + ((n*FEs + Cof*FEs + (CM + S + S)) + U (1.11)

=3*1+9*1+100*3+612+90+90+3*3=1113

The complexity and performance (energy consumption) graph is shown in Figure 1.6. In
graph each model algorithms complexity and performance is analyzed with respect to the
energy consumption. Algorithm 1 and 2 are the PSO based model and GA based model
complexities, algorithm 3, 4 and 5 are the single preprocessing hybrid optimization models
complexities, algorithm 6 and 5 are the PSO and GA based multi-preprocessing model
algorithms and algorithm 8 to 10 are the multi-preprocessing hybrid energy optimization
model complexities.

In Figure 1.6 GA based model (algorithm 2) has higher complexity as compared to PSO
based model (algorithm 1). GA based model algorithm consumed less power as compared to
PSO based model algorithm. The performance of GA based algorithm is much better than
PSO based model algorithm as far as power consumption reduction is concerned. PSO & GA
based hybrid parallel model with single preprocessing (algorithm 3), PSO & GA based hybrid
serial model with single preprocessing (algorithm 4), and PSO & MIGA hybrid serial model

with single preprocessing (algorithm 5) has higher complexities as compared to algorithm 1
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and algorithm 2 but consumed less power as compared to algorithm 1 and algorithm 2. The
performance of algorithms 3, 4 and 5 which are the single preprocessing hybrid energy model
algorithms, are much better than PSO based model algorithm and GA based model algorithm
with respect to the power consumption reductions.

PSO based multi-preprocessing model (algorithm 6) and GA based multi-preprocessing
model (algorithm 7) has higher complexities as compared to algorithm 1 and algorithm.
Although complexities of algorithms 6 and 7 are higher than algorithm 1 and 2 but consumed

less power as compared to algorithm 1 and 2.

Energy consumption and algorithm complexity
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Figure 1.6. Algorithm’s complexity and performance graph

The performance of algorithms 6 and 7 are much better than PSO based model algorithm
and GA based model algorithm with respect to the power consumption reductions. PSO & GA
based hybrid parallel model with multi-preprocessing (algorithm 8), PSO & GA based hybrid
serial model multi-preprocessing (algorithm 9), and PSO & MIGA hybrid serial model multi -
preprocessing (algorithm 10) has higher complexities as compared to algorithm 1 and
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algorithm 2 but consumed less power as compared to algorithm 1 and algorithm 2. Although

the complexities of the multi-preprocessing hybrid energy model algorithms 8, 9 and 10 are

high but the performance are much better than PSO based model algorithm and GA based

model algorithm with respect to the power consumption reductions.

Table 1.1 shows the performance of each model’s algorithm for temperature, illumination,

air-quality and total power consumption. It also shows the complexity values of each model’s

algorithm. ‘Yes’ means that respective algorithm perform well with respect to the power

consumption reductions and comfort index as compared to basic model algorithms.

PSO based model algorithm complexity is 312 and its corresponding total power

consumption is 3047KWh. GA based model algorithm complexity is 402 while its total power

consumption is 3026KWh. GA based model complexity is high than PSO based model

complexity but it perform well in terms of power consumption reduction and comfort index

improvements.

PSO & GA based hybrid parallel with single preprocessing model algorithm complexity is

702 and its corresponding total power consumption is 2922KWh. PSO & GA hybrid serial

with single preprocessing model algorithm complexity is 714 while its total power

consumption is 2914KWh. PSO & MIGA hybrid serial with single preprocessing model

algorithm complexity is 802 while its performance with respect to total power consumption is

2812KWh.
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Table 1.1. Algorithm’s complexity and performance with respect to the power consumption reduction and comfort index

Predicted Power

Consumption
System performance
Complexity
Model Scenario | Algo T L A Total Algorithm complexity .
value
PSO
PSO & O (n*FEs + Cof*Fes + Comfort Index
based 601 1707 738 | 3047 312 Power consumption reduction
K PV) Improvement
. prediction
Basic model
Compared to Compared to Compared to Compared to
GA based O (n*FEs + Cof*FEs +
o GA &K | 581 | 1704 739 | 3026 402 Basic Model Basic Model Basic Model Basic Model
prediction CM +5S)
PSO GA PSO GA
GA in
Scenario 1 O (n*FEs + Cof*FEs +
PSO 518 | 1665 738 | 2922 702 Yes Yes Yes Yes
Parallel PV+CM+S)
and K
Hybrid O ((n*FEs + Cof*FEs +
L ) PSO &
optimization Scenario 2 PV)
. GA 532 | 1641 739 | 2914 714 Yes Yes Yes Yes
single Serial + (n*FEs + Cof*FEs +
. and K
preprocessing CM +8))
PSO & O ((n*FEs + Cof*FEs +
Scenario 3
Serial MIGA 507 | 1599 705 | 2812 PV) 802 Yes Yes Yes Yes
eria
and + ((n*FEs + Cof*FEs +
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ARIMA (CM +S+18))
PSO based PSO
. O (n*FEs + Cof*Fes +
multi- Scenario 1 | Serial 586 | 1679 756 | 3022 321 Yes Yes Yes Yes
) PV + U*n)
preprocessing K& A
GA
GA based
. Parallel O (n*FEs + Cof*FEs +
multi- Scenario 2 537 1659 707 | 2904 411 Yes Yes Yes Yes
) K CM + S + U*n)
reprocessin,
prep & ARIMA
GA in
Scenario 1 O (n*FEs + Cof*FEs +
PSO 551 1659 742 | 2953 711 Yes Yes Yes Yes
Parallel PV +CM + S + U*n)
and K
. O ((n*FEs + Cof*FEs +
Hybrid PSO & Almost same
o Scenario 2 PV)
optimization ) GA 610 | 1679 738 | 3028 723 Yes power Yes Yes
. Serial + (n*FEs + Cof*FEs + )
multi- and K consumption
. CM+8))+U
preprocessing
PSO & O ((n*FEs + Cof*FEs +
Scenario 3 | MIGA PV)
572 | 1667 729 | 2968 1113 Yes Yes Yes Yes
Serial &ARIM + ((n*FEs + Cof*FEs +
A &K (CM+S+S)+U

Note. - Algo = Algorithm. T = Temperature. L = I[llumination. A = Air-quality
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Compared to PSO based model algorithm and GA based model algorithm, single
preprocessing hybrid energy optimization algorithm’s complexity is high but performs well in
terms of power consumption reduction and comfort index improvements. PSO based multi-
preprocessing model algorithm complexity is 321 and its corresponding total power
consumption is 3022KWh. GA based multi-preprocessing model algorithm complexity is 411
while its total power consumption is 2904KWh. Compared to PSO based model algorithm
and GA based model algorithm, multi-preprocessing energy optimization algorithm’s
complexity is high but perform well as afar as total power consumption reduction and comfort
index improvements is concern.

PSO & GA based hybrid parallel with multi-preprocessing model algorithm complexity
is 711 and its corresponding total power consumption is 2953KWh. PSO & GA based hybrid
serial with multi-preprocessing model algorithm complexity is 723 while its total power
consumption is 3028KWh. PSO & MIGA based hybrid serial with multi-preprocessing model
algorithm complexity is 113 while its performance with respect to total power consumption is
2968KWh. Compared to PSO based model algorithm and GA based model algorithm, multi-
preprocessing hybrid energy optimization algorithm’s complexity is high but perform well in

terms of power consumption reduction and comfort index improvements.

1.2.7.3. Proposed hybrid energy optimization algorithms

In this section we are going to explain our proposed parallel and serial based
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optimization methods and with the help of flow charts. Figure 1.7 shows the step by step

procedure of hybrid parallel optimization algorithm based on PSO and GA.

‘ Initials Particles Positions and Velocities/ Population ‘

]

‘ Evaluate the fitness value of particle/individual ‘

For each particle set local best fitness = current fitness and local best position = current
position/ Select best individual for recombination

‘ Set global best fitness = local best fitness

l

—% Update particle velocities and positions/Perform crossover ‘4—

l

‘ Evaluate the fitness value of new particle/offspring's

Mutation criteria met?

Perform mutation ‘

Combining updated particles and updated individuals ‘

Current fitness < best of combined fitness?

Figure 1.7. Parallel hybrid energy optimization algorithms flow chart

Initially random population of individuals and particles is initialized. Then the
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individuals and particles are evaluated using fitness function (Eq. 1.1). For each particles the

local best fitness and local best position is set. Similarly for recombination of individuals the

best fitted chromosomes are selected. Then the global best fitness is also initialized using

local best fitness. The new particles and offspring’s are evaluated using fitness function (Eq.

1.1). If mutation criteria meet then apply mutation. Combining updated particles and updated

individuals.

If current fitness is less than best of all combined solutions then set local best as current

otherwise updated particle velocities, positions and perform crossover. If current fitness is less

than global best fitness then set global best as current fitness otherwise updated particle

velocities, positions and perform crossover. If stopping criteria met then stop and we get

optimal solution otherwise updated particle velocities, positions and perform crossover.

Figure 1.8 shows the step by step procedure of hybrid serial optimization algorithm based on

PSO and GA. Initially random population of individuals is initialized. Then select individuals

and optimal particles give the minimum error difference with respect to environmental

parameters. Then the selected individuals are evaluated using fitness function (Eq. 1.1). Then

select best fitted individuals for recombination as parents. Perform ‘variable two point’

crossover and evaluate fitness of each offspring using fitness function (Eq. 1.1). If mutations

criteria meet then perform mutation otherwise check stopping criteria. After mutation check

stopping criteria if yes then stop otherwise select best individuals for crossover and continue

until stopping criteria arises.
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Initialize random population

l

Select individuals and optimal particles which
gives minimum error difference

l

Evaluate the fitness of each individual

v

Select best individuals for crossover

‘ Perform crossover ‘

I

‘ Evaluate fitness of offspring's ‘

Mutation criteria met?

Perform mutation

Stopping criteria met?

Figure 1.8. Serial hybrid energy optimization algorithms flow chart

1.2.7.4. Which approach is good in which situation?

In this section we are going to described which proposed approach is good in which
situation.

1. In situation where we want to provides the highest level of occupants comfort
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index, then multi-preprocessing hybrid energy optimization with prediction is
much suitable than single preprocessing.

2. In situation where we want to provide a better comfort index without
compromising energy consumption, then single preprocessing hybrid energy
optimization with prediction is suitable as compared to GA/PSO with prediction
and multi-preprocessing hybrid energy optimization with prediction.

3. In situation where we want to implement and proposed simple model without
compromising the design objectives then single preprocessing hybrid energy
optimization with prediction models are better and simpler than complex models

of multi-preprocessing hybrid energy optimization with prediction.

1.2.8. Energy consumption predictions

Single preprocessing hybrid parallel energy optimization based on PSO and GA model
uses Kalman filter to predict the energy consumption. Hybrid serial energy optimization
based on PSO and GA model also used Kalman filter to predict energy consumption. Third
model of single preprocessing hybrid energy optimization uses hybrid energy consumption
prediction. Hybrid energy prediction uses both Kalman filter and ARIMA model to predict the
energy consumption. In hybrid energy prediction, ARIMA model predict the energy
consumption and then the predicted energy consumption is again input to the Kalman filter to

predict it again. Then the average of the two predictions gives the predicted energy
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consumption. The predicted consume power is given to the actuators for usage. The predicted
consume power is the power to be consumed in the building.

In multi-preprocessing hybrid energy optimization and prediction models, the consumed
power is preprocessed to smooth the consumed power before it is given to the prediction
component of the model. After smoothing, the consumed power is updated, and revised
consumed power is input to the prediction component. Multi-preprocessing uses the Kalman
filter, ARIMA model and hybrid energy consumption prediction based on the two prediction

algorithms (Kalman filter and ARIMA model) to predict the energy consumption.

1.2.9. Actuators

Building actuators are the devices which actually use the power inside the building. The
actuators considered for simulation here are AC used for cooling, heater for heating the
residential building, and light for visual comfort and fan for providing air-quality comfort.

Each of these actuators receives message information to turn on/off.

1.2.10. Indoor environment

When actuators received message information the status of the actuators changes
accordingly. When actuators start running, the indoor environment gets change and updated
with respect to the optimal parameters. The indoor environment gets improve gradually based

on the message information received by actuators.
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1.3. Contributions

In this section the work contributed to the research of energy management in future energy

efficient building environment is described. All the work discussed in the related work did not

consider these contributions.

1.

Proposed idea of preprocessing based on single preprocessing and multi-
preprocessing mechanism did not covered by the previous approaches.

Proposed models uses hybrid energy optimization algorithms to optimized user set
parameters instead of single optimization.

Energy consumption is predicted using hybrid prediction algorithms used by the
actuators of the building.

Proposed idea of energy management deals with energy consumption reduction and
occupants comfort index simultaneously as compared to other approaches.

In [29, 30], the user occupants comfort index is not addressed while proposed models
gives attention to the occupants comfort index.

In [23, 26-30], the user set parameters are not considered in deciding occupants
comfort index. User set parameters plays a vital role in deciding occupants comfort
index. So these models are not user friendly while proposed hybrid energy
optimization based on prediction and preprocessing considers user set parameters in

deciding occupants comfort index.
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7. In [23, 31-32], the energy efficiency is not addressed while proposed models

addressed energy efficiency.
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2. Related works

2.1. Energy consumption optimization

In this section we are going to explore the related work of optimization algorithms

applied to energy management previously.

2.1.1. Optimization

A series of steps used (usually by a computer program) to find an optimal solution to a
problem. An optimization algorithm consists of maximizing or minimizing a real function by
systematically choosing input values from within an allowed set and computing the value of
the function. Optimization includes finding "best available" values of some objective function
given a defined domain, including a variety of different types of objective functions and
different types of domains.

Despite its name, optimization does not necessarily mean finding the optimum solution
to a problem, since it may be unfeasible due to the characteristics of the problem, which in
many cases are included in the category of NP-hard problems. Yet, for optimization problems
that are NP-hard, no polynomial time algorithm exists, i.e. the algorithms used might need
exponential computation time in the worst case to obtain the optimum, which leads to
computation times that are too high for practical purposes.

As a result, in recent decades many authors have proposed approximate methods,
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including heuristic approaches and artificial neural networks, to solve these problems instead
of using traditional optimization methods, such as linear-programming), nelder—mead simplex
method, lagrangian relaxation and quadratic programming etc. Heuristic methods can be seen
as simple procedures that provide satisfactory, but not necessarily optimal, solutions to large
instances of complex problems rapidly. Meta-heuristics are generalizations of heuristics in the
sense that they can be applied to a wide set of problems, needing few modifications to be
adapted to a specific case. In some cases, the complexity of the problems to solve is so high
that even heuristic and meta-heuristic methods are not able to obtain accurate solutions in

reasonable runtimes.

2.1.2. Energy optimization

The two important parameters in energy management are user set preference parameters
and environmental parameters. User set parameter is the required comfort level of the
occupants in building environment, while environmental parameter is the environmental
conditions. User set parameters and environmental parameters consists of temperature,
illumination and air-quality. In our proposed model, the input to the fuzzy controller is the
error difference between user set parameters and environmental parameters. The minimum
error difference, the minimum will be the power consumption. Here the aim of optimization is
to minimize the error difference between users set parameters and environmental parameters

which results in minimizing the energy consumption. So energy optimization is carried out to
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ensure minimum power consumption and increase occupants comfort index. The user set
parameters are optimized using hybrid optimization algorithms to minimize the error
difference between optimal user set parameters (optimal parameters) and environmental
parameters. After calculating the error difference between optimal parameters and
environmental parameters we concluded that error difference between optimal parameters and
environmental parameters is less than error difference between user set parameters and

environmental parameters.

2.1.3. Particle swarm optimization (PSO)

PSO algorithm was first described as a new modern heuristic algorithm in 1995 [8]. It is
introduced as a stochastic operator-based, population-based and self-adaptive computer
algorithm simulated based on birds social behaviors. PSO is being widely used for various
engineering applications and has turned out to be a powerful optimizer. PSO is a directed
search algorithm because it keeps local best position and global best position of all the
particles and particle fly according to the information’s it currently have. Compare to GA [9]
it is not computationally expensive. So it produced results quickly. Like other evolutionary
algorithms such as GA, PSO also randomly generates a number of solutions called initial
population, and then finds the optimal solution by updating generations iteratively. Each
potential solution in PSO is called a particle, which follows the current local best solution to

fly through the whole solution space for approaching the global best solution. An objective
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function is used to evaluate the quality of each candidate solution with respect to a given
problem. In PSO, each particle represents a possible solution involving two vectors, which are
the position vector and velocity vector. The step by step PSO algorithms is discussed in

section 3.1.2.

2.1.4. Genetic algorithm (GA)

GA is evolutionary, search and optimization algorithm based on the principles of natural
selection and genetics. The principals of GA technique are given [9]. GA has been deployed
to solve wide range of optimization problems where search space is too much large. GA
evolves a population of initial individuals to a population of high quality individuals, where
each individual represents a solution of the problem to be solved. Each individual is called
chromosome, and is composed of a predetermined number of genes. The quality of fitness of
each chromosome is measured by a fitness function described earlier in section 1.6.

Determination of the following factors has the crucial impact on the efficiency of the
algorithm: selection of fitness function, representation of individuals and the values of GA
parameters (crossover and mutation rate, and size of population). Determination of the above
factors usually depends on the application. In our implementation we used the crossover rate
as 0.9% and mutation rate as 0.1%. The rate of crossover and mutation were set after a long
run of the GA algorithm. After completion of the iterations, GA output the optimal parameters

with respect to the sensor data. Figure 2.1 shows the flow cycle of the GA. First of all, initial
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population of chromosome is created. Then it is evaluated by using some fitness function, in
our case we used equation (Eq. 1.1) for evaluation of chromosomes. Then selection of parent
candidates is carried out for modification (crossover). In our case we used rank based
selection to select parent candidates. Then after modification of parent chromosomes we got
new chromosomes as modified off-springs, also called child chromosomes.

We used “variable two point crossover” method for modifications of parent
chromosomes. After getting child chromosomes we evaluated them against the fitness
function that is equation (Eq. 1.1). Then after evaluation of child chromosomes some best
chromosomes are selected for next generation and remaining weak chromosomes are deleted.
The modification process also involved another method called “mutation”. After some fixed
iterations the algorithm performs mutation in which case the genes of the chromosomes are
randomly perturbed. This enables GA to avoid getting stuck in local optima. Hence GA
searches for the best solution in multiple directions. This process of modification using
“crossover” and “mutation” is continuing until the GA algorithm converged to the optimal

solution or number of desired iterations completed.

Parents
Selection » Modification
A
MOdlﬁed Discard
off-springs
4
.. Y
Initiate and evaluate Evaluate Deleted members
» Population Evaluation

Figure 2.1. Genetic algorithm flow cycle
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2.1.5. Multi-Island genetic algorithm (MIGA)

A Multi-Island Genetic Algorithm, or MIGA, is a variant of GA. Basically it consists of
distributed GA. The outstanding features of this method are that the population in one
generation is divided into several sub-populations called Islands, and the genetic operations
are performed independently on each sub-population. This independency enables MIGA to
avoid converging partial optimal solutions. An exchange of individual information, named a
migration, is carried out periodically among sub-populations. Figure 2.2 shows the

operational diagram of a MIGA.

