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Abstract

Intelligent optimized energy management and prediction model in residential buildings 

received attraction of the researchers in last couple of years. Various techniques and models 

have been proposed in the literature for optimized energy management and prediction, but the 

trade-off between occupant comfort index and energy consumption is still a great challenge to 

the research community. Previously we have proposed power consumption optimization and 

prediction models based on particle swarm optimization (PSO) and genetic algorithm (GA). 

Our proposed models accomplished good performance results up to some extent, but still 

there is room for more improvements. In this thesis we proposed hybrid optimization of 

energy management and power control models based on preprocessing mechanisms for 

occupants comfort index, energy saving and energy consumption. The focus of our proposed 

hybrid optimized and prediction models is to increase occupant’s comfort index and reduce 

energy consumption using hybrid optimization, power prediction and preprocessing of power 

consumption data. The proposed single and multi-preprocessing hybrid optimization based 

power control models provides energy efficient environment by reducing power consumption 

and improving occupant’s comfort index as compared to GA and PSO based power prediction 

models. 

Our proposed hybrid energy optimization based prediction models are simple and 

maintains better user’s comfort index and minimized the energy consumption without 

compromising the occupants comfort index. User set parameters plays a vital role in deciding 

the occupants comfort index. In [23, 26-30], user is not involved to determine the occupants 



xxiii

comfort index, while our proposed models consider user set parameters to decide the 

occupants comfort index. So our proposed models are user friendly. In [23, 31, 32], the energy 

efficiency is not addressed, while our proposed models gives attention to energy savings and 

our models are energy efficient by reducing energy consumption. In [29, 30], the occupants 

comfort index is not considered while our proposed approach addressed occupants comfort 

index. So the bottom line is, our proposed hybrid energy optimized models based on 

prediction and preprocessing addressed energy efficiency, occupants comfort index and user 

set parameters, while other approaches mentioned above either provides energy efficiency or 

occupants comfort index without considering user set parameters.
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1. Introduction

1.1. Research background

Energy consumption management and user’s comfort index are two foremost design 

objectives in forthcoming energy efficient building models. The fundamental reason is that, 

power consumption increases day by day while its sources of generations are limited and 

expensive as well. On the other side users wants is to consume minimum power without 

compromising the occupants comfort index. This prerequisite of minimum power 

consumption without compromising users comfort index is an interesting problem to the 

research community to cope with. This leads to the trade-off between energy consumption 

and user comfort index [1-4]. To address this trade-off, an intelligent and optimized control 

model is needed to maintain both energy consumption and occupants’ comfort index.

1.1.1. What is Energy management system (EMS)?

An energy management system (EMS) is a computer-aided tool used by machinists of 

electric smart grids to monitor, control, optimize and predict the performance of the 

generation and/or transmission system. EMS is a vital module of the smart grid to insure 

smooth operation of the electricity and smart grid.
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1.1.2. Why we need energy efficient system?

An energy efficient system is needed to avoid extra consumption of energy. The basic aim 

of energy efficient systems is to satisfy occupants comfort index without consumption of 

extra energy. This will help in smooth operation of the smart grid and it will also put a 

positive impact on the energy generation companies.

1.2. Proposed idea

In this section proposed idea of hybrid energy optimization methodologies for users 

comfort index and energy saving is described. Proposed techniques address both energy 

savings and occupants comfort index simultaneously. Proposed hybrid techniques integrates 

in its fitness function the indoor occupants’ comfort index and the corresponding energy 

consumption. The proposed hybrid energy optimization techniques also targets to satisfy the 

occupant’s requirement along with minimal energy consumption. A range of user set 

parameters (temperature, illumination, air-quality) which constitute occupants’ comfort index

[5] in building are selected and then optimized using proposed hybrid energy optimization 

algorithms according to the user’s comfort index.

The error difference of optimal parameters and real environmental parameters is input to 

the fuzzy controller. The output of the fuzzy controller is the minimum required power 

according to the user’s comfort index. Coordinator agent takes as input required power and 



3

optimal parameters. The coordinator agent adjusts the input power of the building on the basis 

of available power, required power and user comfort index. The adjusted power is compare 

with the required power to get the actual consume power. The consumed power is input to the 

Kalman filter and ARIMA prediction algorithms to predict consume power. The predicted 

consume power is used by the actuators.

Proposed hybrid energy optimization based prediction models are simple and maintains 

better user’s comfort index, and minimized the energy consumption without compromising 

the occupants comfort index. User set parameters plays a vital role in deciding the occupants 

comfort index. In [23, 26-30], user is not involved to determine the occupants comfort index 

while proposed models are user friendly and consider user set parameters to decide the 

occupants comfort index. In [23, 31, 32], the energy efficiency is not addressed while 

proposed models give attention to energy efficiency by reducing energy consumption. In [29, 

30], the occupants comfort index is not considered while proposed approach addressed 

occupants comfort index. So the bottom line is, proposed hybrid energy optimization models 

based on prediction and preprocessing addressed energy efficiency, occupants comfort index 

and user set parameters while other approaches mentioned above either provides energy 

efficiency or occupants comfort index without considering user set parameters.

Major components of proposed models included sensors data; single preprocessing, multi-

preprocessing, hybrid energy optimization, fuzzy logic controllers, coordinator, comparator, 

energy consumption predictions and post-processing. Figure 1.1 shows the proposed hybrid 
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energy optimization and prediction simulated model. 

Figure 1.1. Proposed hybrid energy optimization and prediction simulation model

Before discussing each component of the proposed hybrid energy optimization and 

prediction models we first discuss conceptual model and building model.

1.2.1 Conceptual model

In this section we are going to described conceptual model of the energy consumption 

reduction and increase of occupants comfort index. Figure 1.2 shows the conceptual 
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configuration of the building energy management system, where the comfort index of the user 

increases and consumed power decreases. Although these two concepts are opposite to each 

other, but using optimization we maintained both parameters simultaneously. Temperature, 

illumination and air-quality of the building calculated using sensor devices. Illumination is the 

visual display (subjective) inside the building and air-quality is the CO2 emission inside the 

building. CO2 concentration is used as an index to measure the air-quality in the building 

environment.

Figure 1.2. Conceptual model

1.2.2. Building model

In this section we presented the building model Figure 1.3.  The building model is 

classified into different comfortable zones. Each comfortable zone named room space1 and 
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room space2 up-to room space n.  Each room space installed sensors and actuators. Installed 

sensors are temperature sensor, illumination sensor and air-quality sensor. Each of these

sensors is responsible to collect respective environmental temperature, illumination and air-

quality data for each individual room space.  Four actuators are considered for each room 

space in the building. Building actuators are the devices which actually use the power inside 

the building. The actuators considered here are AC (Air-condition) used for cooling the room 

space and Boiler used for heating room space, and light for lighting system (visual comfort) 

and fan for providing air-quality comfort. Each of these actuators receives message 

information to turn on/off during different hours of the day.

Room space 1

Sensors

Temperature

Illumination

Air-quality

Actuators

Air-condition

Boiler

Light

Fan

Room space 2

Room space ...

Room space n

Figure 1.3. Building model
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1.2.3. Sensor data

The sensors data considered to be included in proposed models are Temperature, 

Illumination and Air-quality. These three sensors data are selected to satisfy users comfort 

index with respect to the thermal, visual and air-quality comfort. These three parameters 

jointly defined the occupants comfort index.

1.2.4. Single preprocessing

Three out of six proposed models are based on single preprocessing mechanisms. In single 

preprocessing only sensing data are smooth. The sensing data is also checked against the 

noise of outlier, zero cell data, standard form and normalization. If the data is found to be 

noisy then simply removes the outlier’s data, zero cell data and bring the data into the 

standard form. When the data becomes processed and in the standard form, it is then input to 

the optimization component.

1.2.5. Multi-preprocessing

Other three proposed models are based on multi-preprocessing mechanisms. In multi-

preprocessing each major component is preprocessed using smoothing. The sensing data is 

also checked against the noise of outlier, zero cell data, standard form and normalization. If 

the data is found to be noisy then simply removes the outlier’s data, zero cell data and bring 
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the data into a standard form. When the sensing data becomes processed and in the standard 

form, it is then input to the optimization component. After optimization smoothing is again 

applied to smooth the optimal parameters but this time conditional smoothing is applied. 

Conditional smoothing means, if the parameters to be smooth results in degrading occupants 

comfort index then those parameters are not candidates for smoothing. Otherwise the 

parameters are smooth when it results in increase of occupants comfort index. After 

smoothing optimal parameters, the updated optimal parameters results in improved occupants 

comfort index. The error difference between updated optimal parameters and smooth 

environmental data is input to the fuzzy controllers.

1.2.6. Comfort index

In residential buildings, the important parameters which manage occupant’s quality of 

lives are thermal comfort, visual comfort and air-quality [5]. Temperature identifies the 

thermal comfort of the occupant’s in a residential building. The heating or cooling system is 

used to preserve the temperature in building’s comfortable zone. The illumination level is 

used to identify the visual comfort of the occupants in the residential building [6]. The 

electrical lighting system is used to accomplish the visual comfort. CO2 concentration is used 

as an index to measure the air-quality in the building. Ventilation system is utilized to keep 

low CO2 concentration [7]. So the combination of these three parameters serves as occupant’s 

comfort index in the residential building. We considered these three parameters to assess the 
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occupant’s comfort index and energy savings in residential buildings.

We have calculated comfort index using Eq. (1.1). 

Comfort = β1 [1-(errT/Tset)
2] + β2 [1-(errL/Lset)

2] + β3 [1-(errA/Aset)
2]             (1.1) 

Where “Comfort” is the objective function and the aim is to maximize this function. It 

denotes the overall comfort level (temperature, illumination and air-quality) of the user. The 

range of comfort index is between [0, 1]. The comfort index varies between ‘0’ and ‘1’. ‘0’ 

means lowest or minimum comfort index and ‘1’ means highest or maximum comfort index. 

β1, β2, β3 are the user defined factors which solve any possible conflict between the three 

comfort factors (temperature, illumination and air-quality). At any time β1+β2+β3 = 1. In 

(Eq. 1.1) eT is the error difference between optimal parameter of hybrid energy optimization 

(temperature in this case) and actual sensor temperature. The minimum error difference, the 

maximum will be the comfort index. So we can say there is an inverse relationship between 

comfort index and error difference of the parameters (temperature, illumination and air-

quality). As the error difference is the input to the fuzzy controller which confirms, the 

minimum error difference, the minimum will be the consumed power. 

So in this aspect comfort index also has inverse relationship with power consumption. The 

minimum consume power, the highest will be the comfort index. So the comfort index is 

depended on the error difference for each of the temperature, illumination and air-quality 

parameters. If the error difference for each of the parameters minimize, the maximum will be 

the comfort index and vice versa. This fulfills our basic design objectives to minimize the 
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power consumption and maximize the comfort index. 

errL is the error difference between optimal parameter of hybrid energy optimization 

(illumination in this case) and actual sensor illumination. errA is the error difference between 

optimal parameter of hybrid energy optimization (air-quality in this case) and actual sensor 

air-quality. Tset, Lset, Aset are the user set parameters of temperature, illumination and air-

quality.

1.2.7. Hybrid energy optimization

Based on serial and parallel hybrid energy optimization algorithms, three hybrid energy 

optimization algorithms in two different models (single preprocessing and multi-

preprocessing) are described in this section. First hybrid energy optimization algorithm is 

based on PSO and GA. This hybrid energy optimization is the parallel hybrid energy 

optimization algorithm. This algorithm is applied in both single preprocessing and multi-

preprocessing model. In single preprocessing hybrid parallel energy optimization, PSO and 

GA optimizes user set parameters. When both GA and PSO finished optimization, then both 

the optimization solutions PSO and GA are combined to get the best solution. After getting 

best solutions, the next iteration population included individuals of both PSO and GA. The 

process is continued until we get optimal solutions. The optimal solution of hybrid parallel 

energy optimization based on PSO and GA is used to calculate the occupant’s comfort index. 

The error difference between these optimal parameters and environmental parameters is input 
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to the fuzzy controllers. 

In multi-preprocessing hybrid parallel energy optimization, PSO and GA optimizes user 

set parameters. When both GA and PSO finished optimization then both the optimization 

solutions are combined to get the best solution from both PSO and GA. After getting best 

solution, the next iteration population included individuals of both PSO and GA. The process 

is continued until we get optimal solution. The optimal solution of hybrid parallel energy 

optimization based on PSO and GA is used to calculate the occupant’s comfort index. The 

optimal parameters are preprocessed using smoothing to smooth the optimal parameters and 

improve the occupants comfort index. After smoothing, the optimal parameters are updated. 

The comfort index is recalculated based on the updated optimal parameters to get the 

improved occupants comfort index. The updated optimal parameters are then used along with 

environmental parameters to calculate the error difference. The resultant error difference is 

then input to the fuzzy controllers.  

Second hybrid energy optimization algorithm is based on PSO and GA. This hybrid energy 

optimization is the serial hybrid energy optimization algorithm. This algorithm is applied in 

both single preprocessing and multi-preprocessing models. 

In single preprocessing hybrid serial energy optimization, PSO optimizes user set 

parameters. When PSO finished optimization then GA algorithm starts optimization of user 

set parameters with respect to the environmental parameters along with optimal parameters of 

PSO to get the best solution. After getting best solution, the next iteration population for GA 
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included individuals of its own and optimal parameters of PSO. The process is continued until 

we get optimal solution. The optimal solution of hybrid serial energy optimization based on 

PSO and GA is used to calculate the occupant’s comfort index. The error difference between 

these optimal parameters and environmental parameters is input to the fuzzy controllers. 

In multi-preprocessing hybrid serial energy optimization, PSO optimizes user set 

parameters. When PSO finished optimization then GA algorithm starts optimization of user 

set parameters with respect to the environmental parameters along with optimal parameters of 

PSO to get the best solution. After getting best solution, the next iteration population for GA 

contains individuals of its own and optimal parameters of PSO. The process is continued until 

we get optimal solution. The optimal solution of hybrid serial energy optimization based on 

PSO and GA is used to calculate the occupant’s comfort index.

These optimal parameters are preprocessed using smoothing to smooth the optimal 

parameters and improve the occupants comfort index. After smoothing, the optimal 

parameters are updated. The comfort index is recalculated based on the updated optimal 

parameters to get the improved comfort index. The updated optimal parameters are then used 

along with environmental parameters to calculate the error difference. The resultant error 

difference is then input to the fuzzy controllers.

Third hybrid energy optimization algorithm is based on PSO and MIGA. This hybrid 

energy optimization is the serial hybrid energy optimization algorithm. This algorithm is 

applied in both single preprocessing and multi-preprocessing model. In single preprocessing 
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hybrid serial energy optimization, PSO optimizes user set parameters. When PSO finished 

optimization then MIGA algorithm starts optimization of user set parameters with respect to 

the environmental parameters along with optimal parameters of PSO to get the best solution. 

After getting best solution, the next iteration population for MIGA contains individuals of its

own and optimal parameters of PSO. The process is continued until we get optimal solution. 

The optimal solution of hybrid serial energy optimization based on PSO and GA is used to 

calculate the occupant’s comfort index. The error difference between these optimal 

parameters and environmental parameters is input to the fuzzy controllers. 

In multi-preprocessing hybrid serial energy optimization, PSO optimizes user set 

parameters. When PSO finished optimization then MIGA algorithm starts optimization of user 

set parameters with respect to the environmental parameters along with optimal parameters of 

PSO to get the best solution of MIGA. After getting best solution, the next iteration 

population for MIGA contains individuals of its own and optimal parameters of PSO. The 

process is continued until we get optimal solution. The optimal solution of hybrid serial 

energy optimization based on PSO and MIGA is used to calculate the occupant’s comfort 

index.

These optimal parameters are preprocessed using smoothing to smooth the optimal 

parameters and improve the occupants comfort index. After smoothing, the optimal 

parameters are updated. The comfort index is recalculated based on the updated optimal 

parameters to get the improved comfort index. The updated optimal parameters are then used 
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along with environmental parameters to calculate the error difference. The resultant error 

difference is then input to the fuzzy controllers.

1.2.7.1. Hierarchy of energy optimization and prediction 

algorithms

In this section we are going to introduce the conceptual and detailed hierarchy of the 

optimization algorithms applied to energy consumption optimization. Figure 1.4 shows the 

conceptual hierarchy of the proposed hybrid energy optimization algorithms. The basic 

optimization algorithms applied to energy optimization is divided into two types of 

optimization models. One is single energy optimization and prediction models and second is 

hybrid optimization and prediction models. As the names describes, the former one uses 

single optimization technique to optimize the user set parameters while the latter one uses 

combination of two techniques to form a hybrid optimization algorithms. The latter one is 

further divided into two types of optimization and prediction models. One is single 

preprocessing optimization and prediction models and second one is multi-preprocessing 

optimization and prediction models. 

The earlier one uses preprocessing of the environmental data while second one uses 

preprocessing at multiple stages in the model i.e. before each of optimization, fuzzy control 

and prediction components. Similarly post-processing is applied only at the end of the single 

preprocessing optimization and prediction models while for the multiple preprocessing 
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optimization and prediction models it is applied after each stage of the model. Preprocessing 

involves smoothing of the data while post-processing involves analysis, results 

communication with the users and visualization of the results for each part (Optimization, 

Fuzzy control and Prediction) of the model.

Figure 1.4. Conceptual hierarchy of optimization algorithms

Figure 1.5 shows the detailed hierarchy of the proposed hybrid energy optimization 

algorithms. In single energy optimization model based on prediction, two kinds of 

optimization algorithms have been used. PSO based optimization and GA based optimization 

of parameters. Proposed hybrid energy optimization is divided into two parts, single 

preprocessing and multi-preprocessing. Single preprocessing optimization models use three 

scenarios of optimizations. One is (PSO and GA based parallel hybrid optimization), second 

is (PSO and GA based serial hybrid optimization) and third is (PSO and MIGA based serial 

hybrid optimization). 
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In PSO and GA based parallel hybrid optimization, initially PSO particle’s positions and 

velocities along with GA individuals is populated. The size of initial population is 100. In the 

next step, the particles and individuals are evaluated against the fitness function defined in 

(Eq. 1.1). In the next step, particles local best fitness and local best position is defined. 

Individuals are selected for recombination based on the rank based selection method. In the 

next step, global best fitness is initialized with local best fitness. In the next step, particles 

position and velocities are updated using (Eq. 3.1 and Eq. 3.2). Crossover is performed for the 

individuals to get create offspring’s. In the next step, fitness of particles and individuals is 

evaluated using (Eq. 1.1). In the next step, a mutation criterion is checked and if it met then 

mutation is performed by creating a random individual. If the mutation criterion does not met 

then combined updated particles and updated individuals to select the best solution. If the 

current best fitness is bad than the combined fitness, then update particles position and 

velocities along with creation of off-springs using crossover. If this is not the case and current 

fitness is best than the global fitness then assigned current best to the global best fitness. In 

the next step if the stopping criterion met then stop the evaluation of the algorithm and we get 

optimal solution otherwise update particles position and velocities along with creation of off-

springs using crossover until stopping criterion is met.

In PSO and GA based serial hybrid optimization, initially GA individuals are randomly 

populated. The size of initial population is 100. In the next step, individual from initial 

population of GA and PSO optimal solutions is selected based on the minimum error 
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difference against the environmental parameters. In the next step, individuals are evaluated 

against the fitness function defined in (Eq. 1.1). In the next step, individuals are selected for 

recombination based on the rank based selection method. 

Figure 1.5. Detailed hierarchy of optimization algorithms

In the next step, crossover is performed for the individuals to create offspring’s. In the next 

step, individuals are evaluated using (Eq. 1.1). In the next step, a mutation criterion is 

checked and if it met then mutation is performed by creating a random individual. If mutation 
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criterion is met then perform mutation by creating a random individual otherwise check 

stopping criterion. If stopping criterion arises then stop evaluation of algorithm and we will 

get optimal solution, otherwise create off-springs using crossover until stopping criterion is 

met. 

PSO and MIGA based serial hybrid optimization; initially GA individuals are randomly 

populated. The size of initial population is 100. In the next step, individual from initial 

population of MIGA, and PSO optimal solutions is selected based on the minimum error 

difference against the environmental parameters.

In the next step, the population is divided into two islands. In the next step, individuals of 

both islands are evaluated against the fitness function defined in (Eq. 1.1). In the next step, 

individuals from each island are selected for recombination based on the rank based selection 

method. In the next step, crossover is performed for the individuals of each island to create 

offspring’s. In the next step, individuals of each island are evaluated using (Eq. 1.1). In the 

next step, migration and mutation criterion is checked and if it met then migrations and 

mutation is performed by migrating individuals between the islands and randomly creating 

individual respectively. If migration and mutation criterion does not is met then check 

stopping criterion. If stopping criterion arises then stop evaluation of algorithm and we will 

get optimal solution, otherwise create off-springs using crossover until stopping criterion is 

met.
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1.2.7.2. Algorithms complexity

Most evolutionary algorithms (EA) have, at each iteration, a complexity of O(n*p + 

Cof*p), where n is the dimension of the problem and p is the population size and Cof is the 

cost of the objective function, CM is the crossover and mutation O(CM), S is the Selection of 

parents O(S), PV is the particle and velocities updates O(PV), U is the update of optimal 

parameters and comfort index (T, L, A). The complexity of objective functions are of O(n). 