. Chromosome

Migration
Chromosome

Figure 2.2. Operational diagram of Multi-Island Genetic Algorithm

Previously many approaches have been proposed for energy optimization. GA has been
applied for energy management in many ways, like GA adopted for heating, ventilation and
air-conditioning (HVAC) control problems [10]. This method also being applied to the control
problems of energy systems consisting fuel cells, thermal storage, and heat pumps [11].

Another author applied GA [12] to investigate multi-objective (building energy cost and
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occupant thermal discomfort) problems to identify the optimal pay-off characteristic. One of
the authors applied GA to mixed integer and nonlinear programming problems in an energy
plant in Beijing and made a detailed economic investigation by changing the economic and
environmental legislative contexts [13]. Application of GA for the optimization of the control
parameters in parallel to hybrid electric vehicles (HEV) described in [14]. The optimization
problem was formulated for an electric assistant control strategy (EACS) in order to meet the
minimum fuel consumption and emissions while maintaining the vehicle performance
requirements. Another work proposed integrated algorithm based on GA, simulated-based
GA, time series and DOE (ANOVA and DMLT) to forecast electricity energy consumption
[15]. A method which demonstrates the application of GP to learn occupancy behavioral rules
that predict the presence and absence of an occupant in a single-person office was proposed in
[16]. An optimum scheduling strategy of cold water supply system in an intelligent building
has been proposed in [17]. An integrated GA and artificial neural network (ANN) to estimate
and predict electricity demand using stochastic procedures has been proposed in [18].

Optimal control strategies of variable air volume and air-conditioning system has been
proposed in [19]. The control strategies included a base control strategy of fixed temperature
set point and two advanced strategies for insuring comfort and indoor air-quality (IAQ). The
optimization problem for each control strategy was formulated based on the cost of energy
consumption and constrained by system and thermal space transient models. They used GA to

solve the problem of optimization. Supervisory control for hybrid solar vehicles proposed in
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[20], and some beginning tests have been performed on the road. An optimal design method
for energy system of single building has been developed for the first time by establishing

optimal design method for distributed energy system [21].

2.2. Energy consumption control

In the literature many works have been presented in the area of energy savings and some
valuable energy management control systems have been proposed. Approaches based on
conventional control systems have been introduced in prior works [22, 23]. These
conventional controllers consist of classical controllers [22]. The classical controller has the
temperature overshoot problem. The other problem with this approach is that, it does not
consider user set parameters and the model is not user friendly. It also does not address the
energy efficiency and the model was not energy efficient. To overcome the overshoot problem
designer proposed PID controllers [23]. These controllers improve the situation, but the
improper choice of the gains in PID controllers could make the system unreliable and
unstable. Therefore designers give attention to the optimal controller and adaptive controller
respectively [24, 25]. The problems of conventional controllers are addressed in the optimal
and adaptive controls. Optimal controller based approach improves the thermal comfort.
Adaptive controllers have the capability to adapt to the environmental conditions. It is
reported as most promising controllers in the context of adaptation to the climate conditions.

Although optimal and adaptive controllers addressed the problems of classical controllers, but
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these approaches also have problems. These approaches need building model which makes it
difficult to implement for each and every building. The use of elements of bioclimatic
architecture confuses the process of minimization of the cost function and if such a
minimization is acquired, the results are not valid in practice. Another problem with
techniques is that, they don’t consider occupants comfort index. These approaches are also
not user friendly because they did not consider user set parameters. The last and most
important point is that, these approaches don’t consider energy efficiency and consumed more
energy.

A comparison of different control mechanisms for energy consumption and occupants
comfort index in building environment is carried out in [26]. During comparisons user set
parameters were not considered. So the main disadvantage of their work is that, their models
are not user friendly because users are not involved in deciding the occupants comfort index.
A control strategy is proposed in [27] to maintain energy consumption and occupants comfort
index, but user set parameters does not considers in deciding occupants comfort index. User
set parameters plays a vital role in deciding occupants comfort index. In one of the previous
work attention is made towards the occupants comfort index [28]. This work also did not
considered the user participation in deciding occupants comfort index. Predictive and
adaptive controllers using artificial neural network to allow the adaptation of the control
model to the environmental conditions, building characteristics and user behaviors is

proposed in [29]. This approach not only lack of user set parameters but also did not consider
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occupants comfort index. Another predictive control strategy using a system method for

overall system environment and energy performance to the changes of control settings of VAV

air-conditioning system is proposed and developed in [30]. To optimize the parameters GA

algorithm has been used. This system also lack of user set points and occupants comfort

index. The approach only considers energy efficiency in the building.

A reinforcement learning controller to achieve occupants comfort index with minimal

energy consumption is described in [31]. The method succeeded in accomplishing occupants

comfort index but failed to provide energy efficiency. Another robust reinforcement learning

control for building power systems is proposed in [32]. The main drawback of this system is

energy efficiency because the system could not achieved the desired results to minimized

energy consumption.

An optimized fuzzy controller applied for the control of environmental parameters at the

building zone level has been proposed in [33]. In this method the occupants’ preferences are

monitored via a smart card unit. Other proposals in this connection are predictive control

approaches [34, 35], where weather predictions has been applied to heating, ventilating and

air-conditioning system. A multi-agent control system with information fusion has been

devised in [36]. The author’s proposed a building indoor energy and comfort management

model based on information fusion using ordered weighted averaging (OWA) aggregation.

They achieved a high level of comfort with minimum power consumption.

Perceived comfort in office buildings is strongly influenced by several personal, social
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and building factors. The relationship between these factors are complex, so to get a better
understanding of the relationships between these factors a proposal has been presented in
[37]. A method presented in [38] proposed a comfort classification indexes suitable for both
single environment and whole buildings. The methodology allows evaluation of both energy
consumption and polluting impacts and takes into account comfort conditions of indoor
environment and outdoor climate. An approach based on artificial network for energy
management and control has been proposed in [39]. The artificial neural network based
energy management and controller provides efficient and effective operation of wind, solar,

and hydrogen energy-based hybrid renewable stand-alone structure.

2.2.1. Fuzzy logic control

Fuzzy logic was introduced by Lotfi Zadiah in 1965 [40] to deal with vague and
imprecise concepts. In classical set theory, elements either belong to a particular set or not.
The concept of partial membership does not exist in classical set theory. However, in fuzzy set
theory the association of an element with a particular set lies between 0 and 1 which is called
its degree of association or membership degree. In our daily life, we find many vague
statements like hot water, cold weather, dark night, high danger etc. We cannot quantify
exactly about the severity of the danger or hotness. The fuzzy set theory adds generalization
concept in classical set theory and makes it diverse enough to represent imprecise boundaries

like hot, tall, low speed, high risk etc.
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The input to the fuzzy controller for temperature is the error difference between optimal
parameters and real environmental parameters. For efficient control, both the error difference
e, and change in error ce, (difference between current and previous error) are used. The

input/output membership functions for temperature are shown in Figure 2.3.

a NB L] NS Z Ps P PB
L
=
2
(]
£
=]
Q
g
3
=]
[}
(5]
—
of
]
a =
erry
b NB N NS <3 s L] -]
=
= o
2
[
£
£
Q
=
G
<
[}
(5]
—
[e11]
]
g #
cerry
C N8 L] NS r:3 Ps P P
K=
=
Z
L
£
£
[}
£
S
=]
L
=
on
L
a &
Required Power
(Heating/Cooling)

Figure 2.3. Input and output membership functions for temperature. (a) Input membership function of

er, (b) Input membership function of cer, (c) Output membership function.

Table 2.1 shows the fuzzy controller rules for temperature control. It is a 7x7 matrix.
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Each entry in the table is the error difference er7, and change in errorcerr, . The required
power is the power to fulfill the user requirements inside the building. In Table 2.2 the terms
NB, NM, NS, ZE, PS, PM, and PB have been abbreviated for negative big, negative medium,
negative small, zero, positive small, positive medium, and positive big, respectively.

The input to the fuzzy controller for illumination is the error difference between the
optimal parameter and real environmental illumination parameter. The input

membership/output membership functions for illumination are shown in Figure 2.4.
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Figure 2.4. Input and output membership functions for illumination. (a) Input membership function of
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The input membership function is for the errorerr, which is the only input. Table 2.2
shows fuzzy controller rules for illumination control. If the input error is High Small the
required output power would be OLittle. For error Medium Small (MS) the output power

would be OMS. For Basic Small (BS) the required power would be OBS. For OK the output
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power would be OOK. For SH the required output power is OSH while for High, the required
power is OH.

The input to the fuzzy controller for air-quality is the error difference between optimized
air-quality parameter and real environmental air-quality parameter. The input/output

membership functions for air-quality are shown in Figure 2.5.
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Figure 2.5. Input and output membership functions for air quality. (a) Input membership function of e4

(b) Output membership function

The input membership function is for the errorerr, which is the only input to the air
quality fuzzy controller. Table 2.3 shows the fuzzy controller rules for air quality control. If
the input error is little, the required output power would be OFF. For OK, the output power
would be ON. For LH the required power will be OL. For MH, the required power would be
OMH, and for HIGH the required would be OHIGH.

The output of the fuzzy controllers is the required power for each of the temperature,
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illumination and air-quality. The required power is input to the coordinator agent and

comparator components.

Table 2.1. Fuzzy controller rules for temperature controller

Required Power erry
NB NM NS ZE PS PM PB
NB NB NS PS PB PB PB PB
NM NB NM ZE PM PM PB PB
NS NB NM NS PS PM PB PB
cerry ZE NB NM NS ZE PS PM PB
PS NB NB NM NS PS PM PB
PM NB NB NM NM ZE PM PB
PB NB NB NB NB NS PS PB

Table 2.2. Fuzzy controller rules for illumination control

Error HS MS BS OK SH H

Required Power OHS OMS OBS OOK OSH OH

Table 2.3. Fuzzy controller rules for air-quality control

Error Little OK LH MH HIGH

Required Power OFF ON OL OMH OHIGH
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2.3. Energy consumption prediction

Power consumption prediction and forecasting has become one of the main areas of
interest to the researchers and practitioners in energy markets due to the fluctuation of
energy price. This leads to the requirement of accurate and efficient energy price prediction
methodology. All the stakeholders including market players and regulators wage more
attention to the power consumption evolution. Energy consumption prediction is vital
information to organize energy price bidding strategies and maximize their benefits and
profits. Furthermore, it can also help customers minimize their electricity costs. The smart
grid will be operated smoothly and efficiently with the satisfactory level of consumers’
needs and power generation companies.

The energy consumption prediction techniques can be generally classified into two
classes. One is time series techniques. The other kind of energy consumption forecasting and
prediction techniques is Artificial Neural Networks (ANNs). The ANN’s technique that
keeps excellent strength and error tolerance is an effective way to solve the complex
nonlinear problems. ANN’s has received attention of researchers due to its clear model, easy
implementation and good performance in solving nonlinear problems. So it is successful to
model and predict changing complicated power system using ANN techniques. ANN has
been applied to forecast electricity prices in many markets [41-46]. To increase the

forecasting accuracy, it has been performed using supervised neural learning techniques [47,
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48].

These works frequently apply neural network model, which contains many parameters.

These parameters are continuously judged by experience and the model become hard to be

established [49]. So it is difficult to establish a model using ANN. Moreover, it has been

perceived that while the neural network (NN) gives small error during training the patterns,

the error for testing patterns is usually of a larger order [50], in other words, when this

technique is applied to practical system, the prediction accuracy is not good. Moreover, this

algorithm is required to transform the characters of all the problems into numbers and

change all the inferences into numerical calculation. Nevertheless, it definitely cause the loss

of information which degrade the prediction accuracy. Although ANN based price

forecasting techniques can also be used for energy prediction, but its disadvantages reported

above for price forecasting restrict its application for energy consumption prediction.

Stationary time series prototypes such as autoregressive (AR) [51], Dynamic Regression

(DR), Transfer Function (TF) [52], non-stationary time series models like Autoregressive

Integrated Moving Average (ARIMA) [53] have been devised to forecast electricity price in

the recent time. In most modest energy markets the series of prices describes the following

features: high frequency, non-constant mean and variance, daily and weekly, monthly,

seasonality, calendar effect on weekend and public holidays, high volatility and high

percentage of unusual prices [54]. It is not easy to forecast electricity price accurately,

therefore, it has to require special dealing in case of estimating price changes. In this
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connection a hybrid method to forecast day-ahead electricity price is proposed in [55]. The
hybrid method is based on wavelet transform, Auto-Regressive Integrated Moving Average
(ARIMA) models and Radial Basis Function Neural Networks (RBFN). A price forecasting
system for electric market participants to reduce the risk of price volatility is proposed in
[56]. The method combines the Probability Neural Network (PNN) and Orthogonal
Experimental Design (OED) to propose an Enhanced Probability Neural Network (EPNN).
Another work proposed a new combination of a Feature Selection (FS) technique based
Mutual Information (MI) technique and Wavelet Transform (WT) in [57]. Other proposed
approaches in this connection are short-term load forecasting for micro-grids [58] and
iterative strategy [59]. The iterative strategy approach is the combination of the ARIMA,
wavelet transform and non-linear neural network. In this thesis we proposed for our model
the energy power consumption prediction using Kalman filter, ARIMA model and hybrid
prediction model based on Kalman filter and ARIMA model. In hybrid prediction we take
the average of the two energy prediction algorithms (Kalman filter and ARIMA) and predict

the energy consumption.

2.3.1. Kalman filter

A Kalman filter is an optimal estimator. It gathers parameters of interest from indirect,
inaccurate and uncertain observations. It is recursive so that new measurements can be

processed as they arrive. The Kalman filter addresses the general problem of trying to
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estimate the state X€R" of a discrete-time controlled process that is governed by the linear

stochastic difference equation.

X, =4+ Byt Py 2.1
zeR" (2.2)
Z,=H  ,+m,, (2.3)
P(p)~N(0,0) (2.4)
P(m)~ N(O,R) (2.5)

The matrix 4 in the difference equation (Eq. 2.1) relates the state at the previous time
step ¢t — [ to the state at the current step 7, in the absence of either a driving function or
process noise. In general 4 might change with each time step. In this case the value of 4 is
set to 0.90 after empirical analysis. When we increase this value and set to 1, 2 or 3..., 10
then it affects the prediction value and produced inaccurate prediction results. The matrix B
relates the optional control input to the state x. The matrix H in the measurement equation
(Eq. 2.3) relates the state to the measurement z,. Normally H might change with each time
step or measurement. In our case the value of H is set to 1 after empirical analysis. When we
increase or decrease value of H from 1 then it affects the prediction process and hence
results in inaccurate prediction. Similarly, the value of R in our case is set to 0.10. When we
increase this value from 0.10 and set to 1, 2, 3 or 4..., 10 then the prediction process
disturbed and inaccurate values are predicted. If the value of R is set to 1 then it may results

in over-fitting. So after empirical analysis we found that R value must be less than 1
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depending on the data, but the optimal value for R is 0.10 for all kinds of data trends.
Equations (2.4 and 2.5) are the standard normal distribution functions for each of the random
variables p and m respectively. The process noise covariance O and measurement noise
covariance R matrices are change with each time step or measurement. In our case the value
of Q is set to 1 after empirical analysis. When we increase this value from 1 to 2 or 3...., 10

then it affects the prediction and results in inaccurate prediction.

2.3.2. ARIMA model

ARIMA (0, 1, 1) model is one of the variations of ARIMA (p, d, q) model. The ARIMA
(p, d, q) model is the common class of model for forecasting a time series data which can be
stationaries by using some sort of transformations like differencing and logging. In fact, one
of the easiest way to think about ARIMA models is as fine-tuned types of random-walk and
random-trend models, the fine-tuning contains of adding lags of the differenced series and
lags of the forecast errors to the prediction equation, as required to eliminate any last traces
of autocorrelation from the forecast errors. In ARIMA (p, d, q) model p is the number of
autoregressive terms, d is the number of non-seasonal differences, and ¢ is the number of
lagged forecast errors in the prediction equation. Where Y 4 is the forecasting, f is the
coefficient of the lagged forecast error, e, denotes the error at time period ¢-1, o value

varies between [0, 1].

Y(k) = p+Y(k—1)— B xe(k—1) 2.6)
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=Y, =Y, (2.7)

B=1-a (2.3)

2.4. Coordinator agent

Coordinator agent takes the required building power from fuzzy controller and optimal
parameters according to the user comfort index as input. It adjusted the building power on
the basis of available power, required power and optimal parameters of comfort index. The
adjusted building power is compared with the required power to get the actual consume
power. The consumed power is input to the Kalman filter to predict consume power. The
predicted consume power is given to the actuators for usage. The predicted consume power
is the power to be consumed in the building.

In Egs (2.9), (2.10), and (2.11) P (k) is the required power, which is the sum of power
demands from temperature, illumination and air-quality. P,surq, 1S the total energy source
(outside grid-power or internal local power source). P, (k) is the maximum input power

either from the power grid or from the local micro sources to the building.

Pr(k+1) = Pr(k) 2.9)
Py(k+1) = P(k) (2.10)
Pa(k+1) = Py(k) (2.11)
Pr(K)+PLK)+PAK)=Prequirea(k) (2.12)
Prequired(K) < Pavaitabiek) (2.13)
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Pavailable < Pmax (214)

2.5. Preprocessing

Smoothing is applied to environmental data as a preprocessing mechanism. The aim
behind application of smoothing to environmental data is to reduce and bring the data in to
smoother form. The data points which are higher or lower than the adjacent data points are

decreases or increases to become smooth.

2.6. Post-processing

Post-processing evolved to analyze the output data after each step in the proposed
models. The aim of post-processing applied after optimization is to analyze optimal
parameters and comfort index. Communicating optimal parameters and comfort index
results with the users. Also the optimal parameters and comfort index results are visualized

for user understanding and analysis.

55



3. Proposed hybrid energy optimization
algorithms based on prediction in IoT
environment

3.1. Basic energy optimization model based on prediction

3.1.1. Genetic algorithm based energy optimization

prediction
3.1.1.1. Proposed architecture

Figure 3.1 shows optimized system diagram for the energy management. Environmental
parameters (temperature, illumination and air-quality) and user set points are input to the GA
optimizer for optimization. Then optimized parameters are used as user comfort index to
calculate the occupant’s comfort index. Three fuzzy logic based controllers are used to control
temperature, illumination and air-quality. Coordinator Agent adjusted the power according to
the optimized required power from the fuzzy controllers and available power from the
external power grid or internal local power sources. Coordinator agent performs the function
of coordination among the three fuzzy controllers based on the required power and available
power. It also provides maximum comfort index according to the user requirements and

available power. Building actuators are the devices which actually utilizes the power.
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Figure 3.1. System diagram of a residential building energy management

3.1.1.2. Optimization algorithm using GA

GA steps for parameters optimizations and comfort index are:
1) Initial random population
2) Calculate fitness function for user comfort using Eq. (1.1)
3) Select best individuals using any of three selection criteria (Rank, Roulette wheel or
Tournament selection), we used rank based selection
4) Perform ‘variable two point’ crossover of the selected individuals
5) After crossover, we get off-springs

6) Now calculate comfort for the off-springs
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7) Combining populations of step (3) and (5)

8) If mutation criteria meet, then perform mutation

9) Repeat above eight steps until termination criteria arise or objective function does not
improve.

10) Then after arrival of termination criteria select best fitted chromosome.

These parameters were selected after running the algorithm for A times to get optimal
results. GA stops either when the maximum number of generation’s Q met, or no significant
change is observed in the fitness for p (few successive) generations. The maximum
population size selected is 100. The variable two point crossover is performed with the
probability of 0.9 and mutation rate of 0.1. GA parameters (population size, crossover rate
and mutation rate) have been set after running GA for number times. The experimentations
are performed using Latitude D620 laptop of 2.00 GHz with 2GB RAM. The C # 2008 is used
for the simulation. When GA evaluation process finishes, best fitted chromosome is to be

selected to get optimal parameters and comfort index.

3.1.2. Particle swarm optimization based energy

optimization prediction

3.1.2.1. Proposed architecture

Figure 3.2 shows the block diagram of the proposed energy management and prediction
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model for building environment using fuzzy controllers and Kalman filter. Environmental
parameters (temperature, illumination and air-quality) are input to the comfort index. Then
comfort parameters were used to calculate the occupant’s comfort index. Coordinator Agent
adjusted the power according to the user comfort index and predicted power in conjunction
with available source power from outside power grid or inside local energy sources. Fuzzy
controllers control the temperature, illumination and air quality. Actuators are the devices
which actually utilizes the output power of fuzzy controller. Coordinator agent basically
performs the function of coordination between comfort index and power prediction to provide
maximum comfort index according to the user requirements while keeping energy

consumption as minimum as possible.
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User Opti = PSO USP (T, L, A) Sensors
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Available Power
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Figure 3.2. System diagram of a residential building energy management
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3.1.2.2. Optimization algorithm using PSO

For optimization we used PSO. PSO steps for parameters optimizations and comfort
calculations are:
1. Initialize

a) Set constants k

max > €15 €25 11, oWy
b) Randomly initialize particle positions x, € D in R" for =1... p
¢) Randomly initialize particle velocities 0 <v) <vi™ for=1... p
d) Set K=1

2. Optimize

i

a) Evaluate fki for particle X
b) If S S S then Sres = Jis D' =%,
o) If VAR then Joa =1L =x,
d) If stopping condition is satisfied then go to step 3
e) Update particle velocity vector v,’;ﬂ by equation  (3.1)
f) Update particle position vector xiﬂ by equation (3.2)
g) Increment i (index for particles). If i> pop then increment k (index for
iterations), and set =1
h) Go to 2 (a)
3. Report results
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4. Terminate

Where &, determines the maximum change one particle can take during one iteration.

The parameters wy, ¢; and ¢, (0<=w,<= 1.2, 0<=c;<=2, and 0<=c,<=2) are user-supplied
coefficients.

The values# and r, (0<=7 <=1 and 0<=r,<= 1) are random values regenerated for each
velocity update.

The variable x| represents the best ever position of particle i up till time k& (the
cognitive contribution to the search vector)

At the initialization time step £ = 0, the particle velocities v(") are initialized to random
values within the limits 0 < v, < v

The domain R" of f is referred to as the search space (or parameter space). Each
element of R" is called a candidate solution in the search space. The value n denotes the
number of dimensions of the search space, and thus the number of parameters involved in the
optimization problem. The function f is called the objective function, which maps the search
space to the function space.

Since a function has only one output, this function space is usually one-dimensional. The
function space is then mapped to the one-dimensional fitness space, providing a single fitness
value for each set of parameters. This single fitness value determines the optimality of the set

of parameters for the desired task. In most cases, including the one discussed in this work, the

function space can be directly mapped to the fitness space.
61



The best ever fitness value of a particle at design coordinates x, is denoted by f, = and
the best ever fitness value of the overall swarm at coordinates x; is denoted by f,5 , pop
means number of populations and £ is the time variable.

Vi (k+1) = aVi (k) + myr; [Pyegyiy(k)] + mora[ Goesi(k)-xi(k)] (3.1

Xi (k1) =x; (k) + Vi (k+1) (3.2)

3.2. Hybrid energy optimization model based on prediction

3.2.1. Single preprocessing hybrid optimization model based

on prediction

3.2.1.1. Hybrid energy optimization and predicted power

control model

3.2.1.1.1. Proposed architecture

In Figure 3.3 we show hybrid optimized power control model for the energy management
and efficiency. Initially, the environmental parameters are passed to smoothing component for
preprocessing. After smoothing, the smoothed environmental parameters and user set points
are passed to hybrid optimization component of the model to get optimal parameters. Then
optimized parameters are used as user comfort index to calculate the occupant’s comfort

index. Three controllers based on fuzzy logic are used to control temperature, illumination
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and air-quality. Coordinator agent adjusted the power according to the optimized required

power from the fuzzy controllers and available power from the external power grid or internal

local power sources. Coordinator agent performs the function of coordination among the three

fuzzy controllers based on the required power and available power. The consumed power is

passed to Kalman filter model to predict power consumption. The predicted power is input to

the building actuators. At the end the results are analyzed, visualized and communicated with

the users. Actuators received message information’s (MI) to turn ON/OFF.
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Figure 3.3. Hybrid optimization algorithm based on PSO and GA parallel

3.2.1.1.2. Optimization algorithm based on PSO and GA parallel

Hybrid optimization steps for parameters optimizations and comfort index based on GA

and PSO are:
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1) Initial random population/particles

2) Calculate fitness function for user comfort using Eq. (1.1)

3) Select best parent individuals using any of three selection criteria (Rank, Roulette
wheel or Tournament selection), we used rank based selection

4) Perform ‘variable two point’ crossover of the selected individuals

5) Update particle positions using Eq. (3.1).

6) Update particle velocities using Eq. (3.2).

7) After step 3 and 4, we get off-springs.

8) After step 5 and 6 we get new positions and velocities of the particles.

9) Now calculate comfort for the off-springs and comfort for the new particles.

10) Combining populations of step (3) and (7)

11) If mutation criteria meet, then perform mutation

12) Combining updated particles from step (8) and updated chromosomes from step
(10)

13) Selecting best individuals from combined population in step (12)

14) Repeat above 13 steps until termination criteria arise or fitness function does not
improve.

15) Then after arrival of termination criteria select best fitted individual.

These parameters were selected after running the hybrid algorithm for A times to get

optimal results. Hybrid optimization stops either when the maximum number of generation’s
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Q met, or no significant change is observed in the fitness for pu (few successive) generations.
The maximum population size selected is 100. The variable two point crossover is performed
with the probability of 0.9 and mutation rate of 0.1. GA parameters (population size,
crossover rate and mutation rate) have been set after running GA for number of times. The
experimentations are performed using Intel(R) Core(TM)i3-2130 3.40 GHz with 8GB RAM.
The C # 2012 is used for the simulation. When hybrid optimization evaluation process

finishes, best fitted individual is selected to get optimal parameters and comfort index.

3.2.1.2. A hybrid approach to optimization of energy and

power control prediction

3.2.1.2.1. Proposed architecture

In Figure 3.4 we show hybrid optimized power control model for the energy management
and efficiency. Initially, the environmental parameters are passed to smoothing component for
preprocessing. After smoothing, the smoothed environmental parameters and user set points
are passed to PSO optimization component of the model to get optimal parameters. The PSO
based optimal parameters are then again optimized using GA based optimizer to get finally
optimized parameters. Then optimized parameters are used as user comfort index to calculate
the occupant’s comfort index. Three controllers based on fuzzy logic are used to control

temperature, illumination and air-quality. Coordinator agent adjusted the power according to
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the optimized required power from the fuzzy controllers and available power from the

external power grid or internal local power sources. Coordinator agent performs the function

of coordination among the three fuzzy controllers based on the required power and available

power.

The consumed power is passed to Kalman filter model to predict power consumption. The

predicted power is input to the building actuators. At the end the results are analyzed,

visualized and communicated with the users. Actuators received message information’s (MI)

to turn ON/OFF.
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Figure 3.4. Hybrid optimization algorithm based on PSO and GA serial

3.2.1.2.2. Optimization algorithm based on PSO and GA serial

Serial based PSO and GA steps for parameters optimizations and comfort index are:
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1

)

~

. Initialize

a) Set constants k max, ¢y, ¢,, 1y, Iy, Wo

b) Randomly initialize particle positionsx; € D in R" fori=1...p

¢) Randomly initialize particle velocities 0 <= vo'<=v,™" fori=1...p

d) Setk=1

Optimize

a) Evaluate f; for particle X’

b) If 'y <= f'hey then flye = £, p' = x

€) If ' <= feq then ey = ', p* = X'k

d) If stopping condition is satisfied then go to step 3

e) Update particle velocity vector v+, Eq. (3.1)

f) Update particle position vector x'r+; Eq. (3.2)

g) Increment i (index for particles). If i > pop then increment k£ (index for

iterations), and set i = |

h) Goto 2 (a)

. Report Results

. Terminate PSO optimization and getting optimal parameters.

. Initial random population for GA

. Updating initial random population of GA by combining with optimal PSO based
parameters

. Selecting best individuals from combined populations of step (6) as an initial
population of GA

. Calculate fitness function for user comfort using Eq. (1.1)

. Select best parent individuals using any of three selection criteria (Rank, Roulette
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wheel or Tournament selection), we used rank based selection

10.Perform ‘variable two point’ crossover of the selected individuals

11. After crossover, we get off-springs

12.Now calculate comfort for the off-springs

13.Combining populations of step (9) and (11)

14.1f mutation criteria meet, then perform mutation

15.Repeat steps from 5 to 14 until termination criteria arise or algorithm does not
improve.

16.Then after arrival of termination criteria select best fitted chromosome.

These parameters were selected after running the algorithm for A times to get optimal
results. GA stops either when the maximum number of generation’s Q met, or no significant
change is observed in the fitness for x4 (few successive) generations. The maximum
population size selected is 100. The variable two point crossover is performed with the
probability of 0.9 and mutation rate of 0.1. GA parameters (population size, crossover rate
and mutation rate) have been set after running GA for number times. The experimentations
are performed using Intel(R) Core(TM)i3-2130 3.40 GHz with 8GB RAM. The C # 2012 is
used for the simulation. When GA evaluation process finishes, best fitted chromosome is to be

selected to get optimal parameters and comfort index.
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3.2.1.3. Hybrid optimization energy management and

predicted power control model

3.2.1.3.1. Proposed architecture

In Figure 3.5 we show hybrid optimized power control model for the energy management
and efficiency. Initially, the environmental parameters are passed to smoothing component for
preprocessing. After smoothing, the smoothed environmental parameters and user set points
are passed to hybrid optimization component of the model to get optimal parameters. Then
optimized parameters are used as user comfort index to calculate the occupant’s comfort
index. Three controllers based on fuzzy logic are used to control temperature, illumination
and air-quality. Coordinator agent adjusted the power according to the optimized required
power from the fuzzy controllers and available power from the external power grid or internal
local power sources. Coordinator agent performs the function of coordination among the three
fuzzy controllers based on the required power and available power. The consumed power is
passed to the ARIMA model and Kalman filter to predict the consumed power in serial
fashion. First the consumed power is passed to ARIMA model to predict the power
consumption and then the predicted power is input to the Kalman filter model. At the end we
take the average of the prediction results to get final prediction of power consumption. The
average predicted power is input to the building actuators. At the end the results are analyzed,

visualized and communicated with the users. Actuators received message information’s (MI)
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to turn ON/OFF.
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Figure 3.5. Hybrid optimization algorithm based on PSO and MIGA serial

3.2.1.3.2. Optimization algorithm based on PSO and MIGA serial

Serial based PSO and MIGA steps for parameters optimizations and comfort index are:

1. Initialize
a) Set constants k max, ¢y, ¢y, 11, Iz, Wo
b) Randomly initialize particle positionsx; € Din R" fori=1...p
¢) Randomly initialize particle velocities 0 <= vy'<= v,;™ fori=1...p
d) Setk=1
2. Optimize
a) Evaluate f; for particle X'
b) If ' <= f'hey then flye = £, p' = x
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8.

9.

¢) If £ <= & then & = £y, p® =X

d) If stopping condition is satisfied then go to step 3

e) Update particle velocity vector v/, Eq. (3.1)

f) Update particle position vector x'r+; Eq. (3.2)

g) Increment i (index for particles). If i > pop then increment k£ (index for
iterations), and set i = |

h) Go to 2 (a)

. Report results
. Terminate PSO optimization and getting optimal parameters.
. Initial random population for MIGA

. Updating initial random population of MIGA by combining with optimal PSO based

parameters

. Selecting best individuals from combined populations of step (6) as an initial

population of MIGA
Divide initial population in step (7) into multiple Islands

Perform Step (4) to Step (9) for each of the Island

10.Calculate fitness function for user comfort using equation Eq. (1.1)

11.Select best individuals using any of three selection criteria (Rank, Roulette wheel or

Tournament selection), we used rank based selection

12.Perform ‘variable two point’ crossover of the selected individuals

13. After crossover, we get off-springs

14.Now calculate comfort for the off-springs.

15.Combining populations of step (5) and (7).

16.If mutation criteria meet, then perform mutation
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17.1f migration criteria meet, then perform migration

18.Repeat steps from 5 to 14 until termination criteria arise or algorithm does not
improve.

19.Then after the arrival of termination criteria select best fitted chromosomes from

each island.

These parameters were selected after running the hybrid algorithm for 4 times to get
optimal results. Hybrid optimization stops either when the maximum number of generation’s
Q met, or no significant change is observed in the fitness for x4 (few successive) generations.
The maximum population size selected is 100. The variable two point crossover is performed
with the probability of 0.9 and mutation rate of 0.1. MIGA parameters (population size,
crossover rate and mutation rate, migration rate) have been set after running MIGA for
number of times. The experimentations are performed using Intel(R) Core(TM)i3-2130 3.40
GHz with 8GB RAM. The C # 2012 is used for the simulation. When hybrid optimization
evaluation process finishes, best fitted individual is selected to get optimal parameters and

comfort index.
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3.2.2. Multi-preprocessing hybrid optimization model based

on prediction

3.2.2.1. Energy efficient hybrid optimization and predicted

power control model

3.2.2.1.1. Proposed architecture

In Figure 3.6 we show hybrid optimized power control model for the energy management
and efficiency. Initially, the environmental parameters are passed to smoothing component for
preprocessing. After smoothing, the smoothed environmental parameters and user set points
are passed to hybrid optimization component of the model to get optimal parameters. Then
optimized parameters are used as user comfort index to calculate the occupant’s comfort
index. In post-processing the results are analyzed, published and communicated with the
users. Then the optimal parameters are again preprocessed before it can be forwarded to the
fuzzy controllers. The aim behind smoothing as preprocessing at this level is to improve the
optimal parameters and occupants comfort index. So the occupants comfort index is
calculated again using updated optimal parameters to get updated occupants comfort index.
This improves the occupants comfort index. Three controllers based on fuzzy logic are used
to control temperature, illumination and air-quality. Each fuzzy controller accepts as input, the

error difference between smoothed environmental parameters and updated optimal
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parameters. Coordinator agent adjusted the power according to the optimized required power
from the fuzzy controllers and available power from the external power grid or internal local
power sources. Coordinator agent performs the function of coordination among the three
fuzzy controllers based on the required power and available power. The consumed power is

then post-processed to published and communicate results with users.
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Figure 3.6. Hybrid optimization algorithm based on PSO and GA parallel with multi-preprocessing

The consumed power is preprocessed before it can be passed on to the prediction
component. At this level of preprocessing smoothing is performing to remove any outliers.
After preprocessing the consumed power is updated with new revised and smoothed power
consumption. Then the updated consumed power is passed to the Kalman filter model to
predict power consumption. At the end we again applied post-processed the predicted power
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consumption by analyzing the results and communicate these results with the users. Actuators

received message information’s (MI) to turn ON/OFF.

3.2.2.1.2. Optimization algorithm based on PSO and GA parallel

Hybrid optimization steps for parameters optimizations and comfort index based on GA
and PSO are:
1. Initial random population/particles
2. Calculate fitness function for user comfort using Eq. (1.1)
3. Select best parent individuals using any of three selection criteria (Rank, Roulette
wheel or Tournament selection), we used rank based selection
4. Perform ‘variable two point’ crossover of the selected individuals
5. Update particle positions using Eq. (3.1).
6. Update particle velocities using Eq. (3.2).
7. After step 3 and 4, we get off-springs.
8. After step 5 and 6 we get new positions and velocities of the particles.
9. Now calculate comfort for the off-springs and comfort for the new particles.
10.Combining populations of step (3) and (7)
11.If mutation criteria meet, then perform mutation

12.Combining updated particles from step (8) and updated chromosomes from step

(10)
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13.Selecting best individuals from combined population in step (12)

14.Repeat above 13 steps until termination criteria arise or fitness function does not

improve.

15.Then after arrival of termination criteria select best fitted individual.

16.Update optimal parameters after smoothing to get updated parameters

17.Update comfort index using updated parameters

These parameters were selected after running the hybrid algorithm for A times to get

optimal results. Hybrid optimization stops either when the maximum number of generation’s

Q met, or no significant change is observed in the fitness for pu (few successive) generations.

The maximum population size selected is 100. The variable two point crossover is performed

with the probability of 0.9 and mutation rate of 0.1. GA parameters (population size,

crossover rate and mutation rate) have been set after running GA for number of times. The

experimentations are performed using Intel(R) Core(TM)i3-2130 3.40 GHz with 8GB RAM.