Furthermore, EA usually perform FEs/p iterations, where FEs is the maximum amount of 

function evaluations allowed. Thus, the complexity cost becomes O (n*FEs + Cof*FEs). 

Once again, the second term tends to determine the time complexity and this complexity is 

determined by the cost of evaluating the objective function and the amount of evaluations we 

perform. That’s why in EA, the quality of an algorithm is frequently measured by the amount 

of evaluations it performs. Eq (1.2 to 1.11) shows the complexities of each of the model 

algorithm.

Where n = 3, FEs = 1, Cof = 9, p = 100, CM = PV = 100 * 3, S = O (p*0.9) = 100 * 0.9 = 

90 and U = Update optimal parameters = 3, (T, L, A) and update comfort (T, L, A) = 3

1. PSO based model complexity/Algorithm 1 

O (n*FEs + Cof*Fes + PV)             (1.2)

= 3 * 1 + 9 * 1 + 100 * 3 = 312

2. GA based model complexity/Algorithm 2
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O (n*FEs + Cof*FEs + CM + S)             (1.3)

= 3 * 1 + 9 * 1 + 100 * 3 + 90 = 402

3. PSO and GA based single preprocessing parallel based algorithm complexity 

O (n*FEs + Cof*FEs + PV + CM + S)             (1.4)

= 3 * 1 + 9 * 1 + 100 * 3 + 100 * 3 + 90 = 702

4. PSO and GA based single preprocessing serial algorithm complexity 

O ((n*FEs + Cof*FEs + PV) + (n*FEs + Cof*FEs + CM + S))              (1.5)

= 3 * 1 + 9 * 1 + 100 * 3 + 3 * 1 + 9 * 1 + 100 * 3 + 90 = 714 

5. PSO and MIGA based single preprocessing serial algorithm complexity 

O ((n*FEs + Cof*FEs + PV) + ((n*FEs + Cof*FEs + (CM + S + S))                           (1.6)

= 3 * 1 + 9 * 1 + 100 * 3 + 3 * 1 + 9 * 1 + 100 * 3 + 90 + 90 = 802

6. PSO based multi-preprocessing algorithm complexity

O (n*FEs + Cof*Fes + PV + U*n)             (1.7)

= 3 * 1 + 9 * 1 + 100 * 3 + 3 * 3 = 321

7. GA based multi-preprocessing algorithm complexity 

O (n*FEs + Cof*FEs + CM + S + U*n)             (1.8)

= 3 * 1 + 9 * 1 + 100 * 3 + 90 + 3 * 3 = 411

8. PSO and GA based multi-preprocessing parallel algorithm complexity

O (n*FEs + Cof*FEs + PV + CM + S + U*n)             (1.9)

= 3 * 1 + 9 * 1 + 100 * 3 + 100 * 3 + 90 + 3 * 3 = 711
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9. PSO and GA based multi-preprocessing serial algorithm complexity 

O ((n*FEs + Cof*FEs + PV) + (n*FEs + Cof*FEs + CM + S)) + U           (1.10)

= 3 * 1 + 9 * 1 + 100 * 3 + 3 * 1 + 9 * 1 + 100 * 3 + 90 + 3 * 3 = 723

10. PSO and MIGA based multi-preprocessing serial algorithm complexity 

O ((n*FEs + Cof*FEs + PV) + ((n*FEs + Cof*FEs + (CM + S + S)) + U           (1.11)

= 3 * 1 + 9 * 1 + 100 * 3 + 612 + 90 + 90 + 3 * 3 = 1113

The complexity and performance (energy consumption) graph is shown in Figure 1.6. In 

graph each model algorithms complexity and performance is analyzed with respect to the 

energy consumption. Algorithm 1 and 2 are the PSO based model and GA based model 

complexities, algorithm 3, 4 and 5 are the single preprocessing hybrid optimization models 

complexities, algorithm 6 and 5 are the PSO and GA based multi-preprocessing model 

algorithms and algorithm 8 to 10 are the multi-preprocessing hybrid energy optimization 

model complexities. 

In Figure 1.6 GA based model (algorithm 2) has higher complexity as compared to PSO 

based model (algorithm 1). GA based model algorithm consumed less power as compared to 

PSO based model algorithm. The performance of GA based algorithm is much better than 

PSO based model algorithm as far as power consumption reduction is concerned. PSO & GA 

based hybrid parallel model with single preprocessing (algorithm 3), PSO & GA based hybrid 

serial model with single preprocessing (algorithm 4), and PSO & MIGA hybrid serial model 

with single preprocessing (algorithm 5) has higher complexities as compared to algorithm 1 
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and algorithm 2 but consumed less power as compared to algorithm 1 and algorithm 2. The 

performance of algorithms 3, 4 and 5 which are the single preprocessing hybrid energy model 

algorithms, are much better than PSO based model algorithm and GA based model algorithm 

with respect to the power consumption reductions.

PSO based multi-preprocessing model (algorithm 6) and GA based multi-preprocessing 

model (algorithm 7) has higher complexities as compared to algorithm 1 and algorithm. 

Although complexities of algorithms 6 and 7 are higher than algorithm 1 and 2 but consumed 

less power as compared to algorithm 1 and 2. 

Figure 1.6. Algorithm’s complexity and performance graph

The performance of algorithms 6 and 7 are much better than PSO based model algorithm 

and GA based model algorithm with respect to the power consumption reductions. PSO & GA 

based hybrid parallel model with multi-preprocessing (algorithm 8), PSO & GA based hybrid 

serial model multi-preprocessing (algorithm 9), and PSO & MIGA hybrid serial model multi -

preprocessing (algorithm 10) has higher complexities as compared to algorithm 1 and 
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algorithm 2 but consumed less power as compared to algorithm 1 and algorithm 2. Although 

the complexities of the multi-preprocessing hybrid energy model algorithms 8, 9 and 10 are 

high but the performance are much better than PSO based model algorithm and GA based 

model algorithm with respect to the power consumption reductions.

Table 1.1 shows the performance of each model’s algorithm for temperature, illumination,

air-quality and total power consumption. It also shows the complexity values of each model’s 

algorithm. ‘Yes’ means that respective algorithm perform well with respect to the power 

consumption reductions and comfort index as compared to basic model algorithms. 

PSO based model algorithm complexity is 312 and its corresponding total power 

consumption is 3047KWh. GA based model algorithm complexity is 402 while its total power 

consumption is 3026KWh. GA based model complexity is high than PSO based model 

complexity but it perform well in terms of power consumption reduction and comfort index 

improvements.

PSO & GA based hybrid parallel with single preprocessing model algorithm complexity is 

702 and its corresponding total power consumption is 2922KWh. PSO & GA hybrid serial 

with single preprocessing model algorithm complexity is 714 while its total power 

consumption is 2914KWh. PSO & MIGA hybrid serial with single preprocessing model 

algorithm complexity is 802 while its performance with respect to total power consumption is 

2812KWh. 
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Table 1.1. Algorithm’s complexity and performance with respect to the power consumption reduction and comfort index

Predicted Power 

Consumption

System performance

Model Scenario Algo T L A Total Algorithm complexity
Complexity

value

Basic model

PSO 

based 

prediction

PSO & 

K
601 1707 738 3047

O (n*FEs + Cof*Fes + 

PV)
312 Power consumption reduction

Comfort Index 

Improvement

GA based 

prediction
GA & K 581 1704 739 3026

O (n*FEs + Cof*FEs + 

CM + S)
402

Compared to 

Basic Model 

PSO

Compared to 

Basic Model 

GA

Compared to 

Basic Model 

PSO

Compared to 

Basic Model 

GA

Hybrid 

optimization

single 

preprocessing

Scenario 1 

Parallel

GA in 

PSO 

and K

518 1665 738 2922
O (n*FEs + Cof*FEs + 

PV + CM + S)
702 Yes Yes Yes Yes

Scenario 2 

Serial

PSO & 

GA 

and K

532 1641 739 2914

O ((n*FEs + Cof*FEs + 

PV) 

+ (n*FEs + Cof*FEs + 

CM + S)) 

714 Yes Yes Yes Yes

Scenario 3 

Serial

PSO & 

MIGA 

and 

507 1599 705 2812

O ((n*FEs + Cof*FEs + 

PV) 

+ ((n*FEs + Cof*FEs + 

802 Yes Yes Yes Yes
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ARIMA (CM + S + S))

PSO based 

multi-

preprocessing

Scenario 1

PSO 

Serial 

K & A

586 1679 756 3022
O (n*FEs + Cof*Fes + 

PV + U*n)
321 Yes Yes Yes Yes

GA based 

multi-

preprocessing

Scenario 2

GA 

Parallel 

K 

ARIMA

537 1659 707 2904
O (n*FEs + Cof*FEs + 

CM + S + U*n)
411 Yes Yes Yes Yes

Hybrid 

optimization

multi-

preprocessing

Scenario 1 

Parallel

GA in 

PSO 

and K

551 1659 742 2953
O (n*FEs + Cof*FEs + 

PV + CM + S + U*n)
711 Yes Yes Yes Yes

Scenario 2 

Serial

PSO & 

GA 

and K

610 1679 738 3028

O ((n*FEs + Cof*FEs + 

PV) 

+ (n*FEs + Cof*FEs + 

CM + S)) + U

723 Yes

Almost same 

power 

consumption

Yes Yes

Scenario 3 

Serial

PSO & 

MIGA 

&ARIM

A & K 

572 1667 729 2968

O ((n*FEs + Cof*FEs + 

PV) 

+ ((n*FEs + Cof*FEs + 

(CM + S + S)) + U

1113 Yes Yes Yes Yes

Note. - Algo = Algorithm.  T = Temperature. L = Illumination. A = Air-quality



26

Compared to PSO based model algorithm and GA based model algorithm, single 

preprocessing hybrid energy optimization algorithm’s complexity is high but performs well in 

terms of power consumption reduction and comfort index improvements. PSO based multi-

preprocessing model algorithm complexity is 321 and its corresponding total power 

consumption is 3022KWh. GA based multi-preprocessing model algorithm complexity is 411 

while its total power consumption is 2904KWh. Compared to PSO based model algorithm 

and GA based model algorithm, multi-preprocessing energy optimization algorithm’s 

complexity is high but perform well as afar as total power consumption reduction and comfort 

index improvements is concern.

PSO & GA based hybrid parallel with multi-preprocessing model algorithm complexity 

is 711 and its corresponding total power consumption is 2953KWh. PSO & GA based hybrid 

serial with multi-preprocessing model algorithm complexity is 723 while its total power 

consumption is 3028KWh. PSO & MIGA based hybrid serial with multi-preprocessing model 

algorithm complexity is 113 while its performance with respect to total power consumption is 

2968KWh. Compared to PSO based model algorithm and GA based model algorithm, multi-

preprocessing hybrid energy optimization algorithm’s complexity is high but perform well in 

terms of power consumption reduction and comfort index improvements.

1.2.7.3. Proposed hybrid energy optimization algorithms

In this section we are going to explain our proposed parallel and serial based 
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optimization methods and with the help of flow charts. Figure 1.7 shows the step by step 

procedure of hybrid parallel optimization algorithm based on PSO and GA. 

Figure 1.7. Parallel hybrid energy optimization algorithms flow chart

Initially random population of individuals and particles is initialized. Then the 
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individuals and particles are evaluated using fitness function (Eq. 1.1). For each particles the 

local best fitness and local best position is set. Similarly for recombination of individuals the 

best fitted chromosomes are selected. Then the global best fitness is also initialized using 

local best fitness. The new particles and offspring’s are evaluated using fitness function (Eq. 

1.1). If mutation criteria meet then apply mutation. Combining updated particles and updated 

individuals.

If current fitness is less than best of all combined solutions then set local best as current 

otherwise updated particle velocities, positions and perform crossover. If current fitness is less 

than global best fitness then set global best as current fitness otherwise updated particle 

velocities, positions and perform crossover. If stopping criteria met then stop and we get 

optimal solution otherwise updated particle velocities, positions and perform crossover. 

Figure 1.8 shows the step by step procedure of hybrid serial optimization algorithm based on 

PSO and GA. Initially random population of individuals is initialized. Then select individuals 

and optimal particles give the minimum error difference with respect to environmental 

parameters. Then the selected individuals are evaluated using fitness function (Eq. 1.1). Then 

select best fitted individuals for recombination as parents. Perform ‘variable two point’ 

crossover and evaluate fitness of each offspring using fitness function (Eq. 1.1). If mutations 

criteria meet then perform mutation otherwise check stopping criteria. After mutation check 

stopping criteria if yes then stop otherwise select best individuals for crossover and continue 

until stopping criteria arises.
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Figure 1.8. Serial hybrid energy optimization algorithms flow chart

1.2.7.4. Which approach is good in which situation?

In this section we are going to described which proposed approach is good in which 

situation.

1. In situation where we want to provides the highest level of occupants comfort 
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index, then multi-preprocessing hybrid energy optimization with prediction is 

much suitable than single preprocessing.

2. In situation where we want to provide a better comfort index without 

compromising energy consumption, then single preprocessing hybrid energy 

optimization with prediction is suitable as compared to GA/PSO with prediction 

and multi-preprocessing hybrid energy optimization with prediction.

3. In situation where we want to implement and proposed simple model without 

compromising the design objectives then single preprocessing hybrid energy 

optimization with prediction models are better and simpler than complex models 

of multi-preprocessing hybrid energy optimization with prediction.

1.2.8. Energy consumption predictions

Single preprocessing hybrid parallel energy optimization based on PSO and GA model 

uses Kalman filter to predict the energy consumption. Hybrid serial energy optimization 

based on PSO and GA model also used Kalman filter to predict energy consumption. Third 

model of single preprocessing hybrid energy optimization uses hybrid energy consumption 

prediction. Hybrid energy prediction uses both Kalman filter and ARIMA model to predict the 

energy consumption. In hybrid energy prediction, ARIMA model predict the energy 

consumption and then the predicted energy consumption is again input to the Kalman filter to 

predict it again. Then the average of the two predictions gives the predicted energy 
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consumption. The predicted consume power is given to the actuators for usage. The predicted 

consume power is the power to be consumed in the building. 

In multi-preprocessing hybrid energy optimization and prediction models, the consumed 

power is preprocessed to smooth the consumed power before it is given to the prediction 

component of the model. After smoothing, the consumed power is updated, and revised 

consumed power is input to the prediction component. Multi-preprocessing uses the Kalman 

filter, ARIMA model and hybrid energy consumption prediction based on the two prediction 

algorithms (Kalman filter and ARIMA model) to predict the energy consumption. 

1.2.9. Actuators

Building actuators are the devices which actually use the power inside the building. The 

actuators considered for simulation here are AC used for cooling, heater for heating the 

residential building, and light for visual comfort and fan for providing air-quality comfort.

Each of these actuators receives message information to turn on/off.

1.2.10. Indoor environment

When actuators received message information the status of the actuators changes 

accordingly. When actuators start running, the indoor environment gets change and updated 

with respect to the optimal parameters. The indoor environment gets improve gradually based 

on the message information received by actuators.
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1.3. Contributions

In this section the work contributed to the research of energy management in future energy 

efficient building environment is described. All the work discussed in the related work did not 

consider these contributions.

1. Proposed idea of preprocessing based on single preprocessing and multi-

preprocessing mechanism did not covered by the previous approaches.

2. Proposed models uses hybrid energy optimization algorithms to optimized user set 

parameters instead of single optimization.

3. Energy consumption is predicted using hybrid prediction algorithms used by the 

actuators of the building.

4. Proposed idea of energy management deals with energy consumption reduction and 

occupants comfort index simultaneously as compared to other approaches.

5. In [29, 30], the user occupants comfort index is not addressed while proposed models 

gives attention to the occupants comfort index.

6. In [23, 26-30], the user set parameters are not considered in deciding occupants 

comfort index. User set parameters plays a vital role in deciding occupants comfort 

index. So these models are not user friendly while proposed hybrid energy 

optimization based on prediction and preprocessing considers user set parameters in 

deciding occupants comfort index. 
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7. In [23, 31-32], the energy efficiency is not addressed while proposed models 

addressed energy efficiency.
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2. Related works

2.1. Energy consumption optimization

In this section we are going to explore the related work of optimization algorithms 

applied to energy management previously.

2.1.1. Optimization

A series of steps used (usually by a computer program) to find an optimal solution to a 

problem. An optimization algorithm consists of maximizing or minimizing a real function by 

systematically choosing input values from within an allowed set and computing the value of 

the function. Optimization includes finding "best available" values of some objective function 

given a defined domain, including a variety of different types of objective functions and 

different types of domains.

Despite its name, optimization does not necessarily mean finding the optimum solution 

to a problem, since it may be unfeasible due to the characteristics of the problem, which in 

many cases are included in the category of NP-hard problems. Yet, for optimization problems 

that are NP-hard, no polynomial time algorithm exists, i.e. the algorithms used might need 

exponential computation time in the worst case to obtain the optimum, which leads to 

computation times that are too high for practical purposes. 

As a result, in recent decades many authors have proposed approximate methods, 
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including heuristic approaches and artificial neural networks, to solve these problems instead 

of using traditional optimization methods, such as linear-programming), nelder–mead simplex 

method, lagrangian relaxation and quadratic programming etc. Heuristic methods can be seen 

as simple procedures that provide satisfactory, but not necessarily optimal, solutions to large 

instances of complex problems rapidly. Meta-heuristics are generalizations of heuristics in the 

sense that they can be applied to a wide set of problems, needing few modifications to be 

adapted to a specific case. In some cases, the complexity of the problems to solve is so high 

that even heuristic and meta-heuristic methods are not able to obtain accurate solutions in 

reasonable runtimes. 

2.1.2. Energy optimization

The two important parameters in energy management are user set preference parameters 

and environmental parameters. User set parameter is the required comfort level of the 

occupants in building environment, while environmental parameter is the environmental 

conditions. User set parameters and environmental parameters consists of temperature,

illumination and air-quality. In our proposed model, the input to the fuzzy controller is the 

error difference between user set parameters and environmental parameters. The minimum 

error difference, the minimum will be the power consumption. Here the aim of optimization is 

to minimize the error difference between users set parameters and environmental parameters 

which results in minimizing the energy consumption. So energy optimization is carried out to 
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ensure minimum power consumption and increase occupants comfort index. The user set 

parameters are optimized using hybrid optimization algorithms to minimize the error 

difference between optimal user set parameters (optimal parameters) and environmental 

parameters. After calculating the error difference between optimal parameters and 

environmental parameters we concluded that error difference between optimal parameters and 

environmental parameters is less than error difference between user set parameters and 

environmental parameters.

2.1.3. Particle swarm optimization (PSO)

PSO algorithm was first described as a new modern heuristic algorithm in 1995 [8]. It is 

introduced as a stochastic operator-based, population-based and self-adaptive computer 

algorithm simulated based on birds social behaviors. PSO is being widely used for various 

engineering applications and has turned out to be a powerful optimizer. PSO is a directed 

search algorithm because it keeps local best position and global best position of all the 

particles and particle fly according to the information’s it currently have. Compare to GA [9]

it is not computationally expensive. So it produced results quickly. Like other evolutionary 

algorithms such as GA, PSO also randomly generates a number of solutions called initial 

population, and then finds the optimal solution by updating generations iteratively. Each 

potential solution in PSO is called a particle, which follows the current local best solution to 

fly through the whole solution space for approaching the global best solution. An objective 
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function is used to evaluate the quality of each candidate solution with respect to a given 

problem. In PSO, each particle represents a possible solution involving two vectors, which are 

the position vector and velocity vector. The step by step PSO algorithms is discussed in 

section 3.1.2.

2.1.4. Genetic algorithm (GA)

GA is evolutionary, search and optimization algorithm based on the principles of natural 

selection and genetics. The principals of GA technique are given [9]. GA has been deployed 

to solve wide range of optimization problems where search space is too much large. GA 

evolves a population of initial individuals to a population of high quality individuals, where 

each individual represents a solution of the problem to be solved. Each individual is called 

chromosome, and is composed of a predetermined number of genes. The quality of fitness of 

each chromosome is measured by a fitness function described earlier in section 1.6.

Determination of the following factors has the crucial impact on the efficiency of the 

algorithm: selection of fitness function, representation of individuals and the values of GA 

parameters (crossover and mutation rate, and size of population). Determination of the above 

factors usually depends on the application. In our implementation we used the crossover rate 

as 0.9% and mutation rate as 0.1%. The rate of crossover and mutation were set after a long 

run of the GA algorithm. After completion of the iterations, GA output the optimal parameters 

with respect to the sensor data. Figure 2.1 shows the flow cycle of the GA. First of all, initial 
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population of chromosome is created. Then it is evaluated by using some fitness function, in 

our case we used equation (Eq. 1.1) for evaluation of chromosomes. Then selection of parent 

candidates is carried out for modification (crossover). In our case we used rank based 

selection to select parent candidates. Then after modification of parent chromosomes we got 

new chromosomes as modified off-springs, also called child chromosomes. 

We used “variable two point crossover” method for modifications of parent 

chromosomes. After getting child chromosomes we evaluated them against the fitness 

function that is equation (Eq. 1.1). Then after evaluation of child chromosomes some best 

chromosomes are selected for next generation and remaining weak chromosomes are deleted. 

The modification process also involved another method called “mutation”. After some fixed 

iterations the algorithm performs mutation in which case the genes of the chromosomes are 

randomly perturbed. This enables GA to avoid getting stuck in local optima. Hence GA 

searches for the best solution in multiple directions. This process of modification using 

“crossover” and “mutation” is continuing until the GA algorithm converged to the optimal 

solution or number of desired iterations completed.

Figure 2.1. Genetic algorithm flow cycle
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2.1.5. Multi-Island genetic algorithm (MIGA)

A Multi-Island Genetic Algorithm, or MIGA, is a variant of GA. Basically it consists of 

distributed GA. The outstanding features of this method are that the population in one 

generation is divided into several sub-populations called Islands, and the genetic operations 

are performed independently on each sub-population. This independency enables MIGA to 

avoid converging partial optimal solutions. An exchange of individual information, named a 

migration, is carried out periodically among sub-populations. Figure 2.2 shows the 

operational diagram of a MIGA.

Figure 2.2. Operational diagram of Multi-Island Genetic Algorithm

Previously many approaches have been proposed for energy optimization. GA has been 

applied for energy management in many ways, like GA adopted for heating, ventilation and 

air-conditioning (HVAC) control problems [10]. This method also being applied to the control 

problems of energy systems consisting fuel cells, thermal storage, and heat pumps [11]. 

Another author applied GA [12] to investigate multi-objective (building energy cost and 
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occupant thermal discomfort) problems to identify the optimal pay-off characteristic. One of 

the authors applied GA to mixed integer and nonlinear programming problems in an energy 

plant in Beijing and made a detailed economic investigation by changing the economic and 

environmental legislative contexts [13]. Application of GA for the optimization of the control 

parameters in parallel to hybrid electric vehicles (HEV) described in [14]. The optimization 

problem was formulated for an electric assistant control strategy (EACS) in order to meet the 

minimum fuel consumption and emissions while maintaining the vehicle performance 

requirements. Another work proposed integrated algorithm based on GA, simulated-based 

GA, time series and DOE (ANOVA and DMLT) to forecast electricity energy consumption 

[15]. A method which demonstrates the application of GP to learn occupancy behavioral rules 

that predict the presence and absence of an occupant in a single-person office was proposed in 

[16]. An optimum scheduling strategy of cold water supply system in an intelligent building 

has been proposed in [17]. An integrated GA and artificial neural network (ANN) to estimate 

and predict electricity demand using stochastic procedures has been proposed in [18].

Optimal control strategies of variable air volume and air-conditioning system has been 

proposed in [19]. The control strategies included a base control strategy of fixed temperature 

set point and two advanced strategies for insuring comfort and indoor air-quality (IAQ). The 

optimization problem for each control strategy was formulated based on the cost of energy 

consumption and constrained by system and thermal space transient models. They used GA to 

solve the problem of optimization. Supervisory control for hybrid solar vehicles proposed in 
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[20], and some beginning tests have been performed on the road. An optimal design method 

for energy system of single building has been developed for the first time by establishing 

optimal design method for distributed energy system [21].

2.2. Energy consumption control

In the literature many works have been presented in the area of energy savings and some 

valuable energy management control systems have been proposed. Approaches based on 

conventional control systems have been introduced in prior works [22, 23]. These 

conventional controllers consist of classical controllers [22]. The classical controller has the 

temperature overshoot problem. The other problem with this approach is that, it does not 

consider user set parameters and the model is not user friendly. It also does not address the 

energy efficiency and the model was not energy efficient. To overcome the overshoot problem 

designer proposed PID controllers [23]. These controllers improve the situation, but the 

improper choice of the gains in PID controllers could make the system unreliable and 

unstable. Therefore designers give attention to the optimal controller and adaptive controller 

respectively [24, 25]. The problems of conventional controllers are addressed in the optimal 

and adaptive controls. Optimal controller based approach improves the thermal comfort. 

Adaptive controllers have the capability to adapt to the environmental conditions. It is 

reported as most promising controllers in the context of adaptation to the climate conditions. 

Although optimal and adaptive controllers addressed the problems of classical controllers, but 
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these approaches also have problems. These approaches need building model which makes it 

difficult to implement for each and every building. The use of elements of bioclimatic 

architecture confuses the process of minimization of the cost function and if such a 

minimization is acquired, the results are not valid in practice. Another problem with 

techniques is that, they don’t consider occupants comfort index. These approaches are also 

not user friendly because they did not consider user set parameters. The last and most 

important point is that, these approaches don’t consider energy efficiency and consumed more 

energy. 

A comparison of different control mechanisms for energy consumption and occupants 

comfort index in building environment is carried out in [26]. During comparisons user set 

parameters were not considered. So the main disadvantage of their work is that, their models 

are not user friendly because users are not involved in deciding the occupants comfort index.

A control strategy is proposed in [27] to maintain energy consumption and occupants comfort 

index, but user set parameters does not considers in deciding occupants comfort index. User 

set parameters plays a vital role in deciding occupants comfort index. In one of the previous 

work attention is made towards the occupants comfort index [28]. This work also did not 

considered the user participation in deciding occupants comfort index. Predictive and 

adaptive controllers using artificial neural network to allow the adaptation of the control 

model to the environmental conditions, building characteristics and user behaviors is 

proposed in [29]. This approach not only lack of user set parameters but also did not consider 
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occupants comfort index. Another predictive control strategy using a system method for 

overall system environment and energy performance to the changes of control settings of VAV 

air-conditioning system is proposed and developed in [30]. To optimize the parameters GA 

algorithm has been used. This system also lack of user set points and occupants comfort 

index. The approach only considers energy efficiency in the building.

A reinforcement learning controller to achieve occupants comfort index with minimal 

energy consumption is described in [31]. The method succeeded in accomplishing occupants 

comfort index but failed to provide energy efficiency. Another robust reinforcement learning 

control for building power systems is proposed in [32]. The main drawback of this system is 

energy efficiency because the system could not achieved the desired results to minimized 

energy consumption.  

An optimized fuzzy controller applied for the control of environmental parameters at the 

building zone level has been proposed in [33]. In this method the occupants’ preferences are 

monitored via a smart card unit. Other proposals in this connection are predictive control 

approaches [34, 35], where weather predictions has been applied to heating, ventilating and 

air-conditioning system. A multi-agent control system with information fusion has been 

devised in [36]. The author’s proposed a building indoor energy and comfort management 

model based on information fusion using ordered weighted averaging (OWA) aggregation. 

They achieved a high level of comfort with minimum power consumption.  

Perceived comfort in office buildings is strongly influenced by several personal, social 
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and building factors. The relationship between these factors are complex, so to get a better 

understanding of the relationships between these factors a proposal has been presented in 

[37]. A method presented in [38] proposed a comfort classification indexes suitable for both 

single environment and whole buildings. The methodology allows evaluation of both energy 

consumption and polluting impacts and takes into account comfort conditions of indoor 

environment and outdoor climate. An approach based on artificial network for energy 

management and control has been proposed in [39]. The artificial neural network based 

energy management and controller provides efficient and effective operation of wind, solar, 

and hydrogen energy-based hybrid renewable stand-alone structure.

2.2.1. Fuzzy logic control

Fuzzy logic was introduced by Lotfi Zadiah in 1965 [40] to deal with vague and 

imprecise concepts. In classical set theory, elements either belong to a particular set or not. 

The concept of partial membership does not exist in classical set theory. However, in fuzzy set 

theory the association of an element with a particular set lies between 0 and 1 which is called 

its degree of association or membership degree. In our daily life, we find many vague 

statements like hot water, cold weather, dark night, high danger etc. We cannot quantify 

exactly about the severity of the danger or hotness. The fuzzy set theory adds generalization 

concept in classical set theory and makes it diverse enough to represent imprecise boundaries 

like hot, tall, low speed, high risk etc.
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The input to the fuzzy controller for temperature is the error difference between optimal 

parameters and real environmental parameters. For efficient control, both the error difference 

Te and change in error Tce (difference between current and previous error) are used. The 

input/output membership functions for temperature are shown in Figure 2.3.

Figure 2.3. Input and output membership functions for temperature. (a) Input membership function of 

eT , (b) Input membership function of ceT , (c) Output membership function.

Table 2.1 shows the fuzzy controller rules for temperature control. It is a 7x7 matrix. 
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Each entry in the table is the error difference Terr and change in error Tcerr . The required 

power is the power to fulfill the user requirements inside the building. In Table 2.2 the terms 

NB, NM, NS, ZE, PS, PM, and PB have been abbreviated for negative big, negative medium, 

negative small, zero, positive small, positive medium, and positive big, respectively.

The input to the fuzzy controller for illumination is the error difference between the 

optimal parameter and real environmental illumination parameter. The input 

membership/output membership functions for illumination are shown in Figure 2.4.

Figure 2.4. Input and output membership functions for illumination. (a) Input membership function of 

errL (b) Output membership function

The input membership function is for the error Lerr which is the only input. Table 2.2

shows fuzzy controller rules for illumination control. If the input error is High Small the 

required output power would be OLittle. For error Medium Small (MS) the output power 

would be OMS. For Basic Small (BS) the required power would be OBS. For OK the output 
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power would be OOK. For SH the required output power is OSH while for High, the required 

power is OH.

The input to the fuzzy controller for air-quality is the error difference between optimized 

air-quality parameter and real environmental air-quality parameter. The input/output 

membership functions for air-quality are shown in Figure 2.5.

Figure 2.5. Input and output membership functions for air quality. (a) Input membership function of eA

(b) Output membership function

The input membership function is for the error Aerr which is the only input to the air 

quality fuzzy controller. Table 2.3 shows the fuzzy controller rules for air quality control. If 

the input error is little, the required output power would be OFF. For OK, the output power 

would be ON. For LH the required power will be OL. For MH, the required power would be 

OMH, and for HIGH the required would be OHIGH.

The output of the fuzzy controllers is the required power for each of the temperature, 
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illumination and air-quality. The required power is input to the coordinator agent and 

comparator components.

Table 2.1. Fuzzy controller rules for temperature controller

Required Power               errT

NB NM NS ZE PS PM PB

cerrT

NB NB NS PS PB PB PB PB

NM NB NM ZE PM PM PB PB

NS NB NM NS PS PM PB PB

ZE NB NM NS ZE PS PM PB

PS NB NB NM NS PS PM PB

PM NB NB NM NM ZE PM PB

PB NB NB NB NB NS PS PB

Table 2.2. Fuzzy controller rules for illumination control

Error HS MS BS OK SH H

Required Power OHS OMS OBS OOK OSH OH

Table 2.3. Fuzzy controller rules for air-quality control

Error Little OK LH MH HIGH

Required Power OFF ON OL OMH OHIGH
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2.3. Energy consumption prediction

Power consumption prediction and forecasting has become one of the main areas of 

interest to the researchers and practitioners in energy markets due to the fluctuation of 

energy price. This leads to the requirement of accurate and efficient energy price prediction 

methodology. All the stakeholders including market players and regulators wage more 

attention to the power consumption evolution. Energy consumption prediction is vital 

information to organize energy price bidding strategies and maximize their benefits and 

profits. Furthermore, it can also help customers minimize their electricity costs. The smart 

grid will be operated smoothly and efficiently with the satisfactory level of consumers’ 

needs and power generation companies.

The energy consumption prediction techniques can be generally classified into two 

classes. One is time series techniques. The other kind of energy consumption forecasting and 

prediction techniques is Artificial Neural Networks (ANNs). The ANN’s technique that 

keeps excellent strength and error tolerance is an effective way to solve the complex 

nonlinear problems. ANN’s has received attention of researchers due to its clear model, easy 

implementation and good performance in solving nonlinear problems. So it is successful to 

model and predict changing complicated power system using ANN techniques. ANN has 

been applied to forecast electricity prices in many markets [41–46]. To increase the 

forecasting accuracy, it has been performed using supervised neural learning techniques [47, 
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48]. 

These works frequently apply neural network model, which contains many parameters. 

These parameters are continuously judged by experience and the model become hard to be 

established [49]. So it is difficult to establish a model using ANN. Moreover, it has been 

perceived that while the neural network (NN) gives small error during training the patterns, 

the error for testing patterns is usually of a larger order [50], in other words, when this 

technique is applied to practical system, the prediction accuracy is not good. Moreover, this 

algorithm is required to transform the characters of all the problems into numbers and 

change all the inferences into numerical calculation. Nevertheless, it definitely cause the loss 

of information which degrade the prediction accuracy. Although ANN based price 

forecasting techniques can also be used for energy prediction, but its disadvantages reported 

above for price forecasting restrict its application for energy consumption prediction.

Stationary time series prototypes such as autoregressive (AR) [51], Dynamic Regression 

(DR), Transfer Function (TF) [52], non-stationary time series models like Autoregressive 

Integrated Moving Average (ARIMA) [53] have been devised to forecast electricity price in 

the recent time. In most modest energy markets the series of prices describes the following 

features: high frequency, non-constant mean and variance, daily and weekly, monthly, 

seasonality, calendar effect on weekend and public holidays, high volatility and high 

percentage of unusual prices [54]. It is not easy to forecast electricity price accurately, 

therefore, it has to require special dealing in case of estimating price changes. In this 



51

connection a hybrid method to forecast day-ahead electricity price is proposed in [55]. The 

hybrid method is based on wavelet transform, Auto-Regressive Integrated Moving Average 

(ARIMA) models and Radial Basis Function Neural Networks (RBFN). A price forecasting 

system for electric market participants to reduce the risk of price volatility is proposed in 

[56]. The method combines the Probability Neural Network (PNN) and Orthogonal 

Experimental Design (OED) to propose an Enhanced Probability Neural Network (EPNN). 

Another work proposed a new combination of a Feature Selection (FS) technique based 

Mutual Information (MI) technique and Wavelet Transform (WT) in [57]. Other proposed 

approaches in this connection are short-term load forecasting for micro-grids [58] and 

iterative strategy [59]. The iterative strategy approach is the combination of the ARIMA, 

wavelet transform and non-linear neural network. In this thesis we proposed for our model 

the energy power consumption prediction using Kalman filter, ARIMA model and hybrid 

prediction model based on Kalman filter and ARIMA model. In hybrid prediction we take 

the average of the two energy prediction algorithms (Kalman filter and ARIMA) and predict 

the energy consumption.

2.3.1. Kalman filter

A Kalman filter is an optimal estimator. It gathers parameters of interest from indirect, 

inaccurate and uncertain observations. It is recursive so that new measurements can be 

processed as they arrive. The Kalman filter addresses the general problem of trying to 
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estimate the state xЄRn of a discrete-time controlled process that is governed by the linear 

stochastic difference equation. 

( 1) ( 1) ( 1)t x t u t tX A B p                 (2.1)

nz R                                                (2.2)

( 1) ( 1)t x t tZ H m                                                   (2.3)

( ) ~ (0, )P p N Q                                                (2.4)

( ) ~ (0, )P m N R                                                (2.5)

The matrix A in the difference equation (Eq. 2.1) relates the state at the previous time 

step t – 1 to the state at the current step t, in the absence of either a driving function or 

process noise. In general A might change with each time step. In this case the value of A is 

set to 0.90 after empirical analysis. When we increase this value and set to 1, 2 or 3…, 10 

then it affects the prediction value and produced inaccurate prediction results. The matrix B

relates the optional control input to the state x. The matrix H in the measurement equation 

(Eq. 2.3) relates the state to the measurement zt.  Normally H might change with each time 

step or measurement. In our case the value of H is set to 1 after empirical analysis. When we 

increase or decrease value of H from 1 then it affects the prediction process and hence 

results in inaccurate prediction. Similarly, the value of R in our case is set to 0.10. When we 

increase this value from 0.10 and set to 1, 2, 3 or 4…, 10 then the prediction process 

disturbed and inaccurate values are predicted.  If the value of R is set to 1 then it may results 

in over-fitting. So after empirical analysis we found that R value must be less than 1 
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depending on the data, but the optimal value for R is 0.10 for all kinds of data trends. 

Equations (2.4 and 2.5) are the standard normal distribution functions for each of the random 

variables p and m respectively. The process noise covariance Q and measurement noise 

covariance R matrices are change with each time step or measurement. In our case the value 

of Q is set to 1 after empirical analysis. When we increase this value from 1 to 2 or 3…., 10 

then it affects the prediction and results in inaccurate prediction.

2.3.2. ARIMA model

ARIMA (0, 1, 1) model is one of the variations of ARIMA (p, d, q) model. The ARIMA 

(p, d, q) model is the common class of model for forecasting a time series data which can be 

stationaries by using some sort of transformations like differencing and logging. In fact, one 

of the easiest way to think about ARIMA models is as fine-tuned types of random-walk and 

random-trend models, the fine-tuning contains of adding lags of the differenced series and 

lags of the forecast errors to the prediction equation, as required to eliminate any last traces 

of autocorrelation from the forecast errors. In ARIMA (p, d, q) model p is the number of 

autoregressive terms, d is the number of non-seasonal differences, and q is the number of 

lagged forecast errors in the prediction equation. Where Y (t) is the forecasting, β is the 

coefficient of the lagged forecast error, e(t-1) denotes the error at time period t-1, α value 

varies between [0, 1]. 

( ) ( 1) ( 1)Y k Y k e k                                                                                      (2.6)
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1k kY Y                                                                                                                     (2.7)

1                                                                                                                          (2.8)

2.4. Coordinator agent

Coordinator agent takes the required building power from fuzzy controller and optimal 

parameters according to the user comfort index as input. It adjusted the building power on 

the basis of available power, required power and optimal parameters of comfort index. The 

adjusted building power is compared with the required power to get the actual consume 

power. The consumed power is input to the Kalman filter to predict consume power. The 

predicted consume power is given to the actuators for usage. The predicted consume power 

is the power to be consumed in the building. 

In Eqs (2.9), (2.10), and (2.11) P (k) is the required power, which is the sum of power 

demands from temperature, illumination and air-quality. Prequired, is the total energy source 

(outside grid-power or internal local power source). Pmax (k) is the maximum input power 

either from the power grid or from the local micro sources to the building.

PT(k+1) = PT(k)             (2.9)

PL(k+1) = PL(k)           (2.10)

PA(k+1) = PA(k)           (2.11)

PT(k)+PL(k)+PA(k)=Prequired(k)           (2.12)

Prequired(k) ≤ Pavailable(k)           (2.13)
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Pavailable  ≤ Pmax           (2.14)

2.5. Preprocessing

Smoothing is applied to environmental data as a preprocessing mechanism. The aim 

behind application of smoothing to environmental data is to reduce and bring the data in to 

smoother form. The data points which are higher or lower than the adjacent data points are 

decreases or increases to become smooth.

2.6. Post-processing

Post-processing evolved to analyze the output data after each step in the proposed

models. The aim of post-processing applied after optimization is to analyze optimal 

parameters and comfort index. Communicating optimal parameters and comfort index 

results with the users. Also the optimal parameters and comfort index results are visualized 

for user understanding and analysis.
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3. Proposed hybrid energy optimization 

algorithms based on prediction in IoT

environment

3.1. Basic energy optimization model based on prediction

3.1.1. Genetic algorithm based energy optimization 

prediction 

3.1.1.1. Proposed architecture

Figure 3.1 shows optimized system diagram for the energy management. Environmental 

parameters (temperature, illumination and air-quality) and user set points are input to the GA 

optimizer for optimization. Then optimized parameters are used as user comfort index to 

calculate the occupant’s comfort index. Three fuzzy logic based controllers are used to control 

temperature, illumination and air-quality. Coordinator Agent adjusted the power according to 

the optimized required power from the fuzzy controllers and available power from the 

external power grid or internal local power sources. Coordinator agent performs the function 

of coordination among the three fuzzy controllers based on the required power and available 

power. It also provides maximum comfort index according to the user requirements and 

available power. Building actuators are the devices which actually utilizes the power.
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Figure 3.1. System diagram of a residential building energy management

3.1.1.2. Optimization algorithm using GA

GA steps for parameters optimizations and comfort index are:

1) Initial random population

2) Calculate fitness function for user comfort using Eq. (1.1)

3) Select best individuals using any of three selection criteria (Rank, Roulette wheel or   

Tournament selection), we used rank based selection

4) Perform ‘variable two point’ crossover of the selected individuals

5) After crossover, we get off-springs

6) Now calculate comfort for the off-springs
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7) Combining populations of step (3) and (5)

8) If mutation criteria meet, then perform mutation

9) Repeat above eight steps until termination criteria arise or objective function does not 

improve.