The C# 2012 is used for the simulation. When hybrid optimization evaluation and smoothing

process finishes, best fitted individual is selected to get updated optimal parameters and

comfort index.
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3.2.2.2. Energy efficient hybrid optimization and power

control prediction model

3.2.2.2.1. Proposed architecture

In Figure 3.7 we show hybrid optimized power control model for the energy management
and efficiency. Initially, the environmental parameters are passed to smoothing component for
preprocessing. After smoothing, the smoothed environmental parameters and user set points
are passed to PSO optimization component of the model to get optimal parameters. The PSO
based optimal parameters are then again optimized using GA based optimizer to get finally
optimized parameters. Then optimized parameters are used as user comfort index to calculate
the occupant’s comfort index. In post-processing the results are analyzed, published and
communicated with the users. Then the optimal parameters are again preprocessed before it
can be forwarded to the fuzzy controllers. The basic purpose of smoothing before control part
of the model is to improve the optimal parameters and occupants comfort index of GA based
optimization. The GA based occupants comfort index is calculated again using updated
optimal parameters to get updated occupants comfort index. This improves the occupants
comfort index. In control part of the model, three controllers based on fuzzy logic are used to
control temperature, illumination and air-quality respectively. The fuzzy controllers received
as input, the error difference between smoothed environmental parameters and updated

optimal parameters. The coordinator agent adjusted the power according to the optimized
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required power from the fuzzy controllers and available power from the external power grid
or internal local power sources. The consumed power is then post-processed to published and
communicate consumed power results with users. The consumed power is preprocessed
before it can be passed on to the prediction component. At this level of preprocessing
smoothing is applied to normalized data and remove outliers. After preprocessing, the
consumed power is revised with new updated and smoothed power consumption. Then the
updated consumed power is passed to the Kalman filter model to predict power consumption.
Finally, we again post-processed the predicted power consumption by analyzing the results
and communicate these results with the users. Actuators received message information’s (MI)

to turn ON/OFF.
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Figure 3.7. Hybrid optimization algorithm based on PSO and GA serial with multi-preprocessing
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3.2.2.2.2. Optimization algorithm based on PSO and GA serial

Serial based PSO and GA steps for parameters optimizations and comfort index are:

1. Initialize
a) Set constants k max, ¢y, ¢y, Iy, Iz, Wy
b) Randomly initialize particle positions x; € D in R" fori = 1...p
¢) Randomly initialize particle velocities 0 <= vo<= v, fori=1...p
d) Setk=1
2. Optimize
a. Evaluate f; for particle X'
b. If ' <= flhey then e = i, p' = X i
c. If 'y <= ¥ then FEe = ', p* =X
d. If stopping condition is satisfied then go to step 3
e. Update particle velocity vector v'¢,; Eq. (3.1)
f. Update particle position vector x';,; Eq. (3.2)
g. Increment i (index for particles). If i > pop then increment k£ (index for
iterations), and set i = /
h. Goto 2 (a)
3. Report Results
4. Terminate PSO optimization and getting optimal parameters.
5. Initial random population for GA
6. Updating initial random population of GA by combining with optimal PSO based
parameters

7. Selecting best individuals from combined populations of step (6) as an initial
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population of GA

8. Calculate fitness function for user comfort using Eq. (1.1)

9. Select best parent individuals using any of three selection criteria (Rank, Roulette
wheel or Tournament selection), we used rank based selection

10.Perform ‘variable two point’ crossover of the selected individuals

11. After crossover, we get off-springs

12.Now calculate comfort for the off-springs

13.Combining populations of step (9) and (11)

14.1f mutation criteria meet, then perform mutation

15.Repeat steps from 5 to 14 until termination criteria arise or algorithm does not
improve.

16.Then after arrival of termination criteria select best fitted chromosome

17.Update optimal parameters after smoothing to get updated parameters

18.Update comfort index using updated parameters

These parameters were selected after running the algorithm for A times to get optimal
results. GA stops either when the maximum number of generation’s Q met, or no significant
change is observed in the fitness for u (few successive) generations. The maximum
population size selected is 100. The variable two point crossover is performed with the
probability of 0.9 and mutation rate of 0.1. GA parameters (population size, crossover rate
and mutation rate) have been set after running GA for number times. The experimentations
are performed using Intel(R) Core(TM)i3-2130 3.40 GHz with 8GB RAM. The C # 2012 is

used for the simulation. When hybrid optimization evaluation and smoothing process finishes,
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best fitted individual is selected to get updated optimal parameters and comfort index.

3.2.2.3. Hybrid Energy Optimization and Prediction Based on
PSO and MIGA Serial

3.2.2.3.1. Proposed architecture

In Figure 3.8 we show hybrid optimized power control model for the energy management
and efficiency. Initially, the environmental parameters are passed to smoothing component for
preprocessing. After smoothing, the smoothed environmental parameters and user set points
are passed to hybrid optimization component of the model to get optimal parameters. Then
optimized parameters are used as user comfort index to calculate the occupant’s comfort
index. In post-processing the results are analyzed, published and communicated with the
users. Then the optimal parameters are again preprocessed before it can be forwarded to the
fuzzy controllers. The fundamental purpose of smoothing before control part of the model is
to improve the optimal parameters and occupants comfort index of MIGA based optimization.
The MIGA based occupants comfort index is calculated again using updated optimal
parameters to get updated occupants comfort index. This improves the occupants comfort
index. In control part of the model, three controllers based on fuzzy logic are used to control
temperature, illumination and air-quality respectively. The fuzzy controllers received as input,

the error difference between smoothed environmental parameters and updated optimal
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parameters. The coordinator agent adjusted the power according to the optimized required

power from the fuzzy controllers and available power from the external power grid or internal
local power sources. The consumed power is then post-processed to published and
communicate consumed power results with users. The consumed power is preprocessed

before it can be passed on to the prediction component. At this level of preprocessing

smoothing is applied to normalized data and remove outliers.
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Figure 3.8. Hybrid optimization algorithm based on PSO and MIGA serial with multi-preprocessing

After preprocessing, the consumed power is revised with new updated and smoothed
power consumption. Then the updated consumed power is passed to the hybrid prediction part
of the model to predict power consumption. Initially the consumed power is passed to the
ARIMA prediction model to predict power consumption and then the predicted power
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consumption is again passed to the Kalman filter to predict the power consumption. Then
finally we took the average of the too predictions to get the predicted power consumption. At
the last we again post-processed the predicted power consumption by analyzing the results
and communicate these results. Actuators received message information’s (MI) to turn

ON/OFF.

3.2.2.3.2. Optimization algorithm based on PSO and MIGA serial

Serial based PSO and MIGA steps for parameters optimizations and comfort index is:

1. Initialize
a) Set constants k max, ¢, ¢;, 1, T2, W
b) Randomly initialize particle positions x; € D in R" fori = 1...p
¢) Randomly initialize particle velocities 0 <= vo'<= v™* fori=1...p
d) Setk=1
2. Optimize
a) Evaluate f;’ for particle Xy
b) If f' <= flhe then fyey = 'y, p' =Xk
©) If £ <= ¥ then ey = 'y, p* = Xy
d) If stopping condition is satisfied then go to step 3
e) Update particle velocity vector v/¢:; Eq. (3.1)
f) Update particle position vector x';;; Eq. (3.2)
g) Increment i (index for particles). If i > pop then increment k (index for
iterations), and set i = /

h) Goto2 (a)
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3. Report results

4. Terminate PSO optimization and getting optimal parameters.

5. Initial random population for MIGA

6. Updating initial random population of MIGA by combining with optimal PSO based
parameters

7. Selecting best individuals from combined populations of step (6) as an initial
population of MIGA

8. Divide initial population in step (7) into multiple Islands

9. Perform Step (4) to Step (9) for each of the Island

10.Calculate fitness function for user comfort using equation (1.1)

11.Select best individuals using any of three selection criteria (Rank, Roulette wheel or
Tournament selection), we used rank based selection

12.Perform ‘variable two point’ crossover of the selected individuals

13. After crossover, we get off-springs

14.Now calculate comfort for the off-springs.

15.Combining populations of step (5) and (7).

16.1f mutation criteria meet, then perform mutation

17.1f migration criteria meet, then perform migration

18.Repeat steps from 5 to 14 until termination criteria arise or algorithm does not
improve.

19.Then after the arrival of termination criteria select best fitted chromosomes from
each island.

20.Update optimal parameters after smoothing to get updated parameters

21.Update comfort index using updated parameters
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These parameters were selected after running the hybrid algorithm for 4 times to get

optimal results. Hybrid optimization stops either when the maximum number of generation’s

Q met, or no significant change is observed in the fitness for 4 (few successive) generations.

The maximum population size selected is 100. The conventional single point crossover is

performed with the probability of 0.9 and mutation rate of 0.1. MIGA parameters (population

size, crossover rate and mutation rate, migration rate) have been set after running MIGA for

number of times. The experimentations are performed using Intel(R) Core(TM)i3-2130 3.40

GHz with 8GB RAM. The C # 2012 is used for the simulation. When hybrid optimization

evaluation process finishes, best fitted individual is selected to get optimal parameters and

comfort index.
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4. Simulation and analysis

4.1. Single preprocessing hybrid optimization model based

on prediction
4.1.1. Optimization algorithm based on PSO and GA parallel
4.1.1.1. Simulation environment

Real environment is difficult to implement. For the demonstration of our thesis work we
carried out simulations in C# 2012. User preference set parameters range is Ty, = [18, 24] (C),
Ly = [720, 880] (lux) and 4., = [700, 880] (ppm) for simulator.

The environmental configuration remains the same for all the experiments. The uniform
configuration helps in the comparison of results with existing techniques. We developed the
simulator by using .Net programming environment with the configuration shown in Table 4.1.

To evaluate the hybrid energy optimization and power consumption prediction algorithms
and actuator control, we developed a smart IoT simulator using .Net programming
environment with the modules and its configuration shown in Table 4.1. Each of these

modules for each of the applied algorithms is discussed in next successive sections.

Table 4.1. Simulation environment

Module Hardware Software Remark

Virtual sensing data for | Intel(R) Xeon(R) CPU | Microsoft C#
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temperature, illumination | W3503 @2.4GHz | Visual Windows
and air-quality 2.39GHz 4GB RAM Studio 7
Preprocessing Intel(R) Xeon(R) CPU | Microsoft C#
W3503 @2.4GHz | Visual Windows
2.39GHz 4GB RAM Studio 7
Optimization of wuser set | Intel(R) Xeon(R) CPU | Microsoft C#
parameters (temperature, | W3503 @2.4GHz | Visual Windows
illumination and air-quality) 2.39GHz 4GB RAM Studio 7
Temperature,  illumination | Intel(R) Xeon(R) CPU | Microsoft C#
and air-quality control W3503 @2.4GHz | Visual Windows
2.39GHz 4GB RAM Studio 7
Prediction of power | Intel(R) Xeon(R) CPU | Microsoft C#
consumption for | W3503 @2.4GHz | Visual Windows
temperature, illumination | 2.39GHz 4GB RAM Studio 7
and air-quality
Message information for | Intel(R) Xeon(R) CPU | Microsoft C#
Actuators W3503 @2.4GHz | Visual Windows
2.39GHz 4GB RAM Studio 7

Figure 4.1 shows the simulated energy management model for evaluation of hybrid energy

optimization and predictions. Each part of the model is shown with its corresponding data or
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results. Virtual environment data for air-quality is sensing data obtained from the virtual
sensor emulator. Similarly temperature and illumination emulators provide the virtual
environment data for the temperature and illumination. The virtual sensing data is then
preprocessed to get the processed data. The preprocessed data is then input to the hybrid
energy optimization component to get the optimized values for each of the temperature,

illumination and air-quality parameters. The optimal parameter for air-quality is also shown in

the Figure 4.1.
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Figure 4.1. Simulated environment of hybrid energy optimization and prediction model

Control component uses fuzzy logic to provide the required power. This component
accepts error difference between optimal parameters and processed (smooth) environmental

parameters to provide required power. The required power for air-quality is shown in Figure
88



4.1. Power consumption prediction result for air-quality is also shown in Figure 4.1. The

power is predicted using Kalman filter, ARIMA model or combination of both. Message

information for air-quality is also depicted in Figure 4.1. These messages describe the

different messages received by the Fan actuator as input to change its states from on to off

and vice versa. When actuators states changes the indoor environment is changes and updated

according to the optimal parameters. The process is continued until the indoor environment

gets updated completely.

Table 4.2 shows the detailed emulator and simulation environment. Real environment

system consists of temperature sensor emulator, illumination sensor emulator, air-quality

sensor emulator, air-conditioned emulator, boiler emulator, light emulator and fan emulator.

Temperature sensor emulator, illumination sensor emulator and air-quality sensor emulator

are used to build and create temperature, illumination and air-quality sensing environment.

The sensing data for temperature, illumination and air-quality is generated by the temperature,

illumination and air-quality emulators for each hour of the day. The created environment is

the virtual sensing environment for each of the temperature, illumination and air-quality

sensing. VirTemperatureController, VirllluminationController and VirAirQualityController

are the names of the programs to create virtual temperature, illumination and air-quality

sensing environment. The virtual temperature, virtual illumination environment and virtual

air-quality environment is shown in Figure 4.2, Figure 4.3 and Figure 4.4 respectively. The

virtual sensing environment shows for 24 hours of the day. Each one point represents one
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hour of the day. In case of temperature the unit is centigrade, for illumination the unit of
measurement is lux and for air-quality, the measurement unit is ppm. GetCurrTmp(),
AffectTmp(), GetCurrLux(), AffectLux(), GetCurrAq(), AffectAq(), SetLbp(), HandleLbp1()
and UpdateDataUi() functions are used to get current temperature, current illumination and
current air-quality of the environment. Affected temperature, affected illumination and
affected air-quality are the new temperature, new illumination and new air-quality caused by
the change of states of the air-conditioned, boilers, and light and fan actuators. The actuators
changes its states by receiving the optimized message information and this is done by setting
the affected temperature with respect to the optimal temperature. Then the environment is
updated based on the change of states of the actuators levels. FormlHPpsogaMl,
Form1HPpsogaM2, FormlHSpsogaM1, FormlHSpsogaM2, FormlHSpsomigaM1 and
Form1HSpsomigaM?2 are the program names used for optimization of user set parameters
(temperature, illumination and air-quality) and virtual sensing temperature, illumination and
air-quality data. The functions used by these programs for optimizations are callPSO() and
callGA(). FuzzylogicLibrary is used to calculate required power for temperature,
illumination and air-quality control. KalmanRun() function is used to predict the consumed
power for each of the temperature, illumination and air-quality.

Air-conditioned emulator, boiler emulator, light emulator and fan emulators are used to
control the indoor environment. Air-conditioned emulator is used to control the indoor

cooling environment, boiler emulator is used for heating the indoor environment, light
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emulator is used to control indoor lighting and fan emulator is used to control indoor air-
quality. Each emulator received message information to change its current state. Setoff(),
SetLevell(), SetLevel2(), SetLevel3(), ReceiveController(), SendController(), SendData(),
StartSend(), SendTmpData(), SendMsgToAc() are the functions used by these actuators to
received message information and change their levels. There are four states defined for these
actuator emulators, turn off, turn on at levell, turn on at level 2 and turn on at level3. When
these emulator actuators received message information then the corresponding state is change
to affect the indoor environment. SendMsgToAc() sends message information’s to
corresponding emulator actuator. If the control message information is zero then
corresponding actuator is turn OFF. If control message information results in value between 0
and 3 then respective actuator is turn ON at levell i.e. low speed. If control message
information results in value between 3 and 6 then respective actuator is turn ON at level2 i.e.
medium speed. If value is more than 6 then corresponding actuator is turn ON at level3 i.e.

high speed. All the four actuators used during simulation of this work are shown in Figure

4.12.
Table 4.2. Detailed emulator and simulation environment

Real Simulation Program name Library name and

environment | environment functions

system system

Temperature Virtual VirTemperatureController, | GetCurrTmp(),

sensor Temperature Form1HPpsogaM1, AffectTmp(),

emulator Form1HPpsogaM?2, SetLbp(),
Form1HSpsogaM1, HandleLbp1(),
Form1HSpsogaM?2, UpdateDataUi()
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Form1HSpsomigaM1, callSensingData(),
Form1HSpsomigaM?2, callPSO(), callGA(),
Clskalmanfilter FuzzyLogicLibrary,
KalmanRun(),
[llumination Virtual VirllluminationController, | GetCurrTmp(),
sensor [llumination Form1HPpsogaM1, AffectTmp(),
emulator Form1HPpsogaM?2, SetLbp(),HandleLbp1
Form1HSpsogaM1, (), UpdateDataUi(),
Form1HSpsogaM?2, callSensingData(),
Form1HSpsomigaM1, callPSO(), callGA(),
Form1HSpsomigaM?2, FuzzyLogicLibrary,
Clskalmanfilter KalmanRun(),
Air-quality Virtual ~ Air- | VirAirQualityController, GetCurrTmp(),
sensor quality Form1HPpsogaM1, AffectTmp(),
emulator Form1HPpsogaM2, SetLbp(),HandleLbp1
Form1HSpsogaM1, (), UpdateDataUi(),
Form1HSpsogaM?2, callSensingData(),
Form1HSpsomigaM1, callPSO(), callGA(),
Form1HSpsomigaM2, FuzzyLogicLibrary,
Clskalmanfilter KalmanRun(),
Air-condition | Control DeviceAirCon, Setoff(), SetLevell(),
emulator signals/Mess Form1HPpsogaM1, SetLevel2(),
age Form1HPpsogaM2, SetLevel3(),
information Form1HSpsogaM1, ReceiveController(),
Form1HSpsogaM?2, SendController(),
Form1HSpsomigaM1, SendData(),
Form1HSpsomigaM?2 StartSend(),
SendTmpData(),
SendMsgToAc()
Boiler Control DeviceBoiler, Setoff(), SetLevell(),
emulator signals/Mess Form1HPpsogaM1, SetLevel2(),
age Form1HPpsogaM2, SetLevel3(),
information Form1HSpsogaM1, ReceiveController(),
Form1HSpsogaM?2, SendController(),
Form1HSpsomigaM1, SendData(),
Form1HSpsomigaM?2 StartSend(),
SendTmpData(),
SendMsgToBoiler()
Light Control DeviceLight, Setoff(), SetLevell(),
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emulator signals/Mess Form1HPpsogaM1, SetLevel2(),
age Form1HPpsogaM?2, SetLevel3(),
information Form1HSpsogaM1, ReceiveController(),
Form1HSpsogaM?2, SendController(),
Form1HSpsomigaM1, SendData(),
Form1HSpsomigaM?2 StartSend(),
SendLuxData(),
SendMsgToLight()
Fan emulator | Control DeviceFan, Setoff(), SetLevell(),
signals/Mess Form1HPpsogaM1, SetLevel2(),
age Form1HPpsogaM?2, SetLevel3(),
information Form1HSpsogaM1, ReceiveController(),
Form1HSpsogaM2, SendController(),
Form1HSpsomigaM1, SendData(),
Form1HSpsomigaM?2 StartSend(),
Send AgData(),
SendMsgToFan(CAA
)

4.1.1.2. Simulation analysis

4.1.1.2.1. Virtual environment

In this section we are presenting virtual sensing environment for temperature, illumination

and air-quality. The virtual sensing environment shows here for 24 hours of the day. Each one

point represents one hour of the day. In case of temperature the unit is centigrade, for

illumination the unit of measurement is lux and for air-quality, the measurement unit is ppm.