10) Then after arrival of termination criteria select best fitted chromosome.

These parameters were selected after running the algorithm for λ times to get optimal 

results. GA stops either when the maximum number of generation’s Ω met, or no significant 

change is observed in the fitness for µ (few successive) generations. The maximum 

population size selected is 100. The variable two point crossover is performed with the 

probability of 0.9 and mutation rate of 0.1. GA parameters (population size, crossover rate 

and mutation rate) have been set after running GA for number times. The experimentations 

are performed using Latitude D620 laptop of 2.00 GHz with 2GB RAM. The C # 2008 is used 

for the simulation. When GA evaluation process finishes, best fitted chromosome is to be 

selected to get optimal parameters and comfort index.

3.1.2. Particle swarm optimization based energy 

optimization prediction

3.1.2.1. Proposed architecture

Figure 3.2 shows the block diagram of the proposed energy management and prediction 
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model for building environment using fuzzy controllers and Kalman filter. Environmental 

parameters (temperature, illumination and air-quality) are input to the comfort index. Then 

comfort parameters were used to calculate the occupant’s comfort index. Coordinator Agent 

adjusted the power according to the user comfort index and predicted power in conjunction 

with available source power from outside power grid or inside local energy sources. Fuzzy 

controllers control the temperature, illumination and air quality. Actuators are the devices 

which actually utilizes the output power of fuzzy controller. Coordinator agent basically 

performs the function of coordination between comfort index and power prediction to provide 

maximum comfort index according to the user requirements while keeping energy 

consumption as minimum as possible.

Figure 3.2. System diagram of a residential building energy management
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3.1.2.2. Optimization algorithm using PSO

For optimization we used PSO. PSO steps for parameters optimizations and comfort 

calculations are:

1. Initialize

a) Set constants  max 1 2 1 2 0, , , ,k c c r r w

b) Randomly initialize particle positions ix D in nR for   = 1...  p

c) Randomly initialize particle velocities max
0 00 iv v  for = 1...  p

d) Set  K = 1

2. Optimize

a) Evaluate  
i

kf for particle  
i
kx

b) If 
i i

k bestf f
then  

,i i i i
best k kf f p x 

c) If  
i g

k bestf f
then   

,g i g i
best k kf f p x 

d) If stopping condition is satisfied then go to step 3

e) Update particle velocity vector 1
i
kv  by equation     (3.1)                            

f) Update particle position vector  1
i
kx  by equation    (3.2) 

g) Increment  i (index for particles). If  i pop then increment  k (index for 

iterations), and set   = 1

h) Go to 2 (a)

3. Report results
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4. Terminate

Where maxk determines the maximum change one particle can take during one iteration. 

The parameters w0, c1 and c2 (0<=w0<= 1.2, 0<=c1<=2, and 0<=c2<=2) are user-supplied 

coefficients.

The values 1r and 2r (0<= 1r <=1 and 0<= 2r <= 1) are random values regenerated for each 

velocity update.

The variable i
kx   represents the best ever position of particle i up till time  k (the 

cognitive contribution to the search vector)

At the initialization time step k = 0, the particle velocities 0
iv are initialized to random 

values within the limits 0 ≤ 0v ≤ max
0v

The domain  nR of f is referred to as the search space (or parameter space). Each 

element of nR is called a candidate solution in the search space. The value n denotes the 

number of dimensions of the search space, and thus the number of parameters involved in the 

optimization problem. The function f is called the objective function, which maps the search 

space to the function space. 

Since a function has only one output, this function space is usually one-dimensional. The 

function space is then mapped to the one-dimensional fitness space, providing a single fitness 

value for each set of parameters. This single fitness value determines the optimality of the set 

of parameters for the desired task. In most cases, including the one discussed in this work, the 

function space can be directly mapped to the fitness space. 
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The best ever fitness value of a particle at design coordinates i
kx is denoted by i

bestf and 

the best ever fitness value of the overall swarm at coordinates g
kx is denoted by g

bestf , pop

means number of populations and k is the time variable.

Vi (k+1) = αVi (k) + m1r1 [Pbest(i)(k)] + m2r2[Gbest(k)-xi(k)]             (3.1)

Xi (k+1) = xi (k) + Vi (k+1)             (3.2)

3.2. Hybrid energy optimization model based on prediction

3.2.1. Single preprocessing hybrid optimization model based 

on prediction

3.2.1.1. Hybrid energy optimization and predicted power 

control model

3.2.1.1.1. Proposed architecture

In Figure 3.3 we show hybrid optimized power control model for the energy management 

and efficiency. Initially, the environmental parameters are passed to smoothing component for 

preprocessing. After smoothing, the smoothed environmental parameters and user set points 

are passed to hybrid optimization component of the model to get optimal parameters. Then 

optimized parameters are used as user comfort index to calculate the occupant’s comfort 

index. Three controllers based on fuzzy logic are used to control temperature, illumination 
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and air-quality. Coordinator agent adjusted the power according to the optimized required 

power from the fuzzy controllers and available power from the external power grid or internal 

local power sources. Coordinator agent performs the function of coordination among the three 

fuzzy controllers based on the required power and available power. The consumed power is 

passed to Kalman filter model to predict power consumption. The predicted power is input to 

the building actuators. At the end the results are analyzed, visualized and communicated with 

the users. Actuators received message information’s (MI) to turn ON/OFF.

Figure 3.3. Hybrid optimization algorithm based on PSO and GA parallel

3.2.1.1.2. Optimization algorithm based on PSO and GA parallel

Hybrid optimization steps for parameters optimizations and comfort index based on GA 

and PSO are:
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1) Initial random population/particles

2) Calculate fitness function for user comfort using Eq. (1.1)

3) Select best parent individuals using any of three selection criteria (Rank, Roulette 

wheel or Tournament selection), we used rank based selection

4) Perform ‘variable two point’ crossover of the selected individuals 

5) Update particle positions using Eq. (3.1).

6) Update particle velocities using Eq. (3.2).

7) After step 3 and 4, we get off-springs.

8) After step 5 and 6 we get new positions and velocities of the particles.

9) Now calculate comfort for the off-springs and comfort for the new particles.

10) Combining populations of step (3) and (7)

11) If mutation criteria meet, then perform mutation

12) Combining updated particles from step (8) and updated chromosomes from step 

(10)

13) Selecting best individuals from combined population in step (12)

14) Repeat above 13 steps until termination criteria arise or fitness function does not 

improve.

15) Then after arrival of termination criteria select best fitted individual.

These parameters were selected after running the hybrid algorithm for λ times to get 

optimal results. Hybrid optimization stops either when the maximum number of generation’s 
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Ω met, or no significant change is observed in the fitness for µ (few successive) generations. 

The maximum population size selected is 100. The variable two point crossover is performed 

with the probability of 0.9 and mutation rate of 0.1. GA parameters (population size, 

crossover rate and mutation rate) have been set after running GA for number of times. The 

experimentations are performed using Intel(R) Core(TM)i3-2130 3.40 GHz with 8GB RAM. 

The C # 2012 is used for the simulation. When hybrid optimization evaluation process 

finishes, best fitted individual is selected to get optimal parameters and comfort index.

3.2.1.2. A hybrid approach to optimization of energy and 

power control prediction

3.2.1.2.1. Proposed architecture

In Figure 3.4 we show hybrid optimized power control model for the energy management 

and efficiency. Initially, the environmental parameters are passed to smoothing component for 

preprocessing. After smoothing, the smoothed environmental parameters and user set points 

are passed to PSO optimization component of the model to get optimal parameters. The PSO 

based optimal parameters are then again optimized using GA based optimizer to get finally 

optimized parameters. Then optimized parameters are used as user comfort index to calculate 

the occupant’s comfort index. Three controllers based on fuzzy logic are used to control 

temperature, illumination and air-quality. Coordinator agent adjusted the power according to 
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the optimized required power from the fuzzy controllers and available power from the 

external power grid or internal local power sources. Coordinator agent performs the function 

of coordination among the three fuzzy controllers based on the required power and available 

power. 

The consumed power is passed to Kalman filter model to predict power consumption. The 

predicted power is input to the building actuators. At the end the results are analyzed, 

visualized and communicated with the users. Actuators received message information’s (MI) 

to turn ON/OFF. 

Figure 3.4. Hybrid optimization algorithm based on PSO and GA serial

3.2.1.2.2. Optimization algorithm based on PSO and GA serial

Serial based PSO and GA steps for parameters optimizations and comfort index are:
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1. Initialize

a) Set constants k max, c1, c2, r1, r2, w0

b) Randomly initialize particle positions xi Є D in Rn for i = 1…p

c) Randomly initialize particle velocities 0 <= v0
i<= v0

max for i = 1…p

d) Set k = 1

2. Optimize

a) Evaluate fk
i for particle X i

k

b) If f i
k <= f i

best then f i
best = f i

k, p
i = x i

k

c) If f i
k <= f g

best then f g
best = f i

k, p
g = xi

k

d) If stopping condition is satisfied then go to step 3

e) Update particle velocity vector vi
k+1 Eq. (3.1)

f) Update particle position vector xi
k+1 Eq. (3.2)

g) Increment i (index for particles). If i > pop then increment k (index for 

iterations), and set i = 1

h) Go to 2 (a)

3. Report Results

4. Terminate PSO optimization and getting optimal parameters.

5. Initial random population for GA

6. Updating initial random population of GA by combining with optimal PSO based 

parameters

7. Selecting best individuals from combined populations of step (6) as an initial 

population of GA

8. Calculate fitness function for user comfort using Eq. (1.1)

9. Select best parent individuals using any of three selection criteria (Rank, Roulette 
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wheel or Tournament selection), we used rank based selection

10.Perform ‘variable two point’ crossover of the selected individuals

11.After crossover, we get off-springs

12.Now calculate comfort for the off-springs

13.Combining populations of step (9) and (11)

14.If mutation criteria meet, then perform mutation

15.Repeat steps from 5 to 14 until termination criteria arise or algorithm does not 

improve. 

16.Then after arrival of termination criteria select best fitted chromosome.

These parameters were selected after running the algorithm for λ times to get optimal 

results. GA stops either when the maximum number of generation’s Ω met, or no significant 

change is observed in the fitness for µ (few successive) generations. The maximum 

population size selected is 100. The variable two point crossover is performed with the 

probability of 0.9 and mutation rate of 0.1. GA parameters (population size, crossover rate 

and mutation rate) have been set after running GA for number times. The experimentations 

are performed using Intel(R) Core(TM)i3-2130 3.40 GHz with 8GB RAM. The C # 2012 is 

used for the simulation. When GA evaluation process finishes, best fitted chromosome is to be 

selected to get optimal parameters and comfort index.
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3.2.1.3. Hybrid optimization energy management and 

predicted power control model

3.2.1.3.1. Proposed architecture

In Figure 3.5 we show hybrid optimized power control model for the energy management 

and efficiency. Initially, the environmental parameters are passed to smoothing component for 

preprocessing. After smoothing, the smoothed environmental parameters and user set points 

are passed to hybrid optimization component of the model to get optimal parameters. Then 

optimized parameters are used as user comfort index to calculate the occupant’s comfort 

index. Three controllers based on fuzzy logic are used to control temperature, illumination 

and air-quality. Coordinator agent adjusted the power according to the optimized required 

power from the fuzzy controllers and available power from the external power grid or internal 

local power sources. Coordinator agent performs the function of coordination among the three 

fuzzy controllers based on the required power and available power. The consumed power is 

passed to the ARIMA model and Kalman filter to predict the consumed power in serial 

fashion. First the consumed power is passed to ARIMA model to predict the power 

consumption and then the predicted power is input to the Kalman filter model. At the end we 

take the average of the prediction results to get final prediction of power consumption. The 

average predicted power is input to the building actuators. At the end the results are analyzed, 

visualized and communicated with the users. Actuators received message information’s (MI) 
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to turn ON/OFF.

Figure 3.5. Hybrid optimization algorithm based on PSO and MIGA serial

3.2.1.3.2. Optimization algorithm based on PSO and MIGA serial

Serial based PSO and MIGA steps for parameters optimizations and comfort index are:

1. Initialize

a) Set constants k max, c1, c2, r1, r2, w0

b) Randomly initialize particle positions xi Є D in Rn for i = 1…p

c) Randomly initialize particle velocities 0 <= v0
i<= v0

max for i = 1…p

d) Set k = 1

2. Optimize

a) Evaluate fk
i for particle X i

k

b) If f i
k <= f i

best then f i
best = f i

k, p
i = x i

k
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c) If f i
k <= f g

best then f g
best = f i

k, p
g = xi

k

d) If stopping condition is satisfied then go to step 3

e) Update particle velocity vector vi
k+1 Eq. (3.1)

f) Update particle position vector xi
k+1 Eq. (3.2)

g) Increment i (index for particles). If i > pop then increment k (index for 

iterations), and set i = 1

h) Go to 2 (a)

3. Report results

4. Terminate PSO optimization and getting optimal parameters.

5. Initial random population for MIGA

6. Updating initial random population of MIGA by combining with optimal PSO based 

parameters

7. Selecting best individuals from combined populations of step (6) as an initial 

population of MIGA

8. Divide initial population in step (7) into multiple Islands

9. Perform Step (4) to Step (9) for each of the Island

10.Calculate fitness function for user comfort using equation Eq. (1.1)

11.Select best individuals using any of three selection criteria (Rank, Roulette wheel or 

Tournament selection), we used rank based selection

12.Perform ‘variable two point’ crossover of the selected individuals

13.After crossover, we get off-springs

14.Now calculate comfort for the off-springs.

15.Combining populations of step (5) and (7).

16.If mutation criteria meet, then perform mutation
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17.If migration criteria meet, then perform migration 

18.Repeat steps from 5 to 14 until termination criteria arise or algorithm does not 

improve.

19.Then after the arrival of termination criteria select best fitted chromosomes from 

each island.

These parameters were selected after running the hybrid algorithm for λ times to get

optimal results. Hybrid optimization stops either when the maximum number of generation’s 

Ω met, or no significant change is observed in the fitness for µ (few successive) generations. 

The maximum population size selected is 100. The variable two point crossover is performed 

with the probability of 0.9 and mutation rate of 0.1. MIGA parameters (population size, 

crossover rate and mutation rate, migration rate) have been set after running MIGA for 

number of times. The experimentations are performed using Intel(R) Core(TM)i3-2130 3.40 

GHz with 8GB RAM. The C # 2012 is used for the simulation. When hybrid optimization 

evaluation process finishes, best fitted individual is selected to get optimal parameters and 

comfort index.
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3.2.2. Multi-preprocessing hybrid optimization model based 

on prediction

3.2.2.1. Energy efficient hybrid optimization and predicted 

power control model

3.2.2.1.1. Proposed architecture

In Figure 3.6 we show hybrid optimized power control model for the energy management 

and efficiency. Initially, the environmental parameters are passed to smoothing component for 

preprocessing. After smoothing, the smoothed environmental parameters and user set points 

are passed to hybrid optimization component of the model to get optimal parameters. Then 

optimized parameters are used as user comfort index to calculate the occupant’s comfort 

index. In post-processing the results are analyzed, published and communicated with the 

users. Then the optimal parameters are again preprocessed before it can be forwarded to the 

fuzzy controllers. The aim behind smoothing as preprocessing at this level is to improve the 

optimal parameters and occupants comfort index. So the occupants comfort index is 

calculated again using updated optimal parameters to get updated occupants comfort index. 

This improves the occupants comfort index. Three controllers based on fuzzy logic are used 

to control temperature, illumination and air-quality. Each fuzzy controller accepts as input, the 

error difference between smoothed environmental parameters and updated optimal 
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parameters. Coordinator agent adjusted the power according to the optimized required power

from the fuzzy controllers and available power from the external power grid or internal local 

power sources. Coordinator agent performs the function of coordination among the three 

fuzzy controllers based on the required power and available power. The consumed power is 

then post-processed to published and communicate results with users.  

Figure 3.6. Hybrid optimization algorithm based on PSO and GA parallel with multi-preprocessing

The consumed power is preprocessed before it can be passed on to the prediction 

component. At this level of preprocessing smoothing is performing to remove any outliers. 

After preprocessing the consumed power is updated with new revised and smoothed power 

consumption. Then the updated consumed power is passed to the Kalman filter model to 

predict power consumption. At the end we again applied post-processed the predicted power 
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consumption by analyzing the results and communicate these results with the users. Actuators 

received message information’s (MI) to turn ON/OFF.

3.2.2.1.2. Optimization algorithm based on PSO and GA parallel

Hybrid optimization steps for parameters optimizations and comfort index based on GA 

and PSO are:

1. Initial random population/particles

2. Calculate fitness function for user comfort using Eq. (1.1)

3. Select best parent individuals using any of three selection criteria (Rank, Roulette 

wheel or Tournament selection), we used rank based selection

4. Perform ‘variable two point’ crossover of the selected individuals 

5. Update particle positions using Eq. (3.1).

6. Update particle velocities using Eq. (3.2).

7. After step 3 and 4, we get off-springs.

8. After step 5 and 6 we get new positions and velocities of the particles.

9. Now calculate comfort for the off-springs and comfort for the new particles.

10.Combining populations of step (3) and (7)

11.If mutation criteria meet, then perform mutation

12.Combining updated particles from step (8) and updated chromosomes from step 

(10)
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13.Selecting best individuals from combined population in step (12)

14.Repeat above 13 steps until termination criteria arise or fitness function does not 

improve.

15.Then after arrival of termination criteria select best fitted individual.

16.Update optimal parameters after smoothing to get updated parameters

17.Update comfort index using updated parameters

These parameters were selected after running the hybrid algorithm for λ times to get 

optimal results. Hybrid optimization stops either when the maximum number of generation’s 

Ω met, or no significant change is observed in the fitness for µ (few successive) generations. 

The maximum population size selected is 100. The variable two point crossover is performed 

with the probability of 0.9 and mutation rate of 0.1. GA parameters (population size, 

crossover rate and mutation rate) have been set after running GA for number of times. The 

experimentations are performed using Intel(R) Core(TM)i3-2130 3.40 GHz with 8GB RAM. 

The C# 2012 is used for the simulation. When hybrid optimization evaluation and smoothing 

process finishes, best fitted individual is selected to get updated optimal parameters and 

comfort index.
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3.2.2.2. Energy efficient hybrid optimization and power 

control prediction model

3.2.2.2.1. Proposed architecture

In Figure 3.7 we show hybrid optimized power control model for the energy management 

and efficiency. Initially, the environmental parameters are passed to smoothing component for 

preprocessing. After smoothing, the smoothed environmental parameters and user set points 

are passed to PSO optimization component of the model to get optimal parameters. The PSO 

based optimal parameters are then again optimized using GA based optimizer to get finally 

optimized parameters. Then optimized parameters are used as user comfort index to calculate 

the occupant’s comfort index. In post-processing the results are analyzed, published and 

communicated with the users. Then the optimal parameters are again preprocessed before it 

can be forwarded to the fuzzy controllers. The basic purpose of smoothing before control part 

of the model is to improve the optimal parameters and occupants comfort index of GA based 

optimization. The GA based occupants comfort index is calculated again using updated 

optimal parameters to get updated occupants comfort index. This improves the occupants 

comfort index. In control part of the model, three controllers based on fuzzy logic are used to 

control temperature, illumination and air-quality respectively. The fuzzy controllers received 

as input, the error difference between smoothed environmental parameters and updated 

optimal parameters. The coordinator agent adjusted the power according to the optimized 
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required power from the fuzzy controllers and available power from the external power grid 

or internal local power sources. The consumed power is then post-processed to published and 

communicate consumed power results with users. The consumed power is preprocessed 

before it can be passed on to the prediction component. At this level of preprocessing 

smoothing is applied to normalized data and remove outliers. After preprocessing, the 

consumed power is revised with new updated and smoothed power consumption. Then the 

updated consumed power is passed to the Kalman filter model to predict power consumption. 

Finally, we again post-processed the predicted power consumption by analyzing the results

and communicate these results with the users. Actuators received message information’s (MI) 

to turn ON/OFF.

Figure 3.7. Hybrid optimization algorithm based on PSO and GA serial with multi-preprocessing
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3.2.2.2.2. Optimization algorithm based on PSO and GA serial

Serial based PSO and GA steps for parameters optimizations and comfort index are:

1. Initialize

a) Set constants k max, c1, c2, r1, r2, w0

b) Randomly initialize particle positions xi Є D in Rn for i = 1…p

c) Randomly initialize particle velocities 0 <= v0
i<= v0

max for i = 1…p

d) Set k = 1

2. Optimize

a. Evaluate fk
i for particle X i

k

b. If f i
k <= f i

best then f i
best = f i

k, p
i = x i

k

c. If f i
k <= f g

best then f g
best = f i

k, p
g = xi

k

d. If stopping condition is satisfied then go to step 3

e. Update particle velocity vector vi
k+1 Eq. (3.1)

f. Update particle position vector xi
k+1 Eq. (3.2)

g. Increment i (index for particles). If i > pop then increment k (index for 

iterations), and set i = 1

h. Go to 2 (a)

3. Report Results

4. Terminate PSO optimization and getting optimal parameters.

5. Initial random population for GA

6. Updating initial random population of GA by combining with optimal PSO based 

parameters

7. Selecting best individuals from combined populations of step (6) as an initial 
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population of GA 

8. Calculate fitness function for user comfort using Eq. (1.1)

9. Select best parent individuals using any of three selection criteria (Rank, Roulette 

wheel or Tournament selection), we used rank based selection

10.Perform ‘variable two point’ crossover of the selected individuals

11.After crossover, we get off-springs

12.Now calculate comfort for the off-springs

13.Combining populations of step (9) and (11)

14.If mutation criteria meet, then perform mutation

15.Repeat steps from 5 to 14 until termination criteria arise or algorithm does not 

improve. 

16.Then after arrival of termination criteria select best fitted chromosome

17.Update optimal parameters after smoothing to get updated parameters

18.Update comfort index using updated parameters

These parameters were selected after running the algorithm for λ times to get optimal 

results. GA stops either when the maximum number of generation’s Ω met, or no significant 

change is observed in the fitness for µ (few successive) generations. The maximum 

population size selected is 100. The variable two point crossover is performed with the 

probability of 0.9 and mutation rate of 0.1. GA parameters (population size, crossover rate 

and mutation rate) have been set after running GA for number times. The experimentations 

are performed using Intel(R) Core(TM)i3-2130 3.40 GHz with 8GB RAM. The C # 2012 is 

used for the simulation. When hybrid optimization evaluation and smoothing process finishes, 
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best fitted individual is selected to get updated optimal parameters and comfort index.

3.2.2.3. Hybrid Energy Optimization and Prediction Based on 

PSO and MIGA Serial

3.2.2.3.1. Proposed architecture

In Figure 3.8 we show hybrid optimized power control model for the energy management 

and efficiency. Initially, the environmental parameters are passed to smoothing component for 

preprocessing. After smoothing, the smoothed environmental parameters and user set points 

are passed to hybrid optimization component of the model to get optimal parameters. Then 

optimized parameters are used as user comfort index to calculate the occupant’s comfort 

index. In post-processing the results are analyzed, published and communicated with the 

users. Then the optimal parameters are again preprocessed before it can be forwarded to the 

fuzzy controllers. The fundamental purpose of smoothing before control part of the model is 

to improve the optimal parameters and occupants comfort index of MIGA based optimization. 

The MIGA based occupants comfort index is calculated again using updated optimal 

parameters to get updated occupants comfort index. This improves the occupants comfort 

index. In control part of the model, three controllers based on fuzzy logic are used to control 

temperature, illumination and air-quality respectively. The fuzzy controllers received as input, 

the error difference between smoothed environmental parameters and updated optimal 
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parameters. The coordinator agent adjusted the power according to the optimized required 

power from the fuzzy controllers and available power from the external power grid or internal 

local power sources. The consumed power is then post-processed to published and 

communicate consumed power results with users. The consumed power is preprocessed 

before it can be passed on to the prediction component. At this level of preprocessing 

smoothing is applied to normalized data and remove outliers. 

Figure 3.8. Hybrid optimization algorithm based on PSO and MIGA serial with multi-preprocessing

After preprocessing, the consumed power is revised with new updated and smoothed 

power consumption. Then the updated consumed power is passed to the hybrid prediction part 

of the model to predict power consumption. Initially the consumed power is passed to the 

ARIMA prediction model to predict power consumption and then the predicted power 
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consumption is again passed to the Kalman filter to predict the power consumption. Then 

finally we took the average of the too predictions to get the predicted power consumption. At 

the last we again post-processed the predicted power consumption by analyzing the results 

and communicate these results. Actuators received message information’s (MI) to turn 

ON/OFF.

3.2.2.3.2. Optimization algorithm based on PSO and MIGA serial

Serial based PSO and MIGA steps for parameters optimizations and comfort index is:

1. Initialize

a) Set constants k max, c1, c2, r1, r2, w0

b) Randomly initialize particle positions xi Є D in Rn for i = 1…p

c) Randomly initialize particle velocities 0 <= v0
i<= v0

max for i = 1…p

d) Set k = 1

2. Optimize

a) Evaluate fk
i for particle X i

k

b) If f i
k <= f i

best then f i
best = f i

k, p
i = x i

k

c) If f i
k <= f g

best then f g
best = f i

k, p
g = xi

k

d) If stopping condition is satisfied then go to step 3

e) Update particle velocity vector vi
k+1 Eq. (3.1)

f) Update particle position vector xi
k+1 Eq. (3.2)

g) Increment i (index for particles). If i > pop then increment k (index for 

iterations), and set i = 1

h) Go to 2 (a)
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3. Report results

4. Terminate PSO optimization and getting optimal parameters.

5. Initial random population for MIGA

6. Updating initial random population of MIGA by combining with optimal PSO based 

parameters

7. Selecting best individuals from combined populations of step (6) as an initial 

population of MIGA

8. Divide initial population in step (7) into multiple Islands

9. Perform Step (4) to Step (9) for each of the Island

10.Calculate fitness function for user comfort using equation (1.1)

11.Select best individuals using any of three selection criteria (Rank, Roulette wheel or 

Tournament selection), we used rank based selection

12.Perform ‘variable two point’ crossover of the selected individuals

13.After crossover, we get off-springs

14.Now calculate comfort for the off-springs.

15.Combining populations of step (5) and (7).

16.If mutation criteria meet, then perform mutation

17.If migration criteria meet, then perform migration 

18.Repeat steps from 5 to 14 until termination criteria arise or algorithm does not 

improve.

19.Then after the arrival of termination criteria select best fitted chromosomes from 

each island.

20.Update optimal parameters after smoothing to get updated parameters

21.Update comfort index using updated parameters
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These parameters were selected after running the hybrid algorithm for λ times to get 

optimal results. Hybrid optimization stops either when the maximum number of generation’s 

Ω met, or no significant change is observed in the fitness for µ (few successive) generations. 

The maximum population size selected is 100. The conventional single point crossover is 

performed with the probability of 0.9 and mutation rate of 0.1. MIGA parameters (population 

size, crossover rate and mutation rate, migration rate) have been set after running MIGA for 

number of times. The experimentations are performed using Intel(R) Core(TM)i3-2130 3.40 

GHz with 8GB RAM. The C # 2012 is used for the simulation. When hybrid optimization 

evaluation process finishes, best fitted individual is selected to get optimal parameters and 

comfort index.
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4. Simulation and analysis

4.1. Single preprocessing hybrid optimization model based 

on prediction

4.1.1. Optimization algorithm based on PSO and GA parallel

4.1.1.1. Simulation environment

Real environment is difficult to implement. For the demonstration of our thesis work we 

carried out simulations in C# 2012. User preference set parameters range is Tset = [18, 24] (C), 

Lset = [720, 880] (lux) and Aset = [700, 880] (ppm) for simulator.

The environmental configuration remains the same for all the experiments. The uniform 

configuration helps in the comparison of results with existing techniques. We developed the 

simulator by using .Net programming environment with the configuration shown in Table 4.1.

To evaluate the hybrid energy optimization and power consumption prediction algorithms 

and actuator control, we developed a smart IoT simulator using .Net programming 

environment with the modules and its configuration shown in Table 4.1. Each of these 

modules for each of the applied algorithms is discussed in next successive sections.

Table 4.1. Simulation environment

Module Hardware Software Remark

Virtual sensing data for Intel(R) Xeon(R) CPU Microsoft C#
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temperature, illumination 

and air-quality

W3503 @2.4GHz 

2.39GHz 4GB RAM

Visual 

Studio

Windows 

7

Preprocessing Intel(R) Xeon(R) CPU 

W3503 @2.4GHz 

2.39GHz 4GB RAM

Microsoft 

Visual 

Studio

C#

Windows 

7

Optimization of user set 

parameters (temperature, 

illumination and air-quality)

Intel(R) Xeon(R) CPU 

W3503 @2.4GHz 

2.39GHz 4GB RAM

Microsoft 

Visual 

Studio

C#

Windows 

7

Temperature, illumination 

and air-quality control

Intel(R) Xeon(R) CPU 

W3503 @2.4GHz 

2.39GHz 4GB RAM

Microsoft 

Visual 

Studio

C#

Windows 

7

Prediction of power 

consumption for 

temperature, illumination 

and air-quality

Intel(R) Xeon(R) CPU 

W3503 @2.4GHz 

2.39GHz 4GB RAM

Microsoft 

Visual 

Studio

C#

Windows 

7

Message information for 

Actuators

Intel(R) Xeon(R) CPU 

W3503 @2.4GHz 

2.39GHz 4GB RAM

Microsoft 

Visual 

Studio

C#

Windows 

7

Figure 4.1 shows the simulated energy management model for evaluation of hybrid energy 

optimization and predictions. Each part of the model is shown with its corresponding data or 
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results. Virtual environment data for air-quality is sensing data obtained from the virtual 

sensor emulator. Similarly temperature and illumination emulators provide the virtual 

environment data for the temperature and illumination. The virtual sensing data is then 

preprocessed to get the processed data. The preprocessed data is then input to the hybrid 

energy optimization component to get the optimized values for each of the temperature, 

illumination and air-quality parameters. The optimal parameter for air-quality is also shown in 

the Figure 4.1. 

Figure 4.1. Simulated environment of hybrid energy optimization and prediction model

Control component uses fuzzy logic to provide the required power. This component 

accepts error difference between optimal parameters and processed (smooth) environmental 

parameters to provide required power. The required power for air-quality is shown in Figure 
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4.1. Power consumption prediction result for air-quality is also shown in Figure 4.1. The 

power is predicted using Kalman filter, ARIMA model or combination of both. Message 

information for air-quality is also depicted in Figure 4.1. These messages describe the 

different messages received by the Fan actuator as input to change its states from on to off 

and vice versa. When actuators states changes the indoor environment is changes and updated 

according to the optimal parameters. The process is continued until the indoor environment 

gets updated completely.

Table 4.2 shows the detailed emulator and simulation environment. Real environment 

system consists of temperature sensor emulator, illumination sensor emulator, air-quality 

sensor emulator, air-conditioned emulator, boiler emulator, light emulator and fan emulator. 

Temperature sensor emulator, illumination sensor emulator and air-quality sensor emulator 

are used to build and create temperature, illumination and air-quality sensing environment.

The sensing data for temperature, illumination and air-quality is generated by the temperature, 

illumination and air-quality emulators for each hour of the day. The created environment is 

the virtual sensing environment for each of the temperature, illumination and air-quality

sensing. VirTemperatureController, VirIlluminationController and VirAirQualityController 

are the names of the programs to create virtual temperature, illumination and air-quality

sensing environment. The virtual temperature, virtual illumination environment and virtual 

air-quality environment is shown in Figure 4.2, Figure 4.3 and Figure 4.4 respectively. The 

virtual sensing environment shows for 24 hours of the day. Each one point represents one 
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hour of the day. In case of temperature the unit is centigrade, for illumination the unit of 

measurement is lux and for air-quality, the measurement unit is ppm. GetCurrTmp(), 

AffectTmp(), GetCurrLux(), AffectLux(), GetCurrAq(), AffectAq(), SetLbp(), HandleLbp1()

and UpdateDataUi() functions are used to get current temperature, current illumination and 

current air-quality of the environment. Affected temperature, affected illumination and 

affected air-quality are the new temperature, new illumination and new air-quality caused by 

the change of states of the air-conditioned, boilers, and light and fan actuators. The actuators 

changes its states by receiving the optimized message information and this is done by setting 

the affected temperature with respect to the optimal temperature. Then the environment is 

updated based on the change of states of the actuators levels. Form1HPpsogaM1, 

Form1HPpsogaM2, Form1HSpsogaM1, Form1HSpsogaM2, Form1HSpsomigaM1 and 

Form1HSpsomigaM2 are the program names used for optimization of user set parameters

(temperature, illumination and air-quality) and virtual sensing temperature, illumination and 

air-quality data. The functions used by these programs for optimizations are callPSO() and 

callGA(). FuzzyLogicLibrary is used to calculate required power for temperature, 

illumination and air-quality control. KalmanRun() function is used to predict the consumed 

power for each of the temperature, illumination and air-quality. 

Air-conditioned emulator, boiler emulator, light emulator and fan emulators are used to 

control the indoor environment. Air-conditioned emulator is used to control the indoor 

cooling environment, boiler emulator is used for heating the indoor environment, light 
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emulator is used to control indoor lighting and fan emulator is used to control indoor air-

quality. Each emulator received message information to change its current state. Setoff(), 

SetLevel1(), SetLevel2(), SetLevel3(), ReceiveController(), SendController(), SendData(),

StartSend(), SendTmpData(), SendMsgToAc() are the functions used by these actuators to 

received message information and change their levels. There are four states defined for these 

actuator emulators, turn off, turn on at level1, turn on at level 2 and turn on at level3. When 

these emulator actuators received message information then the corresponding state is change 

to affect the indoor environment. SendMsgToAc() sends message information’s to 

corresponding emulator actuator. If the control message information is zero then 

corresponding actuator is turn OFF. If control message information results in value between 0 

and 3 then respective actuator is turn ON at level1 i.e. low speed. If control message 

information results in value between 3 and 6 then respective actuator is turn ON at level2 i.e. 

medium speed. If value is more than 6 then corresponding actuator is turn ON at level3 i.e. 

high speed. All the four actuators used during simulation of this work are shown in Figure 

4.12. 

Table 4.2. Detailed emulator and simulation environment

Real 

environment 

system

Simulation 

environment

system

Program name Library name and 

functions

Temperature 

sensor 

emulator

Virtual 

Temperature

VirTemperatureController, 

Form1HPpsogaM1,

Form1HPpsogaM2,

Form1HSpsogaM1,

Form1HSpsogaM2,

GetCurrTmp(), 

AffectTmp(), 

SetLbp(), 

HandleLbp1(), 

UpdateDataUi()
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Form1HSpsomigaM1,

Form1HSpsomigaM2,

Clskalmanfilter

callSensingData(), 

callPSO(), callGA(), 

FuzzyLogicLibrary, 

KalmanRun(), 

Illumination 

sensor 

emulator

Virtual 

Illumination

VirIlluminationController,

Form1HPpsogaM1,

Form1HPpsogaM2,

Form1HSpsogaM1,

Form1HSpsogaM2,

Form1HSpsomigaM1,

Form1HSpsomigaM2,

Clskalmanfilter

GetCurrTmp(), 

AffectTmp(), 

SetLbp(),HandleLbp1

(), UpdateDataUi(), 

callSensingData(), 

callPSO(), callGA(), 

FuzzyLogicLibrary, 

KalmanRun(),

Air-quality 

sensor 

emulator

Virtual Air-

quality

VirAirQualityController,

Form1HPpsogaM1,

Form1HPpsogaM2,

Form1HSpsogaM1,

Form1HSpsogaM2,

Form1HSpsomigaM1,

Form1HSpsomigaM2,

Clskalmanfilter

GetCurrTmp(), 

AffectTmp(), 

SetLbp(),HandleLbp1

(), UpdateDataUi(), 

callSensingData(), 

callPSO(), callGA(), 

FuzzyLogicLibrary, 

KalmanRun(),

Air-condition 

emulator

Control 

signals/Mess

age 

information

DeviceAirCon,

Form1HPpsogaM1,

Form1HPpsogaM2,

Form1HSpsogaM1,

Form1HSpsogaM2,

Form1HSpsomigaM1,

Form1HSpsomigaM2

Setoff(), SetLevel1(), 

SetLevel2(), 

SetLevel3(), 

ReceiveController(),

SendController(),

SendData(),

StartSend(), 

SendTmpData(), 

SendMsgToAc()

Boiler 

emulator

Control 

signals/Mess

age 

information

DeviceBoiler,

Form1HPpsogaM1,

Form1HPpsogaM2,

Form1HSpsogaM1,

Form1HSpsogaM2,

Form1HSpsomigaM1,

Form1HSpsomigaM2

Setoff(), SetLevel1(), 

SetLevel2(), 

SetLevel3(), 

ReceiveController(),

SendController(), 

SendData(),

StartSend(), 

SendTmpData(), 

SendMsgToBoiler()

Light Control DeviceLight, Setoff(), SetLevel1(), 
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emulator signals/Mess

age 

information

Form1HPpsogaM1,

Form1HPpsogaM2,

Form1HSpsogaM1,

Form1HSpsogaM2,

Form1HSpsomigaM1,

Form1HSpsomigaM2

SetLevel2(), 

SetLevel3(), 

ReceiveController(),

SendController(),

SendData(),

StartSend(), 

SendLuxData(), 

SendMsgToLight()

Fan emulator Control 

signals/Mess

age 

information

DeviceFan,

Form1HPpsogaM1,

Form1HPpsogaM2,

Form1HSpsogaM1,

Form1HSpsogaM2,

Form1HSpsomigaM1,

Form1HSpsomigaM2

Setoff(), SetLevel1(), 

SetLevel2(), 

SetLevel3(), 

ReceiveController(),

SendController(),

SendData(), 

StartSend(), 

SendAqData(), 

SendMsgToFan(CAA

)

4.1.1.2. Simulation analysis

4.1.1.2.1. Virtual environment

In this section we are presenting virtual sensing environment for temperature, illumination 

and air-quality. The virtual sensing environment shows here for 24 hours of the day. Each one 

point represents one hour of the day. In case of temperature the unit is centigrade, for 

illumination the unit of measurement is lux and for air-quality, the measurement unit is ppm. 

Figures 4.2, 4.3 and 4.4 respectively show the virtual sensing environment for temperature, 

illumination and air-quality. The virtual environment shows the change in temperature, 

illumination and air-quality throughout a day. 
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Figure 4.2. Virtual sensing environment for temperature

Figure 4.3. Virtual sensing environment for illumination

Temperature environment starts from 8o degree centigrade and reaches 30o at 11 o’clock of 

the day, it then decreases and reaches almost 8o centigrade. Similarly the change in 

illumination and air-quality starts from 600lux and 600ppm respectively and reaches 900lux 
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and 900ppm at 11 o’clock. Again it decreases and reaches at 600 each at 23 O’clock.

Figure 4.4. Virtual sensing environment for air-quality

4.1.1.2.2. Optimization

Figures 4.5, 4.6 and 4.7 show the optimal environmental parameters for each of the 

temperature, illumination and air-quality. In case of optimal temperature Figure 4.5, the 

optimal temperature changes between 18o to 24o centigrade as compare to virtual sensing 

environment temperature Figure 4.2. The user set points are optimized to [18, 24]. The users 

feel comfortable if the temperature level is between [18, 24]. So we can say that using hybrid 

parallel optimization based on GA and PSO the user set parameters for temperature optimized 

to achieve optimal temperature. In case of optimal illumination Figure 4.6, the illumination

parameters changes between 720o to 880o lux as compare to virtual sensing environment 
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illumination Figure 4.3. The user set points are optimized to [720, 880]. The users feel 

comfortable if the illumination level is between [720, 880]. 

Figure 4.5. Optimal parameters for temperature (Based on PSO and GA parallel)

Figure 4.6. Optimal parameters for illumination (Based on PSO and GA parallel)

So we can say that using hybrid parallel optimization based on GA and PSO, the user set 
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parameters for illumination are optimized to achieve optimal illumination. In case of optimal 

air-quality Figure 4.7, the air-quality parameters changes between 700o to 880o ppm as 

compare to virtual sensing environment air-quality Figure 4.4. The user set points for air-

quality are optimized to [700, 880]. The users feel comfortable when the air-quality level is 

between [700, 880]. So we can say that using hybrid parallel optimization based on GA and 

PSO, the user set parameters for air-quality are optimized to achieve optimal air-quality.