Figures 4.2, 4.3 and 4.4 respectively show the virtual sensing environment for temperature,

illumination and air-quality. The virtual environment shows the change in temperature,

illumination and air-quality throughout a day.
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Figure 4.2. Virtual sensing environment for temperature
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Figure 4.3. Virtual sensing environment for illumination

Temperature environment starts from 8° degree centigrade and reaches 30° at 11 o’clock of
the day, it then decreases and reaches almost 8° centigrade. Similarly the change in
illumination and air-quality starts from 600lux and 600ppm respectively and reaches 900lux
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and 900ppm at 11 o’clock. Again it decreases and reaches at 600 each at 23 O’clock.
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Figure 4.4. Virtual sensing environment for air-quality

4.1.1.2.2. Optimization

Figures 4.5, 4.6 and 4.7 show the optimal environmental parameters for each of the
temperature, illumination and air-quality. In case of optimal temperature Figure 4.5, the
optimal temperature changes between 18° to 24° centigrade as compare to virtual sensing
environment temperature Figure 4.2. The user set points are optimized to [18, 24]. The users
feel comfortable if the temperature level is between [18, 24]. So we can say that using hybrid
parallel optimization based on GA and PSO the user set parameters for temperature optimized
to achieve optimal temperature. In case of optimal illumination Figure 4.6, the illumination

parameters changes between 720° to 880° lux as compare to virtual sensing environment
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Figure 4.5. Optimal parameters for temperature (Based on PSO and GA parallel)
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Figure 4.6. Optimal parameters for illumination (Based on PSO and GA parallel)

So we can say that using hybrid parallel optimization based on GA and PSO, the user set
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parameters for illumination are optimized to achieve optimal illumination. In case of optimal
air-quality Figure 4.7, the air-quality parameters changes between 700° to 880° ppm as
compare to virtual sensing environment air-quality Figure 4.4. The user set points for air-
quality are optimized to [700, 880]. The users feel comfortable when the air-quality level is
between [700, 880]. So we can say that using hybrid parallel optimization based on GA and

PSO, the user set parameters for air-quality are optimized to achieve optimal air-quality.
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Figure 4.7. Optimal parameters for air-quality (Based on PSO and GA parallel)

4.1.1.2.3. Control messages

Figure 4.8 shows control messages to turn ON/OFF air-condition. If the control message
value is zero then its means that virtual sensing environment temperature and optimal
temperature is same and air-condition should be turn OFF. If control message value results in

value between 0 and 3 then AC will be turn ON slow. If control message value results in value
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between 3 and 6 then AC will be Turn ON Medium. If value is more than 6 then AC will be
turn ON in high speed. But for air-con we can see that the message information value does not
exceeds 6 so the air-con is run at level 1 and 2 most of the time and turn OFF at time 7hrs and

15hrs . While between Ohrs to 6hrs and between 16hrs to 23hrs the air-con remains Turn OFF

due to running of boiler.
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Figure 4.8. Control messages for Air-con (Based on PSO and GA parallel)

Figure 4.9 shows control messages to Turn ON/OFF boiler. If the control message value is
zero then its mean that virtual sensing environment temperature and optimal temperature is
same and boiler should be turn OFF (level 0). If control message value results in value
between 0 and 3 then the boiler will be turn ON slow (level 1). If control message value
results in value between 3 and 6 then boiler will be turn on Medium (level 2). If value is more
than 6 then boiler will be turn ON in high speed (level 3). But for boiler we can see that the

message information value results in zero between 8hrs and 16hrs and turn OFF. While
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between Ohrs to 7hrs and between 16hrs to 23hrs the boiler is turn ON for all of its levels.
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Figure 4.9. Control messages for Boiler (Based on PSO and GA parallel)

Figure 4.10 shows control messages to turn ON/OFF Light. If the control message value is
zero then its means that virtual sensing environment illumination and optimal illumination is
same and light should be turn OFF. If control message value results in value between 0 and 3
then light will be turn ON slow. If control message value results in value between 3 and 6
then light will be Turn ON Medium. If value is more than 6 then light will be turn ON in full
mode (level 3). Here we can see that the message information values results in between 1 and
18 which means that light is turn ON for all of its levels during 24hrs. The light consumption
decreases as the day time arrives and increase again as the day time finishes. Figure 4.11 and
Figure 4.12 shows control messages to turn ON/OFF FAN and the four actuators used during
IoT simulator implementation to turn them ON/OFF. If the control message value is zero then
its means that virtual sensing environment air-quality and optimal air-quality is same and
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FAN should be turn OFF.
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Figure 4.10. Control messages for Light (Based on PSO and GA parallel)
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Figure 4.11. Control messages for Fan (Based on PSO and GA parallel)

If control message value result in value between 0 and 3 then FAN will be turn ON slow. If

control message value results in value between 3 and 6 then FAN will be turn ON Medium. If
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value is more than 6 then light will be turn ON in high speed. Here we can see that the

message information values results in more than 6 so the FAN is turn ON for all of its levels,

while during some specific hours of the day FAN is turn OFF.

4.1.1.2.4. Actuator emulators

The four actuator emulators we considered are shown in Figure 4.12. In case of hybrid

energy optimization based on prediction using GA and PSO with single preprocessing model

these actuator emulators received signals shown in Figure 4.8, 4.9, 4.10 and 4.11. Each

actuator has four levels as shown in Figure 4.12. Level 0, level 1, level 2 and level 3

represents turn OFF, turn ON slow, turn ON Medium and turn ON high respectively. Each

emulator received message information to change its current state. When these actuator

emulators received message information then the corresponding state is change to affect the

indoor environment. Control signals defined in previous section used as message

information’s to affect corresponding emulator actuator. If the control message information is

zero then corresponding emulator actuator is turn OFF. If control message information results

in value between 0 and 3, then respective emulator actuator is turn ON at levell i.e. low

speed. If control message information results in value between 3 and 6 then respective

actuator is turn ON at level2 i.e. medium speed. If value is more than 6 then corresponding

actuator is turn ON at level3 i.e. high speed. Here air-con actuator used signals shown in

Figure 4.8. Air-con actuator changes its states according to these signals. From these signals,
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we can see that the message information values results values which cause the air-con

actuator to be turn OFF between 0 to 6 hours and 16 to 23 hours.
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Figure 4.12. Actuators

During this time boiler is running to heat the indoor environment. Boiler actuator uses
signals shown in Figure 4.9. Boiler actuator state changes according to these signals. Here
for boiler actuator we can see that the message information value results in zero between
8hrs and 16hrs, and the boiler remains turn OFF, while between Ohrs to 7hrs and between
16hrs to 23hrs the boiler is turn ON for all of its levels. Light actuator used signals shown in
Figure 4.10. Light is turn ON/OFF according to these signals. Here we can see that the
message information values results in between 1 and 18 which means that light is turn ON
for all of its levels during 24hrs. The light consumption decreases as the day time arrives and

increase again as the day time finishes. Similarly, fan actuator received signals shown in
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Figure 4.11 to operate and change state accordingly. Here we can see that the message
information values results in more than 6 so the FAN is turn ON for all of its levels, while

during some specific hours of the day FAN is turn OFF.

4.1.2. Optimization algorithm based on PSO and GA serial

4.1.2.1. Simulation environment

The simulation environment is kept same for each of the algorithm. The simulation

environment is discussed in detailed in section 4.

4.1.2.2. Simulation analysis

4.1.2.2.1. Virtual environment

The simulation virtual environment is kept same for each of the algorithm. The virtual
environment for each of the virtual sensor temperature, illumination and air-quality is

discussed in detailed in section 4.1.1.2.1.

4.2.1.2.2. Optimization

Figures 4.13, 4.14 and 4.15 show the optimal environmental parameters for each of the
temperature, illumination and Air-quality. In case of optimal temperature Figure 4.13, the

optimal temperature changes between 18° to 24° centigrade as compare to virtual sensing
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environment temperature Figure 4.2. The user set points are optimized to [18, 24]. The users

feel comfortable if the temperature level is between [18, 24]. From the Figure 4.13, we can

see that using hybrid serial optimization based on GA and PSO the user set parameters for

temperature optimized to achieve optimal temperature. In case of optimal illumination Figure

4.14, the illumination parameters changes between 720° to 880° lux as compare to virtual

sensing environment illumination Figure 4.3. The user set points are optimized to [720, 880].

The users feel relax and comfortable if the illumination level varies between [720, 880]. Here

we can conclude that using hybrid serial optimization based on GA and PSO, the user set

parameters for illumination are optimized to achieve optimal illumination level. In case of

optimal air-quality Figure 4.15, the air-quality parameters changes between 700° to 880° ppm

as compare to virtual sensing environment air-quality Figure 4.4.
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Figure 4.13. Optimal parameters for temperature (Based on PSO and GA serial)

104



u; Visualize Envirenment Monitor

Start  Virtual Environment ~ Hybrid Optimization and Prediction ~ Optimal Environment  Control Messages
Hybrid Optimization Algorithms Parameters Setting
No.of Paticales 24 No.of kerstions 2 : :
Optimal Environment
No. of kerations 2 No. of Chromosome 94
1000 S
Mtes P 7 Optimal llumination
Environmental Data Comfort Index Setting Q i 7N
11/5/2015 64338 PM T o T 3
Latn Viimm 18 z
S
& Madmum 24 2% E 600
E
lumination User Set llumination =1
E
810 Myiimum 720 m =
=i
Mairun 880 330 =l
o
200
B qually o
User Set Arqualy
800
Minimum 700 ]
0
Wezdnum 880 80 1 TR VN < R - A | T [
‘ 0 o oW oB BN 2
Instances. d
Time (Hour)
129
Figure 4.14. Optimal parameters for illumination (Based on PSO and GA serial)
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Figure 4.15. Optimal parameters for air-quality (Based on PSO and GA serial)

The user set points for air-quality are optimized to [700, 880] using hybrid optimization
algorithm based on PSO and GA serial. The users feel happy when the air-quality level is
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between [700, 880] as defined by user set parameters. From this we can conclude that using
hybrid serial optimization based on GA and PSO, the user set parameters for air-quality are

optimized to accomplish optimal air-quality.

4.2.1.2.3. Control messages

In Figures 4.16, 4.17, 4.18 and 4.19 shows the control messages information for hybrid
optimization algorithm based on PSO and GA serial. Figure 4.16 shows control messages to
turn ON/OFF air-condition. The same turn ON/OFF mechanism is used here. That is, if the
control message information results in zero then its means that virtual sensing environment
for temperature and optimal temperature is same and air-condition should be turn OFF. If
control message value results in value between 0 and 3 then AC will be turn ON slow. If
control message value results in value between 3 and 6 then AC will be Turn ON Medium. If
value is more than 6 then AC will be turn ON in high speed. Here we can see that message
information’s for air-con results in values more than 6, so the air-con in this case is turn ON
for all of the levels between 7hrs to 15hrs, while for the rest of the time air-con remains turn
OFF.

Figure 4.17 shows control messages to Turn ON/OFF boiler. If the control message value
is zero then its mean that virtual sensing environment temperature and optimal temperature is
same and boiler should be turn OFF. If control messages information results in values

between 0 and 3 then boilers will be turn ON slow. If control message value results in value
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between 3 and 6 then boiler will be turn on Medium. If value is more than 6 then boiler will

be turn ON in high speed. Here we can see that boiler is turn ON between Ohrs to Shrs and

17hrs to 23hrs.
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Figure 4.16. Control messages for Air-con (Based on PSO and GA serial)
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Figure 4.17. Control messages for Boiler (Based on PSO and GA serial)

For the rest of the time it is turn OFF due to either running of air-con or environmental
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parameters and optimal parameters remain same.

Figure 4.18 shows control messages to turn ON/OFF Light. If the control message value is
zero then its means that virtual sensing environment illumination and optimal illumination is
same and light should be turn OFF. If control message value results in value between 0 and 3
then light will be turn ON slow. If control message value results in value between 3 and 6
then light will be Turn ON Medium. If value is more than 6 then light will be turn ON in full
mode. Here we can see that light is turning ON for all of its levels during 24hrs of the day.
The power consumption for illumination varies as the day progresses to night and vice versa.
Figure 4.19 shows control messages to turn ON/OFF FAN. If the control message value is
zero then its means that virtual sensing environment air-quality and optimal air-quality is

same and FAN should be turn OFF.

ol Visualize Environment Monitor

Start  Virtual Environment  Hybrid Optimization and Prediction  Optimal Environment  Centrol Messages

Hybid Oplinizetion Agoritms Parameter Seting
No.of Paticales 24

No.of hestions 2 :
Control Messages Light
No.of terstions 2 No.of Chromosame 24

20

Mutaton Rate (1 -=- Tum0n0f Light

i Ddta Confort hdex Settng
T1/5/2015 65336 PM

User Set Temperature 15

Temperature
2%

lumination

860

Arqualty
80

Instances

366

Minimum 18

Mazdmum 24

Minimum 720

Mapimum 880

Minimum 700

Maximum 820

18

%

User et llumination

User Set Airqualy

Control Value

10 12 14 18 18 20 2
Time (Hour)

If control message value result in value between 0 and 3 then FAN will be turn ON slow. If

Figure 4.18. Control messages for Light (Based on PSO and GA serial)
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control message value results in value between 3 and 6 then FAN will be turn ON Medium. If
value is more than 6 then FAN will be turn ON in high speed. Here we can see that FAN is

turn ON for all of'its levels during 24hrs of the day. Most of the time, FAN is running at level

2 and level 3.
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Figure 4.19. Control messages for Fan (Based on PSO and GA serial)

4.2.1.2.4. Actuator emulators

In case of hybrid energy optimization based on prediction using GA and PSO serial with
single preprocessing model the actuator emulators received signals shown in Figure 4.16,
4.17, 4.18 and 4.19. The control signals shown in Figure 4.16, 4.17, 4.18 and 4.19 shows the
signals created by the hybrid energy optimization algorithm based on PSO and GA serial
algorithm. From Figure 4.16, we can see that message information’s for air-con actuator

results in values more than 6, so the air-con in this case is turn ON for all of the levels
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between 7hrs to 15hrs, while for the rest of the time air-con remains turn OFF. From Figure
4.17, we can see that boiler actuator is turn ON between Ohrs to Shrs and 17hrs to 23hrs. For
the rest of the time it is turn OFF due to either running of air-con or environmental parameters
and optimal parameters remain same. From Figure 4.18, we can see that light actuator is
turning ON for all of its levels during 24hrs of the day. The power consumption for
illumination varies as the day progresses to night and vice versa. From Figure 4.19, we can
see that FAN actuator is turn ON for all of its levels during 24hrs of the day. Most of the time,

FAN is running at level 2 and level 3.

4.1.3. Optimization algorithm based on PSO and MIGA

serial

4.1.3.1. Simulation environment

The simulation environment is kept same for each of the algorithm. The simulation

environment is discussed in detailed in section 4.

4.1.3.2. Simulation analysis

4.1.3.2.1. Virtual environment

The simulation virtual environment is kept same for each of the algorithm. The virtual

environment for each of the virtual sensor temperature, illumination and air-quality is
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discussed in detailed in section 4.1.1.2.1.

4.1.3.2.2. Optimization

Figures 4.20, 4.21 and 4.22 show the optimal environmental parameters for each of the
temperature, illumination and air-quality. In case of optimal temperature Figure 4.20, the
optimal temperature changes between 18° to 24° centigrade as compare to virtual sensing
environment temperature Figure 4.2. The user set points are optimized to [18, 24] using
hybrid serial optimization based on PSO and MIGA. The users feel comfortable if the
temperature level is between [18, 24].

From Figure 4.20, we can see that using hybrid serial optimization based on PSO and
MIGA the user set parameters for temperature optimized to achieve optimal temperature. In
case of optimal illumination Figure 4.21, the illumination parameters changes between 720° to
880° lux as compare to virtual sensing environment illumination Figure 4.3. The user set
points are optimized to [720, 880]. The users feel relax and comfortable if the illumination
level varies between [720, 880]. Here we can conclude that using hybrid serial optimization
based on PSO and MIGA, the user set parameters for illumination are optimized to achieve
optimal illumination level.

In case of optimal air-quality Figure 4.22, the air-quality parameters changes between 700°
to 880° ppm as compare to virtual sensing environment air-quality Figure 4.4. The user set

points for air-quality are optimized to [700, 880] using hybrid serial optimization based on
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PSO and MIGA.
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Figure 4.20. Optimal parameters for temperature (Based on PSO and MIGA serial)
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Figure 4.21. Optimal parameters for illumination (Based on PSO and MIGA serial)

The users feel happy when the air-quality level is between [700, 880] as defined by user
set parameters. From this we can conclude that using hybrid serial optimization based on PSO
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and MIGA, the user set parameters for air-quality are optimized to accomplish optimal air-

quality.
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Figure 4.22. Optimal parameters for air-quality (Based on PSO and MIGA serial)

4.1.3.2.3. Control messages

In Figures 4.23, 4.24, 4.25 and 4.26 shows the control messages information for hybrid
optimization algorithm based on PSO and GA serial. Figure 4.23 shows control messages to
turn ON/OFF air-condition. The same turn ON/OFF mechanism is used here. That is, if the
control message information results in zero then its means that virtual sensing environment
for temperature and optimal temperature is same and air-condition should be turn OFF. If
control message value results in value between 0 and 3 then AC will be turn ON slow. If
control message value results in value between 3 and 6 then AC will be Turn ON Medium. If

value is more than 6 then AC will be turn ON in high speed. Here we can see that message
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information’s for air-con results in values more than 6, so the air-con in this case is turn ON

for all of the levels between 7hrs to 15hrs, while for the rest of the time air-con remains turn

OFF.

Figure 4.24 shows control messages to Turn ON/OFF boiler. If the control message value
is zero then its mean that virtual sensing environment temperature and optimal temperature is

same and boiler should be turn OFF. If control messages information results in values

between 0 and 3 then boilers will be turn ON slow. If control message value results in value

between 3 and 6 then boiler will be turn on Medium.
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Figure 4.23. Control messages for Air-con (Based on PSO and MIGA serial)

If value is more than 6 then boiler will be turn ON in high speed. Here we can see that
boiler is turn ON between Ohrs to Shrs and 17hrs to 23hrs. For the rest of the time it is turn

OFF due to either running of air-con or environmental parameters and optimal parameters
remain same.
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Figure 4.24. Control messages for Boiler (Based on PSO and MIGA serial)

Figure 4.25 shows control messages to turn ON/OFF Light. If the control message value is
zero then its means that virtual sensing environment illumination and optimal illumination is
same and light should be turn OFF. If control message value results in value between 0 and 3
then light will be turn ON slow. If control message value results in value between 3 and 6
then light will be Turn ON Medium. If value is more than 6 then light will be turn ON in full
mode. Here we can see that light is turning ON for all of its levels during 24hrs of the day.
The power consumption for illumination varies as the day progresses to night and vice versa

Figure 4.26 shows control messages to turn ON/OFF FAN. If the control message value is
zero then its means that virtual sensing environment air-quality and optimal air-quality is
same and FAN should be turn OFF.

If control message value result in value between 0 and 3 then FAN will be turn ON slow. If

control message value results in value between 3 and 6 then FAN will be turn ON Medium. If
115



value is more than 6 then FAN will be turn ON in high speed. Here we can see that FAN is
turn ON for all of'its levels during 24hrs of the day. Most of the time, FAN is running at level

2 and level 3.
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Figure 4.25. Control messages for Light (Based on PSO and MIGA serial)
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Figure 4.26. Control messages for Fan (Based on PSO and MIGA serial)
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4.1.3.2.4. Actuator emulators

In case of hybrid energy optimization based on prediction using MIGA and PSO with

single preprocessing model the actuator emulators received signals shown in Figure 4.23,

4.24, 425 and 4.26. Hybrid energy optimization algorithm based on PSO and MIGA serial

algorithm creates control signals described in Figure 4.23, 4.24, 4.25 and 4.26 respectively.