Figure 4.7. Optimal parameters for air-quality (Based on PSO and GA parallel)

4.1.1.2.3. Control messages

Figure 4.8 shows control messages to turn ON/OFF air-condition. If the control message 

value is zero then its means that virtual sensing environment temperature and optimal 

temperature is same and air-condition should be turn OFF. If control message value results in 

value between 0 and 3 then AC will be turn ON slow. If control message value results in value 
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between 3 and 6 then AC will be Turn ON Medium. If value is more than 6 then AC will be 

turn ON in high speed. But for air-con we can see that the message information value does not 

exceeds 6 so the air-con is run at level 1 and 2 most of the time and turn OFF at time 7hrs and 

15hrs . While between 0hrs to 6hrs and between 16hrs to 23hrs the air-con remains Turn OFF 

due to running of boiler.

Figure 4.8. Control messages for Air-con (Based on PSO and GA parallel)

Figure 4.9 shows control messages to Turn ON/OFF boiler. If the control message value is 

zero then its mean that virtual sensing environment temperature and optimal temperature is 

same and boiler should be turn OFF (level 0). If control message value results in value 

between 0 and 3 then the boiler will be turn ON slow (level 1). If control message value 

results in value between 3 and 6 then boiler will be turn on Medium (level 2). If value is more 

than 6 then boiler will be turn ON in high speed (level 3). But for boiler we can see that the 

message information value results in zero between 8hrs and 16hrs and turn OFF. While 
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between 0hrs to 7hrs and between 16hrs to 23hrs the boiler is turn ON for all of its levels.

Figure 4.9. Control messages for Boiler (Based on PSO and GA parallel)

Figure 4.10 shows control messages to turn ON/OFF Light. If the control message value is 

zero then its means that virtual sensing environment illumination and optimal illumination is 

same and light should be turn OFF. If control message value results in value between 0 and 3 

then light will be turn ON slow. If control message value results in value between 3 and 6 

then light will be Turn ON Medium. If value is more than 6 then light will be turn ON in full 

mode (level 3). Here we can see that the message information values results in between 1 and 

18 which means that light is turn ON for all of its levels during 24hrs. The light consumption 

decreases as the day time arrives and increase again as the day time finishes. Figure 4.11 and 

Figure 4.12 shows control messages to turn ON/OFF FAN and the four actuators used during 

IoT simulator implementation to turn them ON/OFF. If the control message value is zero then 

its means that virtual sensing environment air-quality and optimal air-quality is same and 
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FAN should be turn OFF. 

Figure 4.10. Control messages for Light (Based on PSO and GA parallel)

Figure 4.11. Control messages for Fan (Based on PSO and GA parallel)

If control message value result in value between 0 and 3 then FAN will be turn ON slow. If 

control message value results in value between 3 and 6 then FAN will be turn ON Medium. If 
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value is more than 6 then light will be turn ON in high speed. Here we can see that the 

message information values results in more than 6 so the FAN is turn ON for all of its levels, 

while during some specific hours of the day FAN is turn OFF.

4.1.1.2.4. Actuator emulators

The four actuator emulators we considered are shown in Figure 4.12. In case of hybrid 

energy optimization based on prediction using GA and PSO with single preprocessing model 

these actuator emulators received signals shown in Figure 4.8, 4.9, 4.10 and 4.11. Each 

actuator has four levels as shown in Figure 4.12. Level 0, level 1, level 2 and level 3 

represents turn OFF, turn ON slow, turn ON Medium and turn ON high respectively. Each 

emulator received message information to change its current state. When these actuator 

emulators received message information then the corresponding state is change to affect the 

indoor environment. Control signals defined in previous section used as message

information’s to affect corresponding emulator actuator.  If the control message information is 

zero then corresponding emulator actuator is turn OFF. If control message information results 

in value between 0 and 3, then respective emulator actuator is turn ON at level1 i.e. low 

speed. If control message information results in value between 3 and 6 then respective 

actuator is turn ON at level2 i.e. medium speed. If value is more than 6 then corresponding 

actuator is turn ON at level3 i.e. high speed. Here air-con actuator used signals shown in 

Figure 4.8. Air-con actuator changes its states according to these signals. From these signals, 
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we can see that the message information values results values which cause the air-con 

actuator to be turn OFF between 0 to 6 hours and 16 to 23 hours. 

Figure 4.12. Actuators

During this time boiler is running to heat the indoor environment. Boiler actuator uses 

signals shown in Figure 4.9. Boiler actuator state changes according to these signals. Here 

for boiler actuator we can see that the message information value results in zero between 

8hrs and 16hrs, and the boiler remains turn OFF, while between 0hrs to 7hrs and between 

16hrs to 23hrs the boiler is turn ON for all of its levels. Light actuator used signals shown in 

Figure 4.10. Light is turn ON/OFF according to these signals. Here we can see that the 

message information values results in between 1 and 18 which means that light is turn ON 

for all of its levels during 24hrs. The light consumption decreases as the day time arrives and 

increase again as the day time finishes. Similarly, fan actuator received signals shown in 
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Figure 4.11 to operate and change state accordingly. Here we can see that the message 

information values results in more than 6 so the FAN is turn ON for all of its levels, while

during some specific hours of the day FAN is turn OFF.

4.1.2. Optimization algorithm based on PSO and GA serial

4.1.2.1. Simulation environment

The simulation environment is kept same for each of the algorithm. The simulation 

environment is discussed in detailed in section 4.

4.1.2.2. Simulation analysis

4.1.2.2.1. Virtual environment

The simulation virtual environment is kept same for each of the algorithm. The virtual 

environment for each of the virtual sensor temperature, illumination and air-quality is

discussed in detailed in section 4.1.1.2.1.

4.2.1.2.2. Optimization

Figures 4.13, 4.14 and 4.15 show the optimal environmental parameters for each of the 

temperature, illumination and Air-quality. In case of optimal temperature Figure 4.13, the 

optimal temperature changes between 18o to 24o centigrade as compare to virtual sensing 
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environment temperature Figure 4.2. The user set points are optimized to [18, 24]. The users 

feel comfortable if the temperature level is between [18, 24]. From the Figure 4.13, we can 

see that using hybrid serial optimization based on GA and PSO the user set parameters for 

temperature optimized to achieve optimal temperature. In case of optimal illumination Figure 

4.14, the illumination parameters changes between 720o to 880o lux as compare to virtual 

sensing environment illumination Figure 4.3. The user set points are optimized to [720, 880]. 

The users feel relax and comfortable if the illumination level varies between [720, 880]. Here

we can conclude that using hybrid serial optimization based on GA and PSO, the user set 

parameters for illumination are optimized to achieve optimal illumination level. In case of 

optimal air-quality Figure 4.15, the air-quality parameters changes between 700o to 880o ppm 

as compare to virtual sensing environment air-quality Figure 4.4.

Figure 4.13. Optimal parameters for temperature (Based on PSO and GA serial)
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Figure 4.14. Optimal parameters for illumination (Based on PSO and GA serial)

Figure 4.15. Optimal parameters for air-quality (Based on PSO and GA serial)

The user set points for air-quality are optimized to [700, 880] using hybrid optimization 

algorithm based on PSO and GA serial. The users feel happy when the air-quality level is 
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between [700, 880] as defined by user set parameters. From this we can conclude that using 

hybrid serial optimization based on GA and PSO, the user set parameters for air-quality are 

optimized to accomplish optimal air-quality.

4.2.1.2.3. Control messages

In Figures 4.16, 4.17, 4.18 and 4.19 shows the control messages information for hybrid 

optimization algorithm based on PSO and GA serial. Figure 4.16 shows control messages to 

turn ON/OFF air-condition. The same turn ON/OFF mechanism is used here. That is, if the 

control message information results in zero then its means that virtual sensing environment 

for temperature and optimal temperature is same and air-condition should be turn OFF. If 

control message value results in value between 0 and 3 then AC will be turn ON slow. If 

control message value results in value between 3 and 6 then AC will be Turn ON Medium. If 

value is more than 6 then AC will be turn ON in high speed. Here we can see that message 

information’s for air-con results in values more than 6, so the air-con in this case is turn ON 

for all of the levels between 7hrs to 15hrs, while for the rest of the time air-con remains turn 

OFF. 

Figure 4.17 shows control messages to Turn ON/OFF boiler. If the control message value 

is zero then its mean that virtual sensing environment temperature and optimal temperature is 

same and boiler should be turn OFF. If control messages information results in values 

between 0 and 3 then boilers will be turn ON slow. If control message value results in value 
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between 3 and 6 then boiler will be turn on Medium. If value is more than 6 then boiler will 

be turn ON in high speed. Here we can see that boiler is turn ON between 0hrs to 5hrs and 

17hrs to 23hrs.

Figure 4.16. Control messages for Air-con (Based on PSO and GA serial)

Figure 4.17. Control messages for Boiler (Based on PSO and GA serial)

For the rest of the time it is turn OFF due to either running of air-con or environmental 
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parameters and optimal parameters remain same.

Figure 4.18 shows control messages to turn ON/OFF Light. If the control message value is 

zero then its means that virtual sensing environment illumination and optimal illumination is 

same and light should be turn OFF. If control message value results in value between 0 and 3 

then light will be turn ON slow. If control message value results in value between 3 and 6 

then light will be Turn ON Medium. If value is more than 6 then light will be turn ON in full

mode. Here we can see that light is turning ON for all of its levels during 24hrs of the day.

The power consumption for illumination varies as the day progresses to night and vice versa. 

Figure 4.19 shows control messages to turn ON/OFF FAN. If the control message value is 

zero then its means that virtual sensing environment air-quality and optimal air-quality is 

same and FAN should be turn OFF.

Figure 4.18. Control messages for Light (Based on PSO and GA serial)

If control message value result in value between 0 and 3 then FAN will be turn ON slow. If 
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control message value results in value between 3 and 6 then FAN will be turn ON Medium. If 

value is more than 6 then FAN will be turn ON in high speed. Here we can see that FAN is 

turn ON for all of its levels during 24hrs of the day. Most of the time, FAN is running at level 

2 and level 3.

Figure 4.19. Control messages for Fan (Based on PSO and GA serial)

4.2.1.2.4. Actuator emulators

In case of hybrid energy optimization based on prediction using GA and PSO serial with 

single preprocessing model the actuator emulators received signals shown in Figure 4.16, 

4.17, 4.18 and 4.19. The control signals shown in Figure 4.16, 4.17, 4.18 and 4.19 shows the 

signals created by the hybrid energy optimization algorithm based on PSO and GA serial 

algorithm. From Figure 4.16, we can see that message information’s for air-con actuator

results in values more than 6, so the air-con in this case is turn ON for all of the levels 
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between 7hrs to 15hrs, while for the rest of the time air-con remains turn OFF. From Figure 

4.17, we can see that boiler actuator is turn ON between 0hrs to 5hrs and 17hrs to 23hrs. For 

the rest of the time it is turn OFF due to either running of air-con or environmental parameters 

and optimal parameters remain same. From Figure 4.18, we can see that light actuator is 

turning ON for all of its levels during 24hrs of the day. The power consumption for 

illumination varies as the day progresses to night and vice versa. From Figure 4.19, we can 

see that FAN actuator is turn ON for all of its levels during 24hrs of the day. Most of the time, 

FAN is running at level 2 and level 3.

4.1.3. Optimization algorithm based on PSO and MIGA 

serial

4.1.3.1. Simulation environment

The simulation environment is kept same for each of the algorithm. The simulation 

environment is discussed in detailed in section 4.

4.1.3.2. Simulation analysis

4.1.3.2.1. Virtual environment

The simulation virtual environment is kept same for each of the algorithm. The virtual 

environment for each of the virtual sensor temperature, illumination and air-quality is 
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discussed in detailed in section 4.1.1.2.1.

4.1.3.2.2. Optimization

Figures 4.20, 4.21 and 4.22 show the optimal environmental parameters for each of the 

temperature, illumination and air-quality. In case of optimal temperature Figure 4.20, the 

optimal temperature changes between 18o to 24o centigrade as compare to virtual sensing

environment temperature Figure 4.2. The user set points are optimized to [18, 24] using 

hybrid serial optimization based on PSO and MIGA. The users feel comfortable if the 

temperature level is between [18, 24]. 

From Figure 4.20, we can see that using hybrid serial optimization based on PSO and 

MIGA the user set parameters for temperature optimized to achieve optimal temperature. In 

case of optimal illumination Figure 4.21, the illumination parameters changes between 720o to 

880o lux as compare to virtual sensing environment illumination Figure 4.3. The user set 

points are optimized to [720, 880]. The users feel relax and comfortable if the illumination

level varies between [720, 880]. Here we can conclude that using hybrid serial optimization 

based on PSO and MIGA, the user set parameters for illumination are optimized to achieve 

optimal illumination level.

In case of optimal air-quality Figure 4.22, the air-quality parameters changes between 700o

to 880o ppm as compare to virtual sensing environment air-quality Figure 4.4. The user set 

points for air-quality are optimized to [700, 880] using hybrid serial optimization based on 
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PSO and MIGA.

Figure 4.20. Optimal parameters for temperature (Based on PSO and MIGA serial)

Figure 4.21. Optimal parameters for illumination (Based on PSO and MIGA serial)

The users feel happy when the air-quality level is between [700, 880] as defined by user 

set parameters. From this we can conclude that using hybrid serial optimization based on PSO 
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and MIGA, the user set parameters for air-quality are optimized to accomplish optimal air-

quality.

Figure 4.22. Optimal parameters for air-quality (Based on PSO and MIGA serial)

4.1.3.2.3. Control messages

In Figures 4.23, 4.24, 4.25 and 4.26 shows the control messages information for hybrid 

optimization algorithm based on PSO and GA serial. Figure 4.23 shows control messages to 

turn ON/OFF air-condition. The same turn ON/OFF mechanism is used here. That is, if the 

control message information results in zero then its means that virtual sensing environment 

for temperature and optimal temperature is same and air-condition should be turn OFF. If 

control message value results in value between 0 and 3 then AC will be turn ON slow. If 

control message value results in value between 3 and 6 then AC will be Turn ON Medium. If 

value is more than 6 then AC will be turn ON in high speed. Here we can see that message 
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information’s for air-con results in values more than 6, so the air-con in this case is turn ON 

for all of the levels between 7hrs to 15hrs, while for the rest of the time air-con remains turn 

OFF. 

Figure 4.24 shows control messages to Turn ON/OFF boiler. If the control message value 

is zero then its mean that virtual sensing environment temperature and optimal temperature is 

same and boiler should be turn OFF. If control messages information results in values 

between 0 and 3 then boilers will be turn ON slow. If control message value results in value 

between 3 and 6 then boiler will be turn on Medium. 

Figure 4.23. Control messages for Air-con (Based on PSO and MIGA serial)

If value is more than 6 then boiler will be turn ON in high speed. Here we can see that 

boiler is turn ON between 0hrs to 5hrs and 17hrs to 23hrs. For the rest of the time it is turn 

OFF due to either running of air-con or environmental parameters and optimal parameters 

remain same.



115

Figure 4.24. Control messages for Boiler (Based on PSO and MIGA serial)

Figure 4.25 shows control messages to turn ON/OFF Light. If the control message value is 

zero then its means that virtual sensing environment illumination and optimal illumination is 

same and light should be turn OFF. If control message value results in value between 0 and 3 

then light will be turn ON slow. If control message value results in value between 3 and 6 

then light will be Turn ON Medium. If value is more than 6 then light will be turn ON in full 

mode. Here we can see that light is turning ON for all of its levels during 24hrs of the day. 

The power consumption for illumination varies as the day progresses to night and vice versa. 

Figure 4.26 shows control messages to turn ON/OFF FAN. If the control message value is 

zero then its means that virtual sensing environment air-quality and optimal air-quality is 

same and FAN should be turn OFF.

If control message value result in value between 0 and 3 then FAN will be turn ON slow. If 

control message value results in value between 3 and 6 then FAN will be turn ON Medium. If 



116

value is more than 6 then FAN will be turn ON in high speed. Here we can see that FAN is 

turn ON for all of its levels during 24hrs of the day. Most of the time, FAN is running at level 

2 and level 3.

Figure 4.25. Control messages for Light (Based on PSO and MIGA serial)

Figure 4.26. Control messages for Fan (Based on PSO and MIGA serial)
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4.1.3.2.4. Actuator emulators

In case of hybrid energy optimization based on prediction using MIGA and PSO with 

single preprocessing model the actuator emulators received signals shown in Figure 4.23, 

4.24, 4.25 and 4.26. Hybrid energy optimization algorithm based on PSO and MIGA serial 

algorithm creates control signals described in Figure 4.23, 4.24, 4.25 and 4.26 respectively. 

From Figure 4.23, we can see that message information’s for air-con actuator results in values 

more than 6, so the air-con emulator in this case is turn ON for all of the levels between 7hrs 

to 15hrs, while for the rest of the time air-con remains turn OFF. From Figure 4.24, we can 

see that boiler actuator is turn ON between 0hrs to 5hrs and 17hrs to 23hrs. For the rest of the 

time it is turn OFF due to either running of air-con emulator or environmental parameters and 

optimal parameters remain same. From Figure 4.25, we can see that FAN actuator is turn ON 

for all of its levels during 24hrs of the day. Most of the time FAN emulator will be in running 

mode and switching between level 2 and level 3. From Figure 4.26, we can see that light 

actuator is turning ON for all of its levels during 24hrs of the day. 
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4.2. Multi-preprocessing hybrid optimization model based 

on prediction

4.2.1. Optimization algorithm based on PSO and GA parallel

4.2.1.1. Simulation environment

The simulation environment is kept same for each of the algorithm. The simulation 

environment is discussed in detailed in section 4.

4.2.1.2. Simulation analysis

4.2.1.2.1. Virtual environment

The simulation virtual environment is kept same for each of the algorithm. The virtual 

environment for each of the virtual sensor temperature, illumination and air-quality is 

discussed in detailed in section 4.1.1.2.1.

4.2.1.2.2. Optimization

Figures 4.27, 4.28 and 4.29 show the optimal environmental parameters for each of the 

temperature, illumination and air-quality using hybrid optimization algorithm based on PSO 

and GA parallel with multi-preprocessing. In case of optimal temperature Figure 4.27, the 

optimal temperature changes between 18o to 24o centigrade as compare to virtual sensing 
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environment temperature Figure 4.2. The user set points are optimized to [18, 24] using 

hybrid optimization algorithm based on PSO and GA parallel with multi-preprocessing. The 

users feel comfortable when the temperature varies between [18, 24]. We can say that using 

hybrid parallel optimization based on GA and PSO with multi-preprocessing, the user set 

parameters for temperature optimized to achieve optimal temperature. 

In case of optimal illumination Figure 4.28, the illumination parameters changes between 

720o to 880o lux as compare to virtual sensing environment illumination Figure 4.3. The user 

set points are optimized to [720, 880]. The users feel comfortable when the illumination level 

is between [720, 880]. So we can say that using hybrid parallel optimization based on GA and 

PSO with multi-preprocessing, the user set parameters for illumination are optimized to 

achieve optimal illumination.

Figure 4.27. Optimal parameters for temperature (Based on PSO and GA parallel with multi-

Preprocessing)
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Figure 4.28. Optimal parameters for illumination (Based on PSO and GA parallel with multi-

Preprocessing)

In case of optimal air-quality Figure 4.29, the air-quality parameters changes between 700o

to 880o ppm as compare to virtual sensing environment air-quality Figure 4.4.

Figure 4.29. Optimal parameters for air-quality (Based on PSO and GA parallel with multi-

Preprocessing)
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The user set points for air-quality are optimized to [700, 880] using hybrid parallel 

optimization based on GA and PSO with multi-preprocessing. The users feel comfortable 

when the air-quality level is between [700, 880]. So we can say that using hybrid parallel 

optimization based on GA and PSO with multi-preprocessing, the user set parameters for air-

quality are optimized to accomplish optimal air-quality.

4.2.1.2.3. Control messages

Figure 4.30, Figure 4.31, Figure 4.32 and Figure 4.33 shows the control messages 

information’s using hybrid parallel optimization based on GA and PSO with multi-

preprocessing approach. Figure 4.30 shows control messages to turn ON/OFF air-condition. 

Figure 4.30. Control messages for Air-con (Based on PSO and GA parallel with multi-Preprocessing)

When the control message value is zero then its means that virtual sensing environment 

temperature and optimal temperature is same and air-condition should be turn OFF. When 
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control message value results in value between 0 and 3 then AC will be turn ON slow. If 

control message value results in value between 3 and 6 then AC will be Turn ON Medium. If 

value is more than 6 then AC will be turn ON in high speed. Here we can see that message 

information’s for air-con varies between 0 and 5. So air-con is turn ON for level 1 and level 2 

only. From 0hrs to 6hrs and from 16hrs to 23hrs the air-con remains turn OFF.

Figure 4.31 shows control messages to Turn ON/OFF boiler. When the control message 

value is zero then its mean that virtual sensing environment temperature and optimal 

temperature is same and boiler should be turn OFF. 

Figure 4.31. Control messages for Boiler (Based on PSO and GA parallel with multi-Preprocessing)

When control message value results in value between 0 and 3 then boilers will be turn ON 

slow. If control message value results in value between 3 and 6 then boiler will be turn on 

Medium. If value is more than 6 then boiler will be turn ON in high speed. Here we can see 

that boiler remains turn OFF during 7hrs to 15hrs, while turn ON at different levels between 
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0hrs to 7hrs and 15hrs to 23hrs. Figure 4.32 shows control messages to turn ON/OFF Light.

When the control message value is zero then its means that virtual sensing environment 

illumination and optimal illumination is same and light should be turn OFF.

When control message value results in value between 0 and 3 then light will be turn ON 

slow. When control message value results in value between 3 and 6 then light will be Turn 

ON Medium. If the message information value is more than 6 then light will be turn ON in 

full. Here we can see that the light is turn ON for all of its levels. The power consumption for 

light varies during each hour of the day.

Figure 4.32. Control messages for Light (Based on PSO and GA parallel with multi-Preprocessing)

Figure 4.33 shows control messages to turn ON/OFF FAN. When the control message 

value is zero then its means that virtual sensing environment air-quality and optimal air-

quality is same and FAN should be turn OFF. When control message value result in value 
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between 0 and 3 then FAN will be turn ON slow. When control message value results in value 

between 3 and 6 then FAN will be turn ON Medium. When value is more than 6 then FAN 

will be turn ON in high speed. Here we can see that FAN is running during 24hours of the 

day. Each hour different power is consumed by the FAN.

Figure 4.33. Control messages for Fan (Based on PSO and GA parallel with multi-Preprocessing)

4.2.1.2.4. Actuator emulators

In case of hybrid energy optimization based on prediction using GA and PSO with multi-

preprocessing model the actuator emulators received signals shown in Figure 4.30, 4.31, 4.32 

and 4.33. Hybrid energy optimization algorithm based on PSO and GA and multi-

preprocessing model creates control signals presented in Figure 4.30, 4.31, 4.32 and 4.33 

respectively. From Figure 4.30, we can see that message information’s for air-con actuator
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varies between 0 and 5. So air-con is turn ON for level 1 and level 2 only. From 0hrs to 6hrs 

and from 16hrs to 23hrs the air-con remains turn OFF. From Figure 4.31, we can see that 

boiler actuator remains turn OFF during 7hrs to 15hrs, while turn ON at different levels 

between 0hrs to 7hrs and 15hrs to 23hrs. From Figure 4.32, we can see that the light emulator 

is turn ON for all of its levels. The power consumption for light varies during each hour of the 

day. From Figure 4.33, we can see that FAN actuator is running during 24hours of the day. 

Each hour different power is consumed by the FAN according to the control signals it 

received.

4.2.2. Optimization algorithm based on PSO and GA serial

4.2.2.1. Simulation environment

The simulation environment is kept same for each of the algorithm. The simulation 

environment is discussed in detailed in section 4.

4.2.2.2. Simulation analysis

4.2.2.2.1. Virtual environment

The simulation virtual environment is kept same for each of the algorithm. The virtual 

environment for each of the virtual sensor temperature, illumination and air-quality is 

discussed in detailed in section 4.1.1.2.1.
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4.2.2.2.2. Optimization

Figures 4.34, 4.35 and 4.36 show the optimal environmental parameters for each of the 

temperature, illumination and air-quality using hybrid serial optimization based on GA and 

PSO with multi-preprocessing. In case of optimal temperature Figure 4.34, the optimal 

temperature changes between 18o to 24o centigrade as compare to virtual sensing environment 

temperature Figure 4.2. The user set points are optimized to [18, 24] using hybrid serial 

optimization based on GA and PSO with multi-preprocessing. 

Figure 4.34. Optimal parameters for temperature (Based on PSO and GA serial with multi-

Preprocessing)

The users feel relax and happy when the temperature level is varies between [18, 24]. So 

we can say that using hybrid parallel optimization based on GA and PSO with multi-

preprocessing the user set parameters for temperature optimized to achieve optimal 
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temperature. In case of optimal illumination Figure 4.35, the illumination parameters changes 

between 720o to 880o lux as compare to virtual sensing environment illumination Figure 4.3. 

The user set points are optimized to [720, 880] using hybrid serial optimization based on GA 

and PSO with multi-preprocessing. The users feel comfortable when the illumination level is 

between [720, 880]. 

Figure 4.35. Optimal parameters for illumination (Based on PSO and GA serial with multi-

Preprocessing)

So we can say that using hybrid parallel optimization based on GA and PSO with multi-

preprocessing, the user set parameters for illumination are optimized to achieve optimal 

illumination. In case of optimal air-quality Figure 4.36, the air-quality parameters changes 

between 700o to 880o ppm as compare to virtual sensing environment air-quality Figure 4.4. 

The user set points for air-quality are optimized to [700, 880] using hybrid serial optimization 

based on GA and PSO with multi-preprocessing. The users feel comfortable and happy when 
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the air-quality level is between [700, 880]. So we can conclude that using hybrid serial 

optimization based on GA and PSO with multi-preprocessing, the user set parameters for air-

quality are optimized to achieve optimal air-quality.

Figure 4.36. Optimal parameters for air-quality (Based on PSO and GA serial with multi-

Preprocessing)

4.2.2.2.3. Control messages

Figure 4.37 shows control messages to turn ON/OFF air-condition. If the control message 

value is zero then its means that virtual sensing environment temperature and optimal 

temperature is same and air-condition should be turn OFF. If control message value results in 

value between 0 and 3 then AC will be turn ON slow. If control message value results in value 

between 3 and 6 then AC will be Turn ON Medium. If value is more than 6 then AC will be 

turn ON in high speed. Here we can see that air-con is turn ON at different levels during 6hrs 
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to 16hrs. The air-con remains turn OFF between 0hrs to 6hrs and between 16hrs to 23 hrs.

Figure 4.37. Control messages for Air-con (Based on PSO and GA serial with multi-Preprocessing)

Figure 4.38 shows control messages to Turn ON/OFF boiler. If the control message value 

is zero then its mean that virtual sensing environment temperature and optimal temperature is 

same and boiler should be turn OFF. When control message value results in value between 0 

and 3 then boilers will be turn ON slow. If control message value results in value between 3 

and 6 then boiler will be turn on Medium. If value is more than 6 then boiler will be turn ON 

in high speed. Here we can see that boiler is turn OFF between 7hrs to 15hrs and turn ONN 

between 0hrs to 7hrs and between 15hrs to 23 hrs.

Figure 4.39 shows control messages to turn ON/OFF Light. When the control message 

value is zero then it means that virtual sensing environment illumination and optimal 

illumination is same and light should be turn OFF. If control message value results in value 

between 0 and 3 then light will be turn ON slow. If control message value results in value 
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between 3 and 6 then light will be Turn ON Medium. If value is more than 6 then light will be 

turn ON in fully. Here we can see that light is turning ON for all of its levels. The power 

consumption for light decreases as the day time arrives and increases as the night time arrives.

Figure 4.38. Control messages for Boiler (Based on PSO and GA serial with multi-Preprocessing)

Figure 4.39. Control messages for Light (Based on PSO and GA serial with multi-Preprocessing)

Figure 4.40 shows control messages to turn ON/OFF FAN. If the control message value is 
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zero then its means that virtual sensing environment air-quality and optimal air-quality is 

same and FAN should be turn OFF. If control message value result in value between 0 and 3 

then FAN will be turn ON slow. If control message value results in value between 3 and 6 

then FAN will be turn ON Medium. If value is more than 6 and then FAN will be turn ON in 

high speed. Here we can also see that FAN remains turn ON during 24 hours of the day with 

different levels.

Figure 4.40. Control messages for Fan (Based on PSO and GA serial with multi-Preprocessing)

4.2.2.2.4. Actuator emulators

In case of hybrid energy optimization based on prediction using GA and PSO serial with 

multi-preprocessing model the actuator emulators received signals presented in Figure 4.37, 

4.38, 4.39 and 4.40. Hybrid serial energy optimization algorithm based on PSO and GA and 

multi-preprocessing model creates control signals described in Figure 4.37, 4.38, 4.39 and 
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4.40 respectively. From Figure 4.37, we can see that air-con actuator is turn ON at different 

levels during 6hrs to 16hrs. The air-con remains turn OFF between 0hrs to 6hrs and between 

16hrs to 23 hrs. From Figure 4.38, we can see that boiler emulator is turn OFF between 7hrs 

to 15hrs and turn ONN between 0hrs to 7hrs and between 15hrs to 23 hrs. From Figure 4.39, 

we can see that light emulator is turning ON for all of its levels. The power consumption for 

light decreases as the day time arrives and increases as the night time arrives. From Figure 

4.40, we can also see that FAN remains turn ON during 24 hours of the day with different 

levels.

4.2.3. Optimization algorithm based on PSO and MIGA 

serial

4.2.3.1. Simulation environment

The simulation environment is kept same for each of the algorithm. The simulation 

environment is discussed in detailed in section 4.

4.2.3.2. Simulation analysis

4.2.3.2.1. Virtual environment

The simulation virtual environment is kept same for each of the algorithm. The virtual 

environment for each of the virtual sensor temperature, illumination and air-quality is 
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discussed in detailed in section 4.1.1.2.1.

4.2.3.2.2. Optimization

Figures 4.41, 4.42 and 4.43 show the optimal environmental parameters for each of the 

temperature, illumination and air-quality using hybrid serial optimization based on MIGA and 

PSO with multi-preprocessing. In case of optimal temperature Figure 4.41, the optimal 

temperature changes between 18o to 24o centigrade as compare to virtual sensing environment 

temperature Figure 4.2. The user set points are optimized to [18, 24] using hybrid serial 

optimization based on MIGA and PSO with multi-preprocessing. The users feel relax and 

happy when the temperature level is varies between [18, 24]. So we can say that using hybrid 

parallel optimization based on MIGA and PSO with multi-preprocessing the user set 

parameters for temperature optimized to achieve optimal temperature. 

Figure 4.41. Optimal parameters for temperature (Based on PSO and MIGA serial with multi-

Preprocessing)



134

In case of optimal illumination Figure 4.42, the illumination parameters changes between 

720o to 880o lux as compare to virtual sensing environment illumination Figure 4.3. The user 

set points are optimized to [720, 880] using hybrid serial optimization based on MIGA and 

PSO with multi-preprocessing. The users feel comfortable when the illumination level is 

between [720, 880]. So we can say that using hybrid parallel optimization based on MIGA 

and PSO with multi-preprocessing, the user set parameters for illumination are optimized to 

achieve optimal illumination.

Figure 4.42. Optimal parameters for illumination (Based on PSO and MIGA serial with multi-

Preprocessing)

In case of optimal air-quality Figure 4.43, the air-quality parameters changes between 700o

to 880o ppm as compare to virtual sensing environment air-quality Figure 4.4. The user set 

points for air-quality are optimized to [700, 880] using hybrid serial optimization based on 

MIGA and PSO with multi-preprocessing. The users feel comfortable and happy when the air-

quality level is between [700, 880]. 



135

So we can conclude that using hybrid serial optimization based on MIGA and PSO with 

multi-preprocessing, the user set parameters for air-quality are optimized to achieve optimal 

air-quality.

Figure 4.43. Optimal parameters for air-quality (Based on PSO and MIGA serial with multi-

Preprocessing)

4.2.3.2.3. Control messages

Figure 4.44 shows control messages to turn ON/OFF air-condition. If the control message 

value is zero then its means that virtual sensing environment temperature and optimal 

temperature is same and air-condition should be turn OFF. If control message value results in 

value between 0 and 3 then AC will be turn ON slow. If control message value results in value 

between 3 and 6 then AC will be Turn ON Medium. If value is more than 6 then AC will be 

turn ON in high speed. Here we can see that air-con is turn ON at different levels during 6hrs 
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to 16hrs. The air-con remains turn OFF between 0hrs to 6hrs and between 16hrs to 23 hrs.

Figure 4.45 shows control messages to Turn ON/OFF boiler. If the control message value 

is zero then its mean that virtual sensing environment temperature and optimal temperature is 

same and boiler should be turn OFF. When control message value results in value between 0 

and 3 then boilers will be turn ON slow.

Figure 4.44. Control messages for Air-con (Based on PSO and MIGA serial with multi-Preprocessing)

If control message value results in value between 3 and 6 then boiler will be turn on 

Medium. If value is more than 6 then boiler will be turn ON in high speed. Here we can see 

that boiler is turn OFF between 7hrs to 15hrs and turn ONN between 0hrs to 7hrs and 

between 15hrs to 23 hrs. Figure 4.46 shows control messages to turn ON/OFF Light. When 

the control message value is zero then it means that virtual sensing environment illumination 

and optimal illumination is same and light should be turn OFF. If control message value 

results in value between 0 and 3 then light will be turn ON slow. If control message value 
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results in value between 3 and 6 then light will be Turn ON Medium. 

Figure 4.45. Control messages for Boiler (Based on PSO and MIGA serial with multi-Preprocessing)

Figure 4.46. Control messages for Light (Based on PSO and MIGA serial with multi-Preprocessing)

If value is more than 6 then light will be turn ON in fully. Here we can see that light is 

turning ON for all of its levels. The power consumption for light decreases as the day time 

arrives and increases as the night time arrives. Figure 4.47 shows control messages to turn 
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ON/OFF FAN. If the control message value is zero then its means that virtual sensing 

environment air-quality and optimal air-quality is same and FAN should be turn OFF. If 

control message value result in value between 0 and 3 then FAN will be turn ON slow.

If control message value results in value between 3 and 6 then FAN will be turn ON 

Medium. If value is more than 6 and then FAN will be turn ON in high speed. Here we can 

also see that FAN remains turn ON during 24 hours of the day with different levels.

Figure 4.47. Control messages for Fan (Based on PSO and MIGA serial with multi-Preprocessing)

4.2.3.2.4. Actuator emulators

In case of hybrid energy optimization based on prediction using MIGA and PSO with 

multi-preprocessing model the actuator emulators received signals shown in Figure 4.44, 

4.45, 4.46 and 4.47. Hybrid serial energy optimization algorithm based on PSO and MIGA 

and multi-preprocessing model creates control signals shown in Figure 4.44, 4.45, 4.46 and 
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4.47 respectively. From Figure 4.44, we can see that air-con emulator is turn ON at different 

levels during 6hrs to 16hrs. The air-con remains turn OFF between 0hrs to 6hrs and between 

16hrs to 23 hrs. From Figure 4.45, we can see that boiler emulator is turn OFF between 7hrs 

to 15hrs and turn ONN between 0hrs to 7hrs and between 15hrs to 23 hrs. From Figure 4.46, 

we can see that light emulator is turning ON for all of its levels. The power consumption for 

light decreases as the day time arrives and increases as the night time arrives. From Figure 

4.47, we can also see that FAN remains turn ON during 24 hours of the day with different 

levels.
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5. Performance comparisons and analysis

5.1. Basic energy optimization model based on prediction

5.1.1. Optimized power control methodology using GA and 

PSO

5.1.1.1. Comparisons of power consumption prediction 

results

Figure 5.1, 5.2, 5.3 and 5.4 shows the comparisons of power consumption. X-axis shows 

the time in house while Y-axis shows the predicted power consumption in kilowatts and 

comfort index between 0.0 and 1.0 is the minimum and maximum comfort index respectively. 

From the results of Figure 5.1 it can be evident, that in case of power consumption for 

temperature, system with GA based prediction method consumes less power as compared to 

the system with PSO based prediction. This is due to the fact that GA based optimized 

parameters are more optimal than PSO based optimized parameters. So when environmental 

disturbance occur GA based predicted method consume less power as compare to PSO based 

predicted method. Less power consumption is ensured by controllers using optimized 

parameters of GA. Similarly for illumination as shown in Figure 5.2, GA based predicted 

method confirmed to consume less power as compared to the PSO based prediction method.
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Figure 5.1. Comparison of predicted power consumption for temperature with GA based system and 

PSO based system

Figure 5.2. Comparison of predicted power consumption for illumination with GA based system and 

PSO based system

Figure 5.3 shows the results for the air-quality control. Here we can see that GA based 

predicted system consumed almost same power as compared to its counterpart PSO based 

prediction system. Figure 5.4 shows the total predicted power consumption in case of GA 

based optimized system and PSO based optimized system. The total power consumption of 

GA based system is less than PSO predicted system. 
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Figure 5.3. Comparison of predicted power consumption for air-quality with GA based system and PSO 

based system

Figure 5.4. Comparison of total predicted power consumption with GA based system and PSO based 

system

5.1.1.2. Comparisons of occupants comfort index results

Figure 5.5 shows the results of user comfort index in case of GA based prediction system 

and PSO based prediction system.

Here we can see occupants comfort index improving and degraded couple of times during 

different hours. This is due to the multiple environmental disturbances. We have created this 
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multiple environmental disturbances to check the efficiency of the energy optimization

algorithms. First time the environmental disturbance occurs at time 82hrs, second disturbance 

arises at time 115hrs, and third, fourth and fifth environmental disturbance occurs at time 

146hrs, 177hrs and 208hrs respectively. In rest of all the comfort index results, the 

environmental disturbances occur in the same way. 

Comfort index is varied between ‘0’ and ‘1’. ‘0’ means lowest or minimum occupants 

comfort index and ‘1’ means highest or maximum occupants comfort index. The degradation 

in occupants comfort index experienced when there is an environmental disturbance, and 

improvement in the comfort index achieved when optimization is done. So when 

environmental disturbance occurs then optimization gets started to improve the occupants 

comfort index. Initially comfort index is ‘1’ from time ‘1hr’ to time ‘81hrs’, then at time 

82hrs first environmental disturbance occurs. At this time comfort level of GA based 

prediction system and PSO based predicted system both degraded and goes down from ‘1’ to 

0.970. AT this time optimization gets started to improve the occupants comfort index. When 

the system gets optimized then occupants comfort index starts improving. As we can see both 

the systems recover soon. When second time power disturbance arises, comfort index of PSO 

based predicted system degraded before the GA based predicted system. So during second 

time disturbance GA based predicted system perform well as compared to the PSO based 

predicted system. During the entire disturbances except for the first one where both the 

predicted systems degraded at the same time, PSO based predicted system degraded early 
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than GA based predicted system. So whenever there is an environmental disturbance, GA 

based prediction system degraded slowly as compared to its counterpart PSO based predicted 

system. With GA based estimated power consumption, user comfort index is improved as 

compare to the PSO based prediction system. So if there are multiple environmental 

disturbances, GA based predicted system perform well to handle them as compared to PSO 

based predicted system. Although in GA based prediction system less power is consume as 

compare to that of PSO based prediction system, but still it achieved improved occupants 

comfort level. 

Figure 5.5. Comparison of predicted GA and PSO based comfort index
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5.2. Hybrid energy optimization model based on prediction

5.2.1. Single preprocessing hybrid optimization model based 

on prediction

5.2.1.1. Optimization algorithm based on PSO and GA parallel

5.2.1.1.1. Comparisons of power consumption prediction results

Figure 5.6, 5.7, 5.8 and 5.9 shows the comparisons of power consumption. X-axis shows

the time in hours while Y-axis shows the predicted power consumption in kilowatts, and 

comfort index between 0.0 and 1.0 is the minimum and maximum comfort index respectively. 

From the results of Figure 5.6 it can be observed that in case of power consumption for 

temperature, proposed parallel hybrid optimization and prediction based on Kalman filter and 

preprocessing model consumed less power as compared to the GA based system with no 

hybrid optimization and preprocessing. When environmental intermission occur, parallel 

hybrid optimization, prediction and preprocessing model consumed less power as compared 

to GA based predicted model where no hybrid optimization and preprocessing involved. Less 

power consumption is ensured by controllers using optimized parameters. For illumination as 

shown in Figure 5.7, parallel hybrid optimization and prediction with preprocessing model 

consumed minimum power as compared to GA based predicted model. Figure 5.8 shows the 

results for the air-quality control. 
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Here we can see that parallel hybrid optimization and prediction model consumed almost 

less power as compared to its equivalent GA based predicted system. Figure 5.7 shows the 

total predicted power consumption in case of proposed parallel hybrid optimization model 

and GA based predicted model with no hybrid prediction and preprocessing involved.

Figure 5.6. Comparison of predicted power consumption for temperature with GA based predicted 

system and parallel hybrid optimization and prediction

Figure 5.7. Comparison of predicted power consumption for illumination with GA based predicted 

system and parallel hybrid optimization and prediction

The total predicted power consumption of parallel hybrid optimization and prediction 

model with preprocessing consumed less power than its counterpart GA based prediction 
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system with no hybrid prediction and preprocessing. The power disturbance first time arises at 

82hrs. At this time comfort level of hybrid optimization based proposed system with 

prediction and preprocessing goes down to 0.970 almost same as to GA based predicted 

system with no hybrid prediction and preprocessing.