From Figure 4.23, we can see that message information’s for air-con actuator results in values
9

more than 6, so the air-con emulator in this case is turn ON for all of the levels between 7hrs

to 15hrs, while for the rest of the time air-con remains turn OFF. From Figure 4.24, we can

see that boiler actuator is turn ON between Ohrs to Shrs and 17hrs to 23hrs. For the rest of the

time it is turn OFF due to either running of air-con emulator or environmental parameters and

optimal parameters remain same. From Figure 4.25, we can see that FAN actuator is turn ON

for all of its levels during 24hrs of the day. Most of the time FAN emulator will be in running

mode and switching between level 2 and level 3. From Figure 4.26, we can see that light

actuator is turning ON for all of its levels during 24hrs of the day.
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4.2. Multi-preprocessing hybrid optimization model based

on prediction

4.2.1. Optimization algorithm based on PSO and GA parallel

4.2.1.1. Simulation environment

The simulation environment is kept same for each of the algorithm. The simulation

environment is discussed in detailed in section 4.

4.2.1.2. Simulation analysis

4.2.1.2.1. Virtual environment

The simulation virtual environment is kept same for each of the algorithm. The virtual
environment for each of the virtual sensor temperature, illumination and air-quality is

discussed in detailed in section 4.1.1.2.1.

4.2.1.2.2. Optimization

Figures 4.27, 4.28 and 4.29 show the optimal environmental parameters for each of the
temperature, illumination and air-quality using hybrid optimization algorithm based on PSO
and GA parallel with multi-preprocessing. In case of optimal temperature Figure 4.27, the

optimal temperature changes between 18° to 24° centigrade as compare to virtual sensing
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environment temperature Figure 4.2. The user set points are optimized to [18, 24] using

hybrid optimization algorithm based on PSO and GA parallel with multi-preprocessing. The

users feel comfortable when the temperature varies between [18, 24]. We can say that using

hybrid parallel optimization based on GA and PSO with multi-preprocessing, the user set

parameters for temperature optimized to achieve optimal temperature.

In case of optimal illumination Figure 4.28, the illumination parameters changes between

720° to 880° lux as compare to virtual sensing environment illumination Figure 4.3. The user

set points are optimized to [720, 880]. The users feel comfortable when the illumination level

is between [720, 880]. So we can say that using hybrid parallel optimization based on GA and

PSO with multi-preprocessing, the user set parameters for illumination are optimized to

achieve optimal illumination.
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Figure 4.27. Optimal parameters for temperature (Based on PSO and GA parallel with multi-

Preprocessing)
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Figure 4.28. Optimal parameters for illumination (Based on PSO and GA parallel with multi-

Preprocessing)

In case of optimal air-quality Figure 4.29, the air-quality parameters changes between 700°

to 880° ppm as compare to virtual sensing environment air-quality Figure 4.4.
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Figure 4.29. Optimal parameters for air-quality (Based on PSO and GA parallel with multi-

Preprocessing)
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The user set points for air-quality are optimized to [700, 880] using hybrid parallel
optimization based on GA and PSO with multi-preprocessing. The users feel comfortable
when the air-quality level is between [700, 880]. So we can say that using hybrid parallel
optimization based on GA and PSO with multi-preprocessing, the user set parameters for air-

quality are optimized to accomplish optimal air-quality.

4.2.1.2.3. Control messages

Figure 4.30, Figure 4.31, Figure 4.32 and Figure 4.33 shows the control messages
information’s using hybrid parallel optimization based on GA and PSO with multi-

preprocessing approach. Figure 4.30 shows control messages to turn ON/OFF air-condition.
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Figure 4.30. Control messages for Air-con (Based on PSO and GA parallel with multi-Preprocessing)

When the control message value is zero then its means that virtual sensing environment

temperature and optimal temperature is same and air-condition should be turn OFF. When
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control message value results in value between 0 and 3 then AC will be turn ON slow. If
control message value results in value between 3 and 6 then AC will be Turn ON Medium. If
value is more than 6 then AC will be turn ON in high speed. Here we can see that message
information’s for air-con varies between 0 and 5. So air-con is turn ON for level 1 and level 2
only. From Ohrs to 6hrs and from 16hrs to 23hrs the air-con remains turn OFF.

Figure 4.31 shows control messages to Turn ON/OFF boiler. When the control message

value is zero then its mean that virtual sensing environment temperature and optimal

temperature is same and boiler should be turn OFF.
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Figure 4.31. Control messages for Boiler (Based on PSO and GA parallel with multi-Preprocessing)

When control message value results in value between 0 and 3 then boilers will be turn ON
slow. If control message value results in value between 3 and 6 then boiler will be turn on
Medium. If value is more than 6 then boiler will be turn ON in high speed. Here we can see

that boiler remains turn OFF during 7hrs to 15hrs, while turn ON at different levels between
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Ohrs to 7hrs and 15hrs to 23hrs. Figure 4.32 shows control messages to turn ON/OFF Light.

When the control message value is zero then its means that virtual sensing environment

illumination and optimal illumination is same and light should be turn OFF.

When control message value results in value between 0 and 3 then light will be turn ON

slow. When control message value results in value between 3 and 6 then light will be Turn

ON Medium. If the message information value is more than 6 then light will be turn ON in

full. Here we can see that the light is turn ON for all of its levels. The power consumption for

light varies during each hour of the day.
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Figure 4.32. Control messages for Light (Based on PSO and GA parallel with multi-Preprocessing)

Figure 4.33 shows control messages to turn ON/OFF FAN. When the control message

value is zero then its means that virtual sensing environment air-quality and optimal air-

quality is same and FAN should be turn OFF. When control message value result in value
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between 0 and 3 then FAN will be turn ON slow. When control message value results in value
between 3 and 6 then FAN will be turn ON Medium. When value is more than 6 then FAN
will be turn ON in high speed. Here we can see that FAN is running during 24hours of the

day. Each hour different power is consumed by the FAN.
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Figure 4.33. Control messages for Fan (Based on PSO and GA parallel with multi-Preprocessing)

4.2.1.2.4. Actuator emulators

In case of hybrid energy optimization based on prediction using GA and PSO with multi-
preprocessing model the actuator emulators received signals shown in Figure 4.30, 4.31, 4.32
and 4.33. Hybrid energy optimization algorithm based on PSO and GA and multi-
preprocessing model creates control signals presented in Figure 4.30, 4.31, 4.32 and 4.33

respectively. From Figure 4.30, we can see that message information’s for air-con actuator
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varies between 0 and 5. So air-con is turn ON for level 1 and level 2 only. From Ohrs to 6hrs
and from 16hrs to 23hrs the air-con remains turn OFF. From Figure 4.31, we can see that
boiler actuator remains turn OFF during 7hrs to 15hrs, while turn ON at different levels
between Ohrs to 7hrs and 15hrs to 23hrs. From Figure 4.32, we can see that the light emulator
is turn ON for all of its levels. The power consumption for light varies during each hour of the
day. From Figure 4.33, we can see that FAN actuator is running during 24hours of the day.
Each hour different power is consumed by the FAN according to the control signals it

received.

4.2.2. Optimization algorithm based on PSO and GA serial

4.2.2.1. Simulation environment

The simulation environment is kept same for each of the algorithm. The simulation

environment is discussed in detailed in section 4.

4.2.2.2. Simulation analysis

4.2.2.2.1. Virtual environment

The simulation virtual environment is kept same for each of the algorithm. The virtual
environment for each of the virtual sensor temperature, illumination and air-quality is

discussed in detailed in section 4.1.1.2.1.

125



4.2.2.2.2. Optimization

Figures 4.34, 4.35 and 4.36 show the optimal environmental parameters for each of the
temperature, illumination and air-quality using hybrid serial optimization based on GA and
PSO with multi-preprocessing. In case of optimal temperature Figure 4.34, the optimal
temperature changes between 18° to 24° centigrade as compare to virtual sensing environment
temperature Figure 4.2. The user set points are optimized to [18, 24] using hybrid serial

optimization based on GA and PSO with multi-preprocessing.
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Figure 4.34. Optimal parameters for temperature (Based on PSO and GA serial with multi-

Preprocessing)

The users feel relax and happy when the temperature level is varies between [18, 24]. So
we can say that using hybrid parallel optimization based on GA and PSO with multi-

preprocessing the user set parameters for temperature optimized to achieve optimal
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temperature. In case of optimal illumination Figure 4.35, the illumination parameters changes
between 720° to 880° lux as compare to virtual sensing environment illumination Figure 4.3.
The user set points are optimized to [720, 880] using hybrid serial optimization based on GA

and PSO with multi-preprocessing. The users feel comfortable when the illumination level is

between [720, 880].
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Figure 4.35. Optimal parameters for illumination (Based on PSO and GA serial with multi-

Preprocessing)

So we can say that using hybrid parallel optimization based on GA and PSO with multi-
preprocessing, the user set parameters for illumination are optimized to achieve optimal
illumination. In case of optimal air-quality Figure 4.36, the air-quality parameters changes
between 700° to 880° ppm as compare to virtual sensing environment air-quality Figure 4.4.
The user set points for air-quality are optimized to [700, 880] using hybrid serial optimization

based on GA and PSO with multi-preprocessing. The users feel comfortable and happy when
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the air-quality level is between [700, 880]. So we can conclude that using hybrid serial
optimization based on GA and PSO with multi-preprocessing, the user set parameters for air-

quality are optimized to achieve optimal air-quality.
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Figure 4.36. Optimal parameters for air-quality (Based on PSO and GA serial with multi-

Preprocessing)

4.2.2.2.3. Control messages

Figure 4.37 shows control messages to turn ON/OFF air-condition. If the control message
value is zero then its means that virtual sensing environment temperature and optimal
temperature is same and air-condition should be turn OFF. If control message value results in
value between 0 and 3 then AC will be turn ON slow. If control message value results in value
between 3 and 6 then AC will be Turn ON Medium. If value is more than 6 then AC will be

turn ON in high speed. Here we can see that air-con is turn ON at different levels during 6hrs
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to 16hrs. The air-con remains turn OFF between Ohrs to 6hrs and between 16hrs to 23 hrs.
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Figure 4.37. Control messages for Air-con (Based on PSO and GA serial with multi-Preprocessing)

Figure 4.38 shows control messages to Turn ON/OFF boiler. If the control message value

is zero then its mean that virtual sensing environment temperature and optimal temperature is

same and boiler should be turn OFF. When control message value results in value between 0

and 3 then boilers will be turn ON slow. If control message value results in value between 3

and 6 then boiler will be turn on Medium. If value is more than 6 then boiler will be turn ON

in high speed. Here we can see that boiler is turn OFF between 7hrs to 15hrs and turn ONN

between Ohrs to 7hrs and between 15hrs to 23 hrs.

Figure 4.39 shows control messages to turn ON/OFF Light. When the control message

value is zero then it means that virtual sensing environment illumination and optimal

illumination is same and light should be turn OFF. If control message value results in value

between 0 and 3 then light will be turn ON slow. If control message value results in value
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between 3 and 6 then light will be Turn ON Medium. If value is more than 6 then light will be
turn ON in fully. Here we can see that light is turning ON for all of its levels. The power

consumption for light decreases as the day time arrives and increases as the night time arrives.
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Figure 4.38. Control messages for Boiler (Based on PSO and GA serial with multi-Preprocessing)
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Figure 4.39. Control messages for Light (Based on PSO and GA serial with multi-Preprocessing)

Figure 4.40 shows control messages to turn ON/OFF FAN. If the control message value is
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zero then its means that virtual sensing environment air-quality and optimal air-quality is
same and FAN should be turn OFF. If control message value result in value between 0 and 3
then FAN will be turn ON slow. If control message value results in value between 3 and 6
then FAN will be turn ON Medium. If value is more than 6 and then FAN will be turn ON in
high speed. Here we can also see that FAN remains turn ON during 24 hours of the day with

different levels.
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Figure 4.40. Control messages for Fan (Based on PSO and GA serial with multi-Preprocessing)

4.2.2.2.4. Actuator emulators

In case of hybrid energy optimization based on prediction using GA and PSO serial with
multi-preprocessing model the actuator emulators received signals presented in Figure 4.37,
4.38, 4.39 and 4.40. Hybrid serial energy optimization algorithm based on PSO and GA and

multi-preprocessing model creates control signals described in Figure 4.37, 4.38, 4.39 and
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4.40 respectively. From Figure 4.37, we can see that air-con actuator is turn ON at different
levels during 6hrs to 16hrs. The air-con remains turn OFF between Ohrs to 6hrs and between
16hrs to 23 hrs. From Figure 4.38, we can see that boiler emulator is turn OFF between 7hrs
to 15hrs and turn ONN between Ohrs to 7hrs and between 15hrs to 23 hrs. From Figure 4.39,
we can see that light emulator is turning ON for all of its levels. The power consumption for
light decreases as the day time arrives and increases as the night time arrives. From Figure
4.40, we can also see that FAN remains turn ON during 24 hours of the day with different

levels.

4.2.3. Optimization algorithm based on PSO and MIGA

serial

4.2.3.1. Simulation environment

The simulation environment is kept same for each of the algorithm. The simulation

environment is discussed in detailed in section 4.

4.2.3.2. Simulation analysis

4.2.3.2.1. Virtual environment

The simulation virtual environment is kept same for each of the algorithm. The virtual

environment for each of the virtual sensor temperature, illumination and air-quality is
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discussed in detailed in section 4.1.1.2.1.

4.2.3.2.2. Optimization

Figures 4.41, 4.42 and 4.43 show the optimal environmental parameters for each of the

temperature, illumination and air-quality using hybrid serial optimization based on MIGA and

PSO with multi-preprocessing. In case of optimal temperature Figure 4.41, the optimal

temperature changes between 18° to 24° centigrade as compare to virtual sensing environment

temperature Figure 4.2. The user set points are optimized to [18, 24] using hybrid serial

optimization based on MIGA and PSO with multi-preprocessing. The users feel relax and

happy when the temperature level is varies between [18, 24]. So we can say that using hybrid

parallel optimization based on MIGA and PSO with multi-preprocessing the user set

parameters for temperature optimized to achieve optimal temperature.
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Figure 4.41. Optimal parameters for temperature (Based on PSO and MIGA serial with multi-

Preprocessing)
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In case of optimal illumination Figure 4.42, the illumination parameters changes between
720° to 880° lux as compare to virtual sensing environment illumination Figure 4.3. The user
set points are optimized to [720, 880] using hybrid serial optimization based on MIGA and
PSO with multi-preprocessing. The users feel comfortable when the illumination level is
between [720, 880]. So we can say that using hybrid parallel optimization based on MIGA
and PSO with multi-preprocessing, the user set parameters for illumination are optimized to

achieve optimal illumination.
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Figure 4.42. Optimal parameters for illumination (Based on PSO and MIGA serial with multi-

Preprocessing)

In case of optimal air-quality Figure 4.43, the air-quality parameters changes between 700°
to 880° ppm as compare to virtual sensing environment air-quality Figure 4.4. The user set
points for air-quality are optimized to [700, 880] using hybrid serial optimization based on
MIGA and PSO with multi-preprocessing. The users feel comfortable and happy when the air-

quality level is between [700, 880].
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So we can conclude that using hybrid serial optimization based on MIGA and PSO with

multi-preprocessing, the user set parameters for air-quality are optimized to achieve optimal

air-quality.
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Figure 4.43. Optimal parameters for air-quality (Based on PSO and MIGA serial with multi-

Preprocessing)

4.2.3.2.3. Control messages

Figure 4.44 shows control messages to turn ON/OFF air-condition. If the control message
value is zero then its means that virtual sensing environment temperature and optimal
temperature is same and air-condition should be turn OFF. If control message value results in
value between 0 and 3 then AC will be turn ON slow. If control message value results in value
between 3 and 6 then AC will be Turn ON Medium. If value is more than 6 then AC will be

turn ON in high speed. Here we can see that air-con is turn ON at different levels during 6hrs
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to 16hrs. The air-con remains turn OFF between Ohrs to 6hrs and between 16hrs to 23 hrs.
Figure 4.45 shows control messages to Turn ON/OFF boiler. If the control message value
is zero then its mean that virtual sensing environment temperature and optimal temperature is

same and boiler should be turn OFF. When control message value results in value between 0

and 3 then boilers will be turn ON slow.
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Figure 4.44. Control messages for Air-con (Based on PSO and MIGA serial with multi-Preprocessing)

If control message value results in value between 3 and 6 then boiler will be turn on
Medium. If value is more than 6 then boiler will be turn ON in high speed. Here we can see
that boiler is turn OFF between 7hrs to 15hrs and turn ONN between Ohrs to 7hrs and
between 15hrs to 23 hrs. Figure 4.46 shows control messages to turn ON/OFF Light. When
the control message value is zero then it means that virtual sensing environment illumination
and optimal illumination is same and light should be turn OFF. If control message value
results in value between 0 and 3 then light will be turn ON slow. If control message value
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results in value between 3 and 6 then light will be Turn ON Medium.
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Figure 4.45. Control messages for Boiler (Based on PSO and MIGA serial with multi-Preprocessing)
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Figure 4.46. Control messages for Light (Based on PSO and MIGA serial with multi-Preprocessing)

If value is more than 6 then light will be turn ON in fully. Here we can see that light is
turning ON for all of its levels. The power consumption for light decreases as the day time

arrives and increases as the night time arrives. Figure 4.47 shows control messages to turn
137



ON/OFF FAN. If the control message value is zero then its means that virtual sensing

environment air-quality and optimal air-quality is same and FAN should be turn OFF. If

control message value result in value between 0 and 3 then FAN will be turn ON slow.

If control message value results in value between 3 and 6 then FAN will be turn ON

Medium. If value is more than 6 and then FAN will be turn ON in high speed. Here we can

also see that FAN remains turn ON during 24 hours of the day with different levels.
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Figure 4.47. Control messages for Fan (Based on PSO and MIGA serial with multi-Preprocessing)

4.2.3.2.4. Actuator emulators

In case of hybrid energy optimization based on prediction using MIGA and PSO with

multi-preprocessing model the actuator emulators received signals shown in Figure 4.44,

4.45, 4.46 and 4.47. Hybrid serial energy optimization algorithm based on PSO and MIGA

and multi-preprocessing model creates control signals shown in Figure 4.44, 4.45, 4.46 and



4.47 respectively. From Figure 4.44, we can see that air-con emulator is turn ON at different
levels during 6hrs to 16hrs. The air-con remains turn OFF between Ohrs to 6hrs and between
16hrs to 23 hrs. From Figure 4.45, we can see that boiler emulator is turn OFF between 7hrs
to 15hrs and turn ONN between Ohrs to 7hrs and between 15hrs to 23 hrs. From Figure 4.46,
we can see that light emulator is turning ON for all of its levels. The power consumption for
light decreases as the day time arrives and increases as the night time arrives. From Figure
4.47, we can also see that FAN remains turn ON during 24 hours of the day with different

levels.
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S. Performance comparisons and analysis
5.1. Basic energy optimization model based on prediction

5.1.1. Optimized power control methodology using GA and
PSO

5.1.1.1. Comparisons of power consumption prediction

results

Figure 5.1, 5.2, 5.3 and 5.4 shows the comparisons of power consumption. X-axis shows
the time in house while Y-axis shows the predicted power consumption in kilowatts and
comfort index between 0.0 and 1.0 is the minimum and maximum comfort index respectively.
From the results of Figure 5.1 it can be evident, that in case of power consumption for
temperature, system with GA based prediction method consumes less power as compared to
the system with PSO based prediction. This is due to the fact that GA based optimized
parameters are more optimal than PSO based optimized parameters. So when environmental
disturbance occur GA based predicted method consume less power as compare to PSO based
predicted method. Less power consumption is ensured by controllers using optimized
parameters of GA. Similarly for illumination as shown in Figure 5.2, GA based predicted

method confirmed to consume less power as compared to the PSO based prediction method.
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Figure 5.1. Comparison of predicted power consumption for temperature with GA based system and

PSO based system
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Figure 5.2. Comparison of predicted power consumption for illumination with GA based system and
PSO based system

Figure 5.3 shows the results for the air-quality control. Here we can see that GA based
predicted system consumed almost same power as compared to its counterpart PSO based
prediction system. Figure 5.4 shows the total predicted power consumption in case of GA
based optimized system and PSO based optimized system. The total power consumption of

GA based system is less than PSO predicted system.
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Figure 5.3. Comparison of predicted power consumption for air-quality with GA based system and PSO

based system
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Figure 5.4. Comparison of total predicted power consumption with GA based system and PSO based

system

5.1.1.2. Comparisons of occupants comfort index results

Figure 5.5 shows the results of user comfort index in case of GA based prediction system
and PSO based prediction system.
Here we can see occupants comfort index improving and degraded couple of times during

different hours. This is due to the multiple environmental disturbances. We have created this
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multiple environmental disturbances to check the efficiency of the energy optimization

algorithms. First time the environmental disturbance occurs at time 82hrs, second disturbance

arises at time 115hrs, and third, fourth and fifth environmental disturbance occurs at time

146hrs, 177hrs and 208hrs respectively. In rest of all the comfort index results, the

environmental disturbances occur in the same way.

Comfort index is varied between ‘0’ and ‘1’. ‘0’ means lowest or minimum occupants

comfort index and ‘1’ means highest or maximum occupants comfort index. The degradation

in occupants comfort index experienced when there is an environmental disturbance, and

improvement in the comfort index achieved when optimization is done. So when

environmental disturbance occurs then optimization gets started to improve the occupants

comfort index. Initially comfort index is ‘1’ from time ‘1hr’ to time ‘81hrs’, then at time

82hrs first environmental disturbance occurs. At this time comfort level of GA based

prediction system and PSO based predicted system both degraded and goes down from ‘1’ to

0.970. AT this time optimization gets started to improve the occupants comfort index. When

the system gets optimized then occupants comfort index starts improving. As we can see both

the systems recover soon. When second time power disturbance arises, comfort index of PSO

based predicted system degraded before the GA based predicted system. So during second

time disturbance GA based predicted system perform well as compared to the PSO based

predicted system. During the entire disturbances except for the first one where both the

predicted systems degraded at the same time, PSO based predicted system degraded early
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than GA based predicted system. So whenever there is an environmental disturbance, GA
based prediction system degraded slowly as compared to its counterpart PSO based predicted
system. With GA based estimated power consumption, user comfort index is improved as
compare to the PSO based prediction system. So if there are multiple environmental
disturbances, GA based predicted system perform well to handle them as compared to PSO
based predicted system. Although in GA based prediction system less power is consume as
compare to that of PSO based prediction system, but still it achieved improved occupants

comfort level.
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Figure 5.5. Comparison of predicted GA and PSO based comfort index
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5.2. Hybrid energy optimization model based on prediction

5.2.1. Single preprocessing hybrid optimization model based

on prediction

5.2.1.1. Optimization algorithm based on PSO and GA parallel

5.2.1.1.1. Comparisons of power consumption prediction results

Figure 5.6, 5.7, 5.8 and 5.9 shows the comparisons of power consumption. X-axis shows
the time in hours while Y-axis shows the predicted power consumption in kilowatts, and
comfort index between 0.0 and 1.0 is the minimum and maximum comfort index respectively.
From the results of Figure 5.6 it can be observed that in case of power consumption for
temperature, proposed parallel hybrid optimization and prediction based on Kalman filter and
preprocessing model consumed less power as compared to the GA based system with no
hybrid optimization and preprocessing. When environmental intermission occur, parallel
hybrid optimization, prediction and preprocessing model consumed less power as compared
to GA based predicted model where no hybrid optimization and preprocessing involved. Less
power consumption is ensured by controllers using optimized parameters. For illumination as
shown in Figure 5.7, parallel hybrid optimization and prediction with preprocessing model
consumed minimum power as compared to GA based predicted model. Figure 5.8 shows the

results for the air-quality control.
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Here we can see that parallel hybrid optimization and prediction model consumed almost

less power as compared to its equivalent GA based predicted system. Figure 5.7 shows the

total predicted power consumption in case of proposed parallel hybrid optimization model

and GA based predicted model with no hybrid prediction and preprocessing involved.
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Figure 5.7. Comparison of predicte

system

d power consumption for illumination with GA based predicted

and parallel hybrid optimization and prediction

The total predicted power consumption of parallel hybrid optimization and prediction

model with preprocessing consumed less power than its counterpart GA based prediction
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system with no hybrid prediction and preprocessing. The power disturbance first time arises at
82hrs. At this time comfort level of hybrid optimization based proposed system with
prediction and preprocessing goes down to 0.970 almost same as to GA based predicted

system with no hybrid prediction and preprocessing.
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Figure 5.8. Comparison of predicted power consumption for air-quality with GA based predicted

system and parallel hybrid optimization and prediction
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Figure 5.9. Comparison of total predicted power consumption with GA based predicted system and

parallel hybrid optimization and prediction

When second time power disturbance occurs, the comfort index of GA based predicted

system immediately goes down as compared to proposed hybrid optimization based
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prediction and preprocessing model. When second time power disturbance arises proposed
parallel hybrid optimization model degraded to almost 0.998 as compared to 0.967 of GA
based prediction model with no preprocessing. Similarly in all cases of degradation the
proposed hybrid optimization based predicted with preprocessing system provides improved
comfort index as compared to GA based predicted system where no preprocessing applied. So
whenever there is an environmental disturbance, hybrid optimization based prediction and
preprocessing system provides better comfort index as compared to its counterpart GA based

predicted system.

5.2.1.1.2. Comparisons of occupants comfort index results

Figure 5.10 shows the results of user comfort index in case of proposed hybrid

optimization based prediction with preprocessing model and GA based prediction system.
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Figure 5.10. Comparison of comfort value/index with GA based predicted system and parallel hybrid

optimization and prediction

From the comfort index it is clear that parallel hybrid optimization based prediction and

preprocessing model provides better and improved comfort index as compared to GA based
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prediction model [3]. Although in parallel hybrid optimization based prediction and
preprocessing model less power is consumed as compare to that of GA based prediction
system, but still proposed model achieved improved and better comfort index as compared to

GA and based predicted system.

5.2.1.2. Optimization algorithm based on PSO and GA serial

5.2.1.2.1. Comparisons of power consumption prediction results

Figure 5.11, 5.12, 5.13 and 5.14 shows the comparisons of power consumption. X-axis
shows the time in hours while Y-axis shows the predicted power consumption in kilowatts,
and comfort index between 0.0 and 1.0 is the minimum and maximum comfort index
respectively. From the results of Figure 5.11 it can be observed that in case of power
consumption for temperature, proposed serial hybrid optimization and prediction based on
Kalman filter and preprocessing model consumed less power as compared to the GA based
system with no hybrid optimization and preprocessing. When environmental intermission
occur, serial hybrid optimization, prediction and preprocessing model consumed less power as
compared to GA based predicted model where no hybrid optimization and preprocessing
involved. Less power consumption is guaranteed by controllers using optimized parameters.
For illumination as shown in Figure 5.12, serial hybrid optimization and prediction with

preprocessing model consumed minimum power as compared to GA based predicted model.
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Figure 5.11. Comparison of predicted power consumption for temperature with GA based predicted

system and serial hybrid optimization and prediction
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Figure 5.12. Comparison of predicted power consumption for illumination with GA based predicted

system and serial hybrid optimization and prediction

Figure 5.13 shows the results for the air-quality control. Here we can see that serial hybrid
optimization and prediction model consumed same power as compared to its equivalent GA
based predicted system. Figure 5.14 shows the total predicted power consumption in case of
proposed serial hybrid optimization model and GA based predicted model with no hybrid
prediction and preprocessing/ involved. The total predicted power consumption of serial

hybrid optimization and prediction model with preprocessing is less than its counterpart GA
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based prediction system with no hybrid optimization and preprocessing.
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Figure 5.13. Comparison of predicted power consumption for air-quality with GA based predicted

system and serial hybrid optimization and prediction

The power disturbance first time occurs at 82hrs. At this time comfort level of hybrid
optimization based proposed system with prediction and preprocessing goes down to 0.970
same as to GA based predicted system with no hybrid prediction and preprocessing. But when
second time power disturbance occurs, the GA based predicted system immediately goes
down as compared to proposed hybrid optimization based prediction and preprocessing
model. When second time power disturbance arises proposed hybrid serial optimization
model degraded to 0.978 as compared to 0.970 of GA based prediction model with no
preprocessing. Similarly in all cases of degradation of comfort index, the proposed hybrid
serial optimization based prediction with preprocessing system provides improved comfort
index as compared to GA based predicted system where no preprocessing applied. So
whenever there is an environmental disturbance, hybrid serial optimization based prediction

and preprocessing system provides better comfort index as compared to its counterpart GA
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based predicted system.

Total Predicted Power Consumption

w S
o o

------- GA with Prediction

w
o o

—Single preprocessing serial
hybrid optimization (GA &
PSO) and prediction

= NN
o o

o

Total Predicted
Power Consumption (KWh)

o w»
209
217
225
233
241
249

AONVLMNEHOINLNOADONN M
VOO ANNMIETNOONWNONO
A deddddddd AN

Time(hrs)

Figure 5.14. Comparison of total predicted power consumption with GA based predicted system and

serial hybrid optimization and prediction
5.2.1.2.2. Comparisons of occupants comfort index results
Figure 5.15 shows the results of user comfort index in case of proposed hybrid

optimization based prediction with preprocessing/post-processing model and GA based

prediction system.
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Figure 5.15. Comparison of comfort value/index with GA based predicted system and serial hybrid

optimization and prediction

From the occupants comfort index it is clear that serial hybrid optimization based
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prediction and preprocessing/post-processing model provides better and improved comfort
index as compared to GA based prediction model [3]. Although in serial hybrid optimization,
prediction and preprocessing/post-processing model, less power is consumed as compare to
that of GA based prediction system, but still proposed model achieved improved and better

comfort index as compared to GA and based predicted system.

5.2.1.3. Optimization algorithm based on PSO and MIGA

serial

5.2.1.3.1. Comparisons of power consumption prediction results

Figure 5.16, 5.17, 5.18 and 5.19 shows the comparisons of power consumption. X-axis
shows the time in hours while Y-axis shows the predicted power consumption in kilowatts,
and comfort index between 0.0 and 1.0 is the minimum and maximum comfort index
respectively. From the results of Figure 5.16 it can be observed that in case of power
consumption for temperature, proposed serial hybrid optimization and prediction based on
single preprocessing model consumed less power as compared to the GA based system with
no hybrid optimization and preprocessing. When environmental intermission occur, serial
hybrid optimization, hybrid prediction and preprocessing model consumed less power as
compared to GA based predicted model where no hybrid optimization and preprocessing

involved. Less power consumption is ensured by controllers using optimized parameters. For
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illumination as shown in Figure 5.17, serial hybrid optimization and hybrid prediction with

preprocessing model consumed minimum power as compared to GA based predicted model.
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Figure 5.16. Comparison of predicted power consumption for temperature with MIGA based predicted

system and serial hybrid optimization and prediction
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Figure 5.17. Comparison of predicted power consumption for illumination with MIGA based predicted

system and serial hybrid optimization and prediction

Figure 5.18 shows the results for the air-quality control. Here we can see that serial hybrid
optimization and hybrid prediction model consumed little power as compared to its equivalent
GA based predicted system. Figure 5.19 shows the total predicted power consumption in case
of proposed serial hybrid optimization model and GA based predicted model with no hybrid

optimization, prediction and preprocessing involved. The total predicted power consumption
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of serial hybrid optimization and hybrid prediction model with preprocessing consumed less
power than its counterpart GA based prediction system with no hybrid prediction and

preprocessing.
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Figure 5.18. Comparison of predicted power consumption for air-quality with MIGA based predicted

system and serial hybrid optimization and prediction

First time power disturbance occurs at time 82hrs. At this time comfort level of proposed
hybrid optimization based system with hybrid prediction and preprocessing goes down to
0.970 same as to GA based predicted system with no hybrid prediction and preprocessing.
When second time power disturbance occurs, the GA based predicted system immediately
goes down as compared to proposed hybrid optimization based prediction and preprocessing
model. When second time power disturbance arises proposed serial hybrid optimization
model degraded to 0.978 as compared to 0.970 of GA based prediction model with no
preprocessing. Similarly in all cases of comfort degradation, the proposed hybrid optimization
based predicted with preprocessing system provides improved comfort index as compared to
GA based predicted system where no preprocessing applied. So whenever there is an
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environmental disturbance, hybrid optimization based prediction and smoothing system

provides better comfort index as compared to its counterpart GA based predicted system.
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Figure 5.19. Comparison of total predicted power consumption with MIGA based predicted syste m and

parallel hybrid optimization and prediction

5.2.1.3.2. Comparisons of occupants comfort index results

Figure 5.20 shows the results of user comfort index in case of proposed hybrid

optimization based prediction with preprocessing model and GA based prediction system.
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Figure 5.20. Comparison of comfort value/index with MIGA based predicted system and serial hybrid

optimization and prediction

From the comfort index it is clear that serial hybrid optimization based prediction and
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preprocessing model provides better and improved comfort index as compared to GA based
prediction model [3]. Although in serial hybrid optimization, prediction and preprocessing
model, less power is consumed as compare to that of GA based prediction system, but still
proposed model achieved improved and better comfort index as compared to GA and based

predicted system.

5.2.2. Multi-preprocessing hybrid optimization model based

on prediction

5.2.2.1. Optimization algorithm based on PSO and GA parallel

5.2.2.1.1. Comparisons of power consumption prediction results

Figure 5.21, 5.22, 5.23 and 5.24 shows the comparisons of power consumption. X-axis
shows the time in hours while Y-axis shows the predicted power consumption in kilowatts,
and comfort index between 0.0 and 1.0 is the minimum and maximum comfort index
respectively. From the results of Figure 5.21 it can be observed that in case of power
consumption for temperature, proposed parallel hybrid optimization and prediction based on
Kalman filter and multi-preprocessing model consumed less power as compared to the GA
based system with no hybrid optimization and multi-preprocessing. When environmental
disturbance occur, parallel hybrid optimization, prediction and multi-preprocessing model

consumed less power as compared to GA based predicted model where no hybrid
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optimization and preprocessing involved. Minimum power consumption is guaranteed by
controllers using optimized parameters and multi-preprocessing. For illumination as shown in
Figure 5.22, parallel hybrid optimization and prediction with multi-preprocessing model
consumed minimum power as compared to GA based predicted model. Figure 5.2 3 shows the

results for the air-quality control.
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Figure 5.21. Comparison of predicted power consumption for temperature with GA based predicted

system and parallel hybrid optimization and prediction (with multi-preprocessing)
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Figure 5.22. Comparison of predicted power consumption for illumination with GA based predicted

system and parallel hybrid optimization and prediction (with multi-preprocessing)

Here we can see that parallel hybrid optimization and prediction with multi-preprocessing

model consumed a little bit more power as compared to its equivalent GA based predicted
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system. Figure 5.24 shows the total predicted power consumption in case of proposed parallel
hybrid optimization with multi-preprocessing model and GA based predicted model with no
hybrid prediction and preprocessing involved. The total predicted power consumption of
parallel hybrid optimization and prediction model with multi-preprocessing consumed less
power than its counterpart GA based prediction system with no hybrid prediction and

preprocessing.
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Figure 5.23. Comparison of predicted power consumption for air-quality with GA based predicted

system and parallel hybrid optimization and prediction (with multi-preprocessing)
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Figure 5.24. Comparison of total predicted power consumption with GA based predicted system and

parallel hybrid optimization and prediction (with multi-preprocessing)
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First time the power disturbance arises at time 82hrs. At this time comfort level of hybrid
optimization based proposed system with prediction and multi-preprocessing goes down to
0.970 same as to GA based predicted system with no hybrid prediction and preprocessing.
When second time power disturbance occurs, the comfort index of GA based predicted
system immediately goes down as compared to proposed hybrid optimization based
prediction with multi-preprocessing model. When second time power disturbance arises
proposed parallel hybrid optimization with multi-preprocessing model degraded to 0.996 as
compared to 0.970 of GA based prediction model with no. Similarly in all cases of
degradation the proposed hybrid optimization based predicted with multi-preprocessing
system provides improved comfort index as compared to GA based predicted system where
no preprocessing applied. So whenever there is an environmental disturbance, hybrid
optimization based prediction and multi-preprocessing system provides better comfort index
as compared to its counterpart GA based predicted system.

Figure 5.25, 5.26, 5.27 and 5.28 shows the comparisons of power consumption for parallel
hybrid optimization prediction with single and multi-preprocessing. From the results of
Figure 5.25 it can be observed that in case of power consumption for temperature, parallel
hybrid optimization and prediction based on Kalman filter with multi-preprocessing model
consumed more power as compared to the single preprocessing based system. For
illumination as shown in Figure 5.26, parallel hybrid optimization and prediction with single

preprocessing model consumed more power as compared to multi-preprocessing based
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predicted model. Figure 5.27 shows the results for the air-quality control

Predicted Power Consumption Temperature

—
o oo

_ e e
~ S

[N
o

Temperature Predicted
Power Consumption (KWh)

o N~ B~ o

oM [N
N «©0 o0

Time(hrs)

105 il
113
121
129
137
145
153
161
169
177
185
193
201
209
217
225
233
241
249

Single preprocessing
parallel hybrid optimization
(GA&PSO)
——Multi-preprocessing
parallel hybrid optimization
(GA&PSO)

Figure 5.25. Comparison of predicted power consumption for temperature

preprocessing based predicted systems)

(single and multi-

Predicted Power Consumption Illumination

—_
oo

—_
o

R

—_ s
o N

Illumination Predicted
Power Consumption (KWh)

[ S R =2 -]

1
9
17
25
33
41

Time(hrs)

Single preprocessing
parallel hybrid

optimization (GA & PSO)
——Multi-preprocessing

parallel hybrid
optimization (GA & PSO)

Figure 5.26. Comparison of predicted power consumption for illumination

preprocessing based predicted systems)

(single and multi-

Here we can see that parallel hybrid optimization and prediction model with multi-

preprocessing consumed a little bit more power as compared to its equivalent single

preprocessing based predicted system. Figure 5.28 shows the to

tal predicted power

consumption in case of single and multi-preprocessing based hybrid optimization. The total

predicted power consumption of single preprocessing based on optimization and prediction

161




model consumed less power than its counterpart multi-preprocessing based prediction system.
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Figure 5.27. Comparison of predicted power consumption for air-quality (single and multi-

preprocessing based predicted systems)
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Figure 5.28. Comparison of total predicted power consumption (single and multi-preprocessing based

predicted systems)

5.2.2.1.2. Comparisons of occupants comfort index results

Figure 5.29 shows the results of user comfort index in case of proposed hybrid
optimization based prediction with preprocessing model and GA based prediction system. In

Figure 5.29, it is clear that parallel hybrid optimization based prediction and multi-
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preprocessing model provides better and improved comfort index as compared to GA based
prediction model [3]. Though in parallel hybrid optimization, prediction and multi-
preprocessing model, minimum power is consumed as compare to that of GA based
prediction system, but still proposed model achieved improved and better comfort index as

compared to GA and based predicted system.
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Figure 5.29. Comparison of comfort value/index with GA based predicted system and parallel hybrid

optimization and prediction (with multi-preprocessing)

Figure 5.30 shows the results of user comfort index in case of proposed hybrid
optimization based prediction with multi-preprocessing model and single preprocessing based
prediction system. In Figure 5.30, it is clear that parallel hybrid optimization based prediction
and multi-preprocessing model provides better and improved comfort index as compared to
single preprocessing based prediction model. Although parallel hybrid optimization,
prediction and multi-preprocessing model consumed more power than its counterpart single
preprocessing based optimization and prediction model, but the comfort index it provided is

much better than single preprocessing based optimization and prediction model.
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5.2.2.2. Optimization algorithm based on PSO and GA serial

5.2.2.2.1. Comparisons of power consumption prediction results

Figure 5.31, 5.32, 5.33 and 5.34 shows the comparisons of power consumption. X-axis
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shows the time in hours while Y-axis shows the predicted power consumption in kilowatts,
and comfort index between 0.0 and 1.0 is the minimum and maximum comfort index
respectively. From the results of Figure 5.31 it can be observed that in case of power
consumption for temperature, proposed serial hybrid optimization and prediction based on
Kalman filter and multi-preprocessing model consumed more power as compared to the GA
based system with no hybrid optimization and multi-preprocessing. When environmental
intermission occur, serial hybrid optimization, prediction and multi-preprocessing model

consumed more power as compared to GA based predicted model where no hybrid




optimization and preprocessing involved. For illumination as shown in Figure 5.32, serial
hybrid optimization and prediction with multi-preprocessing model consumed minimum
power as compared to GA based predicted model. Less power consumption is ensured by

controllers using optimized parameters.
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Figure 5.31. Comparison of predicted power consumption for temperature with GA based predicted

system and serial hybrid optimization and prediction (with multi-preprocessing)

Predicted Power Consumption lllumination
18
®%— GA with Prediction
§14
T
£x
;‘5’ s 12 —Multi-preprocessing serial
g'g 10 hybrid optimization (GA &
cg$ PSO)
03
H
€04
g0
3 § 2
=2,
& AONDNEHFDOINLNAOINDMNMEHONDDMNOEHONDNDMNNEHDONNMO
AANMNTITNVNONNNDIDOANANMNITNMOONNDONOOAHNMT I
AT AT AT A A A A A A NNNNNNN
Time(hrs)

Figure 5.32. Comparison of predicted power consumption for illumination with GA based predicted

system and serial hybrid optimization and prediction (with multi-preprocessing)

Figure 5.33 shows the results for the air-quality control. Here we can see that serial hybrid
optimization and prediction model consumed a little bit less power as compared to its

equivalent GA based predicted system. Figure 5.34 shows the total predicted power
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consumption in case of proposed serial hybrid optimization model and GA based predicted
model with no hybrid prediction and preprocessing involved. The total predicted power
consumption of serial hybrid optimization and prediction model with multi-preprocessing
consumed a little bit more but almost same power as compared to its counterpart GA based

prediction system with no hybrid prediction and preprocessing.
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Figure 5.33. Comparison of predicted power consumption for air-quality with GA based predicted

system and serial hybrid optimization and prediction (with multi-preprocessing)

The power disturbance at first time arises at 82hrs. At this time comfort level of hybrid
optimization based proposed system with prediction and multi-preprocessing goes down
t00.970 same as to GA based predicted system with no hybrid prediction and preprocessing.
When second time power disturbance occurs, the comfort index of GA based predicted
system immediately goes down as compared to proposed hybrid optimization based
prediction and multi-preprocessing model. When second time power disturbance arises
proposed serial hybrid optimization model degraded to 0.984 as compared to 0.970 of GA

based prediction model with no preprocessing. Similarly in all cases of degradation the
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proposed hybrid optimization based predicted with multi-preprocessing system provides
improved comfort index as compared to GA based predicted system where no multi-
preprocessing applied. So whenever there is an environmental disturbance, hybrid
optimization based prediction and multi-preprocessing system provides better comfort index

as compared to its counterpart GA based predicted system.

Total Predicted Power Consumption

S
o

------- GA with Prediction

w W
(=T

—Multi-preprocessing serial
hybrid optimization (GA &
PSO)

e S I
U o v

o

Total Predicted
Power Consumption (KWh)

(=

NONEONMNEHOINM AN M
ONDNOOOAANNMITOONONON
L B I I B O I B B O I B

201
209
217
225
233
241
249

Time(hrs)

Figure 5.34. Comparison of total predicted power consumption with GA based predicted system and

parallel hybrid optimization and prediction (with multi-preprocessing)

Figure 5.35, 5.36, 5.37 and 5.38 shows the comparisons of power consumption for serial
hybrid optimization prediction with single and multi-preprocessing. From the results of
Figure 5.35 it can be observed that in case of power consumption for temperature, serial
hybrid optimization and prediction with multi-preprocessing model consumed more power as
compared to the single preprocessing based system. For illumination as shown in Figure 5.36,
serial hybrid optimization and prediction with single preprocessing model consumed less
power as compared to multi-preprocessing based predicted model. Figure 5.37 shows the

results for the air-quality control. Here we can see that serial hybrid optimization and
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prediction model with multi-preprocessing consumed almost similar power as compared to its
equivalent single preprocessing based predicted system. Figure 5.38 shows the total predicted
power consumption in case of single and multi-preprocessing based hybrid optimization. The
total predicted power consumption of single preprocessing based on optimization and
prediction model consumed less power than its counterpart multi-preprocessing based

prediction system.
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Figure 5.35. Comparison of predicted power consumption for temperature with GA based predicted

system and serial hybrid optimization and prediction (with multi-preprocessing)

Predicted Power Consumption Illumination
18
1 e Single preprocessing serial
< W hybrid optimization (GA &
o314
£, ] PS0)
% s \ —Multi-preprocessing serial
g 2 10 \ hybrid optimization (GA &
cg 8 PSO)
035
S0 b
w C
£38 14
Y
292
=2,
= AONUVMNOEHONDNOEHONDDNEHOINDMNMAEHONONDNEHDONLMAAQ
ANMNMITITITNVNONDNDDOANANMTNOONNIOOAENMT I
A AT A AT A A AT A AT A NNNNNNN
Time(hrs)

Figure 5.36. Comparison of predicted power consumption for illumination with GA based predicted

system and serial hybrid optimization and prediction (with multi-preprocessing)
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Figure 5.37. Comparison of predicted power consumption for air-quality with GA based predicted

system and serial hybrid optimization and prediction (with multi-preprocessing)
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Figure 5.38. Comparison of total predicted power consumption with GA based predicted system and

parallel hybrid optimization and prediction (with multi-preprocessing)

5.2.2.2.2. Comparisons of occupants comfort index results

Figure 5.39 shows the results of user comfort index in case of proposed hybrid
optimization based prediction with multi-preprocessing model and GA based prediction
system. In Figure 5.39, it is clear that parallel hybrid optimization based prediction and multi-

preprocessing model provides better and improved comfort index as compared to GA based
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prediction model [3]. Though in parallel hybrid optimization, prediction and multi-
preprocessing model same power is consumed as compare to that of GA based prediction
system, but still proposed model achieved improved and better comfort index as compared to
GA and based predicted system. So the drastic factor here is that proposed hybrid
optimization and prediction with multi-preprocessing system provides better comfort index

with consumption almost same power as that of GA based prediction system.

Occupant's Comfort

------- GA with Prediction

o
(Yo}
(o)

o
[V}
oo

——Multi-preprocessing serial
hybrid optimization (GA &
PSO)

Comfort Value
o o
(Vo) (Vo)
(o2} ~

o
(Yo}
(9]

AT NOMOIOITNWMOAITNOM
A NTNDONOODO A MIT NN 0
L I I B |

196
209
222
235
248

Time(hrs)

Figure 5.39. Comparison of comfort value/index with GA based predicted system and serial hybrid

optimization and prediction (with multi-preprocessing)

Figure 5.40 shows the results of user comfort index in case of proposed hybrid serial
optimization based prediction with multi-preprocessing model and single preprocessing based
prediction system. In Figure 5.40, it is clear that serial hybrid optimization based prediction
and multi-preprocessing model provides better and improved comfort index as compared to
single preprocessing based prediction model. Although serial hybrid optimization, prediction
and multi-preprocessing model consumed more power than its counterpart single
preprocessing based optimization and prediction model, but the comfort index it provided is
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much better than single preprocessing based optimization and prediction model.
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Figure 5.40. Comparison of comfort value/index (GA and PSO based serial hybrid energy optimization

with single and multi-preprocessing systems)

5.2.2.3. Optimization algorithm based on PSO and MIGA

serial

5.2.2.3.1. Comparisons of power consumption prediction results

Figure 5.41, 5.42, 5.43 and 5.44 shows the comparisons of power consumption. X-axis
shows the time in hours while Y-axis shows the predicted power consumption in kilowatts,
and comfort index between 0.0 and 1.0 is the minimum and maximum comfort index
respectively. From the results of Figure 5.41 it can be observed that in case of power
consumption for temperature, proposed serial hybrid optimization and hybrid prediction with
multi-preprocessing model consumed less power as compared to the GA based system with
no hybrid optimization and multi-preprocessing. When environmental intermission occur,

serial hybrid optimization, hybrid prediction and multi-preprocessing model consumed less
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power as compared to GA based predicted model where no hybrid optimization and
preprocessing involved. Less power consumption is ensured by controllers using optimized
parameters. For illumination as shown in Figure 5.42, serial hybrid optimization and
prediction with multi-preprocessing/ model consumed minimum power as compared to GA

based predicted model.
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Figure 5.41. Comparison of predicted power consumption for temperature with GA based predicted

system and serial hybrid optimization and prediction (with multi-preprocessing)
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Figure 5.42. Comparison of predicted power consumption for illumination with GA based predicted

system and serial hybrid optimization and prediction (with multi-preprocessing)

Figure 5.43 shows the results for the air-quality control. Here we can see that serial hybrid
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optimization and hybrid prediction model consumed little power as compared to its equivalent
GA based predicted system. Figure 5.44 shows the total predicted power consumption in case
of proposed serial hybrid optimization model and GA based predicted model with no hybrid
prediction and multi-preprocessing involved. The total predicted power consumption of serial
hybrid optimization and prediction model with multi-preprocessing consumed less power than

its counterpart GA based prediction system with no hybrid prediction and preprocessing.
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Figure 5.43. Comparison of predicted power consumption for air-quality with GA based predicted

system and serial hybrid optimization and prediction (with multi-preprocessing)

The power disturbance at first time arises at 82hrs. At this time comfort level of hybrid
optimization based proposed system with prediction and preprocessing/post-processing goes
down to 0.9870 same as to GA based predicted system with no hybrid prediction and multi-
preprocessing. When second time power disturbance occurs, the comfort index of GA based
predicted system immediately goes down as compared to proposed hybrid optimization based
prediction and multi-preprocessing model. When second time power disturbance occurs

proposed serial hybrid optimization model degraded to 0.984 as compared to 0.970 of GA
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based prediction model with no multi-preprocessing. Similarly in all cases of degradation the
proposed hybrid optimization based predicted with multi-preprocessing system provides
improved comfort index as compared to GA based predicted system where no preprocessing
applied. So whenever there is an environmental disturbance, hybrid optimization based
prediction and multi-preprocessing system provides better comfort index as compared to its

counterpart GA based predicted system.
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Figure 5.44. Comparison of total predicted power consumption with GA based predicted system and

serial hybrid optimization and prediction (with multi-preprocessing)

Figure 5.45, 5.46, 5.47 and 5.48 shows the comparisons of power consumption for serial
hybrid optimization based on MIGA and PSO and prediction with single and multi-
preprocessing. From the results of Figure 5.45 it can be observed that in case of power
consumption for temperature, serial hybrid optimization and prediction with multi-
preprocessing model consumed more power as compared to the single preprocessing based
system. For illumination as shown in Figure 5.46, serial hybrid optimization and prediction

with single preprocessing model consumed less power as compared to multi-preprocessing
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based predicted model.
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Figure 5.45. Comparison of predicted power consumption for temperature with GA based predicted

system and serial hybrid optimization and prediction (with multi-preprocessing)
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Figure 5.46. Comparison of predicted power consumption for illumination with GA based predicted

system and serial hybrid optimization and prediction (with multi-preprocessing)

Figure 5.47 shows the results for the air-quality control. Here we can see that serial hybrid
optimization and prediction model with multi-preprocessing consumed more power as
compared to its equivalent single preprocessing based predicted system. Figure 5.48 shows
the total predicted power consumption in case of single and multi-preprocessing based hybrid

optimization. The total predicted power consumption of single preprocessing based on
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optimization and prediction model consumed less power than its counterpart multi-

preprocessing based prediction system.
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Figure 5.47. Comparison of predicted power consumption for air-quality with GA based predicted

system and serial hybrid optimization and prediction (with multi-preprocessing)
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Figure 5.48. Comparison of total predicted power consumption with GA based predicted system and

serial hybrid optimization and prediction (with multi-preprocessing)

5.2.2.3.2. Comparisons of occupants comfort index results

Figure 5.49 shows the results of user comfort index in case of proposed hybrid

optimization based prediction with multi-preprocessing model and GA based prediction
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system. In Figure 5.49, it is clear that serial hybrid optimization based prediction and multi-
preprocessing model provides better and improved comfort index as compared to GA based
prediction model [3]. Although in serial hybrid optimization, hybrid prediction and multi-
preprocessing model, less power is consumed as compare to that of GA based prediction
system, but still proposed model achieved improved and better comfort index as compared to

GA and based predicted system.
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Figure 5.49. Comparison of comfort value/index with GA based predicted system and serial hybrid

optimization and prediction (with multi-preprocessing)

Figure 5.50 shows the results of user comfort index in case of proposed hybrid serial
optimization based on prediction with multi-preprocessing model and single preprocessing
based prediction system. In Figure 5.50, it is clear that serial hybrid optimization based
prediction and multi-preprocessing model provides better and improved comfort index as
compared to single preprocessing based prediction model. Although serial hybrid
optimization, prediction and multi-preprocessing model consumed more power than its
counterpart single preprocessing based optimization and prediction model, but the comfort

index it provided is much better than single preprocessing based optimization and prediction
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model.
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Figure 5.50. Comparison of comfort value/index (MIGA and PSO based serial hybrid energy

optimization with single and multi-preprocessing systems)

Figure 5.51 shows the overall comparisons of power consumption and comfort index using
basic model (GA based prediction and PSO based prediction models), model 1 (Single pre-
processing hybrid optimization and prediction models) and model 2 (Multi-preprocessing
hybrid optimization and prediction models). Step by step comparison is described below.

1. GA based prediction model consumed less power as compared to PSO based
prediction model.

2. GA based prediction model provides better comfort index as compared to PSO
based prediction model.

3. Single preprocessing hybrid optimization and prediction models consumed less
power as compared GA based prediction model and PSO based prediction model.

4. Single preprocessing hybrid optimization provides better comfort index as
compared to GA based prediction model and PSO based prediction model.

5. Multi-preprocessing hybrid optimization and prediction models consumed less
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power as compared to GA based prediction model and PSO based prediction.

6. Multi-preprocessing hybrid optimization and prediction models provides better
comfort index as compared to GA based and PSO based prediction models.

7. Although multi-preprocessing hybrid optimization and prediction models
consumed more power as compared to single preprocessing hybrid optimization
and prediction models, but it provides better comfort index than single
preprocessing hybrid optimization and prediction models.

Predicted Power Consumption
Model Scenario Algorithms Temp |Ilt inati |Air-qua|ity Total
Basic Model PSO PSO&K 6010802 1707.274675 7387475591{3047.102434 [Power consumption reduction| Comfort Index Improvement
. Compared to | Comparedto | Comparedto |Compared to
Bchinds BasicModel | Basic Model | BasicModel | Basic Model
Basic Model GA GA&K 5815458] 1704.905275) 739.7908591/3026 241934 | PSO GA PSO GA
Model 1Scenario 1 Parallal |GAin PSOand K 5185121 1665.39575 7383986591 2922307334 Vs fes
MODEL1 |Model 1Scenario2Serial  [PSO& GAandK 5324037 1641.953175 739.8774591] 291434334 Ves fes
Model 15cenario3Serial  [PSO&MIGAand ARIMA &K | 507.9625) 1599.290075) 705.5110591) 2812.763634]  Ves Yes
Model 2Scenario 1 Parallal |GAin PSO and K 5514128 1650.428575 742.5160591] 2953.357434]  Ves fes
MODEL 2
Model 2Scenario2Serial  [PSO&GAandK 610.279) 1679.486675) 738.3256591) 3028.091834

Model 2Scenario3Serial  [PSO&MIGAand ARIMA &K | 572.0822) 1667.389775) 729.4107591) 2%68.882734  Ves Yes

Figure 5.51. Overall comparison of power consumption and comfort index
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6. Conclusions

In this work, we propose hybrid energy optimization methodologies for users comfort
index and energy saving in building environment. Our proposed techniques address both
energy savings and occupants comfort index simultaneously. Proposed hybrid techniques
integrates in its fitness function the indoor occupants’ comfort index and the corresponding
energy consumption. Hybrid energy optimization techniques targets to satisfy the occupant’s
requirements along with minimal energy consumption. A range of user set parameters
(temperature, illumination, air-quality) which constitute occupants’ comfort index in building
are selected and then optimized using proposed hybrid energy optimization algorithms
according to the user’s comfort index.

The error difference of optimal parameters and real environmental parameters is input to
the fuzzy controller. The output of the fuzzy controller is the minimum required power
according to the user’s comfort index. Coordinator agent takes required power (fuzzy
controller output) and optimal parameters from the hybrid optimization algorithms as input.
The coordinator agent adjusts the input power of the building on the basis of available power,
required power and user comfort index. The adjusted power is compare with the required
power to get the actual consume power. The consumed power is input to the Kalman filter and
ARIMA prediction algorithms to predict consume power. The predicted consume power is
used by the actuators.
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Our proposed single and multi-preprocessing based optimization and prediction algorithms
consumed less power as compared to basic models. Multi-preprocessing based optimization
and prediction models provides much better comfort index as compared to single
preprocessing models, but consumed more power than single preprocessing models. Our
proposed hybrid energy optimization based on prediction models are simple, user friendly and
maintains better user’s comfort index and minimized the power consumption without

compromising the comfort index as compare to previous works [1-3, 23-32].
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