Figure 5.8. Comparison of predicted power consumption for air-quality with GA based predicted 

system and parallel hybrid optimization and prediction

Figure 5.9. Comparison of total predicted power consumption with GA based predicted system and 

parallel hybrid optimization and prediction

When second time power disturbance occurs, the comfort index of GA based predicted 

system immediately goes down as compared to proposed hybrid optimization based 
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prediction and preprocessing model. When second time power disturbance arises proposed 

parallel hybrid optimization model degraded to almost 0.998 as compared to 0.967 of GA 

based prediction model with no preprocessing. Similarly in all cases of degradation the 

proposed hybrid optimization based predicted with preprocessing system provides improved 

comfort index as compared to GA based predicted system where no preprocessing applied. So 

whenever there is an environmental disturbance, hybrid optimization based prediction and 

preprocessing system provides better comfort index as compared to its counterpart GA based 

predicted system. 

5.2.1.1.2. Comparisons of occupants comfort index results

Figure 5.10 shows the results of user comfort index in case of proposed hybrid 

optimization based prediction with preprocessing model and GA based prediction system. 

Figure 5.10. Comparison of comfort value/index with GA based predicted system and parallel hybrid 

optimization and prediction

From the comfort index it is clear that parallel hybrid optimization based prediction and 

preprocessing model provides better and improved comfort index as compared to GA based 
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prediction model [3]. Although in parallel hybrid optimization based prediction and 

preprocessing model less power is consumed as compare to that of GA based prediction 

system, but still proposed model achieved improved and better comfort index as compared to 

GA and based predicted system.

5.2.1.2. Optimization algorithm based on PSO and GA serial

5.2.1.2.1. Comparisons of power consumption prediction results

Figure 5.11, 5.12, 5.13 and 5.14 shows the comparisons of power consumption. X-axis 

shows the time in hours while Y-axis shows the predicted power consumption in kilowatts, 

and comfort index between 0.0 and 1.0 is the minimum and maximum comfort index 

respectively. From the results of Figure 5.11 it can be observed that in case of power 

consumption for temperature, proposed serial hybrid optimization and prediction based on 

Kalman filter and preprocessing model consumed less power as compared to the GA based 

system with no hybrid optimization and preprocessing. When environmental intermission 

occur, serial hybrid optimization, prediction and preprocessing model consumed less power as 

compared to GA based predicted model where no hybrid optimization and preprocessing 

involved. Less power consumption is guaranteed by controllers using optimized parameters. 

For illumination as shown in Figure 5.12, serial hybrid optimization and prediction with 

preprocessing model consumed minimum power as compared to GA based predicted model. 
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Figure 5.11. Comparison of predicted power consumption for temperature with GA based predicted 

system and serial hybrid optimization and prediction

Figure 5.12. Comparison of predicted power consumption for illumination with GA based predicted 

system and serial hybrid optimization and prediction

Figure 5.13 shows the results for the air-quality control. Here we can see that serial hybrid 

optimization and prediction model consumed same power as compared to its equivalent GA 

based predicted system. Figure 5.14 shows the total predicted power consumption in case of 

proposed serial hybrid optimization model and GA based predicted model with no hybrid 

prediction and preprocessing/ involved. The total predicted power consumption of serial 

hybrid optimization and prediction model with preprocessing is less than its counterpart GA 
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based prediction system with no hybrid optimization and preprocessing.

Figure 5.13. Comparison of predicted power consumption for air-quality with GA based predicted 

system and serial hybrid optimization and prediction

The power disturbance first time occurs at 82hrs. At this time comfort level of hybrid 

optimization based proposed system with prediction and preprocessing goes down to 0.970 

same as to GA based predicted system with no hybrid prediction and preprocessing. But when 

second time power disturbance occurs, the GA based predicted system immediately goes 

down as compared to proposed hybrid optimization based prediction and preprocessing 

model. When second time power disturbance arises proposed hybrid serial optimization 

model degraded to 0.978 as compared to 0.970 of GA based prediction model with no 

preprocessing. Similarly in all cases of degradation of comfort index, the proposed hybrid 

serial optimization based prediction with preprocessing system provides improved comfort 

index as compared to GA based predicted system where no preprocessing applied. So 

whenever there is an environmental disturbance, hybrid serial optimization based prediction 

and preprocessing system provides better comfort index as compared to its counterpart GA 
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based predicted system. 

Figure 5.14. Comparison of total predicted power consumption with GA based predicted system and 

serial hybrid optimization and prediction

5.2.1.2.2. Comparisons of occupants comfort index results

Figure 5.15 shows the results of user comfort index in case of proposed hybrid 

optimization based prediction with preprocessing/post-processing model and GA based 

prediction system. 

Figure 5.15. Comparison of comfort value/index with GA based predicted system and serial hybrid 

optimization and prediction

From the occupants comfort index it is clear that serial hybrid optimization based 
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prediction and preprocessing/post-processing model provides better and improved comfort 

index as compared to GA based prediction model [3]. Although in serial hybrid optimization, 

prediction and preprocessing/post-processing model, less power is consumed as compare to 

that of GA based prediction system, but still proposed model achieved improved and better 

comfort index as compared to GA and based predicted system.

5.2.1.3. Optimization algorithm based on PSO and MIGA 

serial

5.2.1.3.1. Comparisons of power consumption prediction results

Figure 5.16, 5.17, 5.18 and 5.19 shows the comparisons of power consumption. X-axis 

shows the time in hours while Y-axis shows the predicted power consumption in kilowatts, 

and comfort index between 0.0 and 1.0 is the minimum and maximum comfort index 

respectively. From the results of Figure 5.16 it can be observed that in case of power 

consumption for temperature, proposed serial hybrid optimization and prediction based on 

single preprocessing model consumed less power as compared to the GA based system with 

no hybrid optimization and preprocessing. When environmental intermission occur, serial 

hybrid optimization, hybrid prediction and preprocessing model consumed less power as 

compared to GA based predicted model where no hybrid optimization and preprocessing 

involved. Less power consumption is ensured by controllers using optimized parameters. For 
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illumination as shown in Figure 5.17, serial hybrid optimization and hybrid prediction with 

preprocessing model consumed minimum power as compared to GA based predicted model. 

Figure 5.16. Comparison of predicted power consumption for temperature with MIGA based predicted 

system and serial hybrid optimization and prediction

Figure 5.17. Comparison of predicted power consumption for illumination with MIGA based predicted 

system and serial hybrid optimization and prediction

Figure 5.18 shows the results for the air-quality control. Here we can see that serial hybrid 

optimization and hybrid prediction model consumed little power as compared to its equivalent 

GA based predicted system. Figure 5.19 shows the total predicted power consumption in case 

of proposed serial hybrid optimization model and GA based predicted model with no hybrid 

optimization, prediction and preprocessing involved. The total predicted power consumption 
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of serial hybrid optimization and hybrid prediction model with preprocessing consumed less 

power than its counterpart GA based prediction system with no hybrid prediction and 

preprocessing.

Figure 5.18. Comparison of predicted power consumption for air-quality with MIGA based predicted 

system and serial hybrid optimization and prediction

First time power disturbance occurs at time 82hrs. At this time comfort level of proposed 

hybrid optimization based system with hybrid prediction and preprocessing goes down to 

0.970 same as to GA based predicted system with no hybrid prediction and preprocessing. 

When second time power disturbance occurs, the GA based predicted system immediately 

goes down as compared to proposed hybrid optimization based prediction and preprocessing 

model. When second time power disturbance arises proposed serial hybrid optimization 

model degraded to 0.978 as compared to 0.970 of GA based prediction model with no 

preprocessing. Similarly in all cases of comfort degradation, the proposed hybrid optimization 

based predicted with preprocessing system provides improved comfort index as compared to 

GA based predicted system where no preprocessing applied. So whenever there is an 
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environmental disturbance, hybrid optimization based prediction and smoothing system 

provides better comfort index as compared to its counterpart GA based predicted system. 

Figure 5.19. Comparison of total predicted power consumption with MIGA based predicted syste m and 

parallel hybrid optimization and prediction

5.2.1.3.2. Comparisons of occupants comfort index results

Figure 5.20 shows the results of user comfort index in case of proposed hybrid 

optimization based prediction with preprocessing model and GA based prediction system. 

Figure 5.20. Comparison of comfort value/index with MIGA based predicted system and serial hybrid 

optimization and prediction

From the comfort index it is clear that serial hybrid optimization based prediction and 
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preprocessing model provides better and improved comfort index as compared to GA based 

prediction model [3]. Although in serial hybrid optimization, prediction and preprocessing 

model, less power is consumed as compare to that of GA based prediction system, but still 

proposed model achieved improved and better comfort index as compared to GA and based 

predicted system.

5.2.2. Multi-preprocessing hybrid optimization model based 

on prediction

5.2.2.1. Optimization algorithm based on PSO and GA parallel

5.2.2.1.1. Comparisons of power consumption prediction results

Figure 5.21, 5.22, 5.23 and 5.24 shows the comparisons of power consumption. X-axis 

shows the time in hours while Y-axis shows the predicted power consumption in kilowatts, 

and comfort index between 0.0 and 1.0 is the minimum and maximum comfort index 

respectively. From the results of Figure 5.21 it can be observed that in case of power 

consumption for temperature, proposed parallel hybrid optimization and prediction based on 

Kalman filter and multi-preprocessing model consumed less power as compared to the GA 

based system with no hybrid optimization and multi-preprocessing. When environmental 

disturbance occur, parallel hybrid optimization, prediction and multi-preprocessing model 

consumed less power as compared to GA based predicted model where no hybrid 
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optimization and preprocessing involved. Minimum power consumption is guaranteed by 

controllers using optimized parameters and multi-preprocessing. For illumination as shown in 

Figure 5.22, parallel hybrid optimization and prediction with multi-preprocessing model 

consumed minimum power as compared to GA based predicted model. Figure 5.2 3 shows the 

results for the air-quality control. 

Figure 5.21. Comparison of predicted power consumption for temperature with GA based p redicted 

system and parallel hybrid optimization and prediction (with multi-preprocessing)

Figure 5.22. Comparison of predicted power consumption for illumination with GA based predicted 

system and parallel hybrid optimization and prediction (with multi-preprocessing)

Here we can see that parallel hybrid optimization and prediction with multi-preprocessing 

model consumed a little bit more power as compared to its equivalent GA based predicted 
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system. Figure 5.24 shows the total predicted power consumption in case of proposed parallel 

hybrid optimization with multi-preprocessing model and GA based predicted model with no 

hybrid prediction and preprocessing involved. The total predicted power consumption of 

parallel hybrid optimization and prediction model with multi-preprocessing consumed less 

power than its counterpart GA based prediction system with no hybrid prediction and 

preprocessing.

Figure 5.23. Comparison of predicted power consumption for air-quality with GA based predicted 

system and parallel hybrid optimization and prediction (with multi-preprocessing)

Figure 5.24. Comparison of total predicted power consumption with GA based predicted system and 

parallel hybrid optimization and prediction (with multi-preprocessing)
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First time the power disturbance arises at time 82hrs. At this time comfort level of hybrid 

optimization based proposed system with prediction and multi-preprocessing goes down to

0.970 same as to GA based predicted system with no hybrid prediction and preprocessing. 

When second time power disturbance occurs, the comfort index of GA based predicted 

system immediately goes down as compared to proposed hybrid optimization based 

prediction with multi-preprocessing model. When second time power disturbance arises 

proposed parallel hybrid optimization with multi-preprocessing model degraded to 0.996 as 

compared to 0.970 of GA based prediction model with no. Similarly in all cases of 

degradation the proposed hybrid optimization based predicted with multi-preprocessing 

system provides improved comfort index as compared to GA based predicted system where 

no preprocessing applied. So whenever there is an environmental disturbance, hybrid 

optimization based prediction and multi-preprocessing system provides better comfort index 

as compared to its counterpart GA based predicted system.

Figure 5.25, 5.26, 5.27 and 5.28 shows the comparisons of power consumption for parallel 

hybrid optimization prediction with single and multi-preprocessing. From the results of 

Figure 5.25 it can be observed that in case of power consumption for temperature, parallel 

hybrid optimization and prediction based on Kalman filter with multi-preprocessing model 

consumed more power as compared to the single preprocessing based system. For 

illumination as shown in Figure 5.26, parallel hybrid optimization and prediction with single 

preprocessing model consumed more power as compared to multi-preprocessing based
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predicted model. Figure 5.27 shows the results for the air-quality control. 

Figure 5.25. Comparison of predicted power consumption for temperature (single and multi-

preprocessing based predicted systems)

Figure 5.26. Comparison of predicted power consumption for illumination (single and multi-

preprocessing based predicted systems)

Here we can see that parallel hybrid optimization and prediction model with multi-

preprocessing consumed a little bit more power as compared to its equivalent single 

preprocessing based predicted system. Figure 5.28 shows the total predicted power 

consumption in case of single and multi-preprocessing based hybrid optimization. The total 

predicted power consumption of single preprocessing based on optimization and prediction 
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model consumed less power than its counterpart multi-preprocessing based prediction system.

Figure 5.27. Comparison of predicted power consumption for air-quality (single and multi-

preprocessing based predicted systems)

Figure 5.28. Comparison of total predicted power consumption (single and multi-preprocessing based 

predicted systems)

5.2.2.1.2. Comparisons of occupants comfort index results

Figure 5.29 shows the results of user comfort index in case of proposed hybrid 

optimization based prediction with preprocessing model and GA based prediction system. In 

Figure 5.29, it is clear that parallel hybrid optimization based prediction and multi-
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preprocessing model provides better and improved comfort index as compared to GA based 

prediction model [3]. Though in parallel hybrid optimization, prediction and multi-

preprocessing model, minimum power is consumed as compare to that of GA based 

prediction system, but still proposed model achieved improved and better comfort index as 

compared to GA and based predicted system.

Figure 5.29. Comparison of comfort value/index with GA based predicted system and parallel hybrid 

optimization and prediction (with multi-preprocessing)

Figure 5.30 shows the results of user comfort index in case of proposed hybrid 

optimization based prediction with multi-preprocessing model and single preprocessing based 

prediction system. In Figure 5.30, it is clear that parallel hybrid optimization based prediction 

and multi-preprocessing model provides better and improved comfort index as compared to 

single preprocessing based prediction model. Although parallel hybrid optimization, 

prediction and multi-preprocessing model consumed more power than its counterpart single 

preprocessing based optimization and prediction model, but the comfort index it provided is 

much better than single preprocessing based optimization and prediction model.
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Figure 5.30. Comparison of comfort value/index (GA and PSO based parallel hybrid energy 

optimization with single and multi-preprocessing systems)

5.2.2.2. Optimization algorithm based on PSO and GA serial

5.2.2.2.1. Comparisons of power consumption prediction results

Figure 5.31, 5.32, 5.33 and 5.34 shows the comparisons of power consumption. X-axis 

shows the time in hours while Y-axis shows the predicted power consumption in kilowatts, 

and comfort index between 0.0 and 1.0 is the minimum and maximum comfort index 

respectively. From the results of Figure 5.31 it can be observed that in case of power 

consumption for temperature, proposed serial hybrid optimization and prediction based on 

Kalman filter and multi-preprocessing model consumed more power as compared to the GA 

based system with no hybrid optimization and multi-preprocessing. When environmental 

intermission occur, serial hybrid optimization, prediction and multi-preprocessing model 

consumed more power as compared to GA based predicted model where no hybrid 
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optimization and preprocessing involved. For illumination as shown in Figure 5.32, serial 

hybrid optimization and prediction with multi-preprocessing model consumed minimum 

power as compared to GA based predicted model. Less power consumption is ensured by 

controllers using optimized parameters.

Figure 5.31. Comparison of predicted power consumption for temperature with GA based predicted 

system and serial hybrid optimization and prediction (with multi-preprocessing)

Figure 5.32. Comparison of predicted power consumption for illumination with GA based predicted 

system and serial hybrid optimization and prediction (with multi-preprocessing)

Figure 5.33 shows the results for the air-quality control. Here we can see that serial hybrid 

optimization and prediction model consumed a little bit less power as compared to its 

equivalent GA based predicted system. Figure 5.34 shows the total predicted power 
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consumption in case of proposed serial hybrid optimization model and GA based predicted 

model with no hybrid prediction and preprocessing involved. The total predicted power 

consumption of serial hybrid optimization and prediction model with multi-preprocessing 

consumed a little bit more but almost same power as compared to its counterpart GA based 

prediction system with no hybrid prediction and preprocessing.

Figure 5.33. Comparison of predicted power consumption for air-quality with GA based predicted 

system and serial hybrid optimization and prediction (with multi-preprocessing)

The power disturbance at first time arises at 82hrs. At this time comfort level of hybrid 

optimization based proposed system with prediction and multi-preprocessing goes down 

to0.970 same as to GA based predicted system with no hybrid prediction and preprocessing. 

When second time power disturbance occurs, the comfort index of GA based predicted 

system immediately goes down as compared to proposed hybrid optimization based 

prediction and multi-preprocessing model. When second time power disturbance arises 

proposed serial hybrid optimization model degraded to 0.984 as compared to 0.970 of GA 

based prediction model with no preprocessing. Similarly in all cases of degradation the 
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proposed hybrid optimization based predicted with multi-preprocessing system provides 

improved comfort index as compared to GA based predicted system where no multi-

preprocessing applied. So whenever there is an environmental disturbance, hybrid 

optimization based prediction and multi-preprocessing system provides better comfort index 

as compared to its counterpart GA based predicted system. 

Figure 5.34. Comparison of total predicted power consumption with GA based predicted system and 

parallel hybrid optimization and prediction (with multi-preprocessing)

Figure 5.35, 5.36, 5.37 and 5.38 shows the comparisons of power consumption for serial 

hybrid optimization prediction with single and multi-preprocessing. From the results of 

Figure 5.35 it can be observed that in case of power consumption for temperature, serial

hybrid optimization and prediction with multi-preprocessing model consumed more power as 

compared to the single preprocessing based system. For illumination as shown in Figure 5.36, 

serial hybrid optimization and prediction with single preprocessing model consumed less 

power as compared to multi-preprocessing based predicted model. Figure 5.37 shows the 

results for the air-quality control. Here we can see that serial hybrid optimization and 
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prediction model with multi-preprocessing consumed almost similar power as compared to its 

equivalent single preprocessing based predicted system. Figure 5.38 shows the total predicted 

power consumption in case of single and multi-preprocessing based hybrid optimization. The 

total predicted power consumption of single preprocessing based on optimization and 

prediction model consumed less power than its counterpart multi-preprocessing based 

prediction system.

Figure 5.35. Comparison of predicted power consumption for temperature with GA based predicted 

system and serial hybrid optimization and prediction (with multi-preprocessing)

Figure 5.36. Comparison of predicted power consumption for illumination with GA based predicted 

system and serial hybrid optimization and prediction (with multi-preprocessing)
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Figure 5.37. Comparison of predicted power consumption for air-quality with GA based predicted 

system and serial hybrid optimization and prediction (with multi-preprocessing)

Figure 5.38. Comparison of total predicted power consumption with GA based predicted system and 

parallel hybrid optimization and prediction (with multi-preprocessing)

5.2.2.2.2. Comparisons of occupants comfort index results

Figure 5.39 shows the results of user comfort index in case of proposed hybrid 

optimization based prediction with multi-preprocessing model and GA based prediction 

system. In Figure 5.39, it is clear that parallel hybrid optimization based prediction and multi-

preprocessing model provides better and improved comfort index as compared to GA based 
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prediction model [3]. Though in parallel hybrid optimization, prediction and multi-

preprocessing model same power is consumed as compare to that of GA based prediction 

system, but still proposed model achieved improved and better comfort index as compared to 

GA and based predicted system. So the drastic factor here is that proposed hybrid 

optimization and prediction with multi-preprocessing system provides better comfort index 

with consumption almost same power as that of GA based prediction system.

Figure 5.39. Comparison of comfort value/index with GA based predicted system and serial hybrid 

optimization and prediction (with multi-preprocessing)

Figure 5.40 shows the results of user comfort index in case of proposed hybrid serial 

optimization based prediction with multi-preprocessing model and single preprocessing based 

prediction system. In Figure 5.40, it is clear that serial hybrid optimization based prediction 

and multi-preprocessing model provides better and improved comfort index as compared to 

single preprocessing based prediction model. Although serial hybrid optimization, prediction 

and multi-preprocessing model consumed more power than its counterpart single 

preprocessing based optimization and prediction model, but the comfort index it provided is 
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much better than single preprocessing based optimization and prediction model.

Figure 5.40. Comparison of comfort value/index (GA and PSO based serial hybrid energy optimization

with single and multi-preprocessing systems)

5.2.2.3. Optimization algorithm based on PSO and MIGA 

serial

5.2.2.3.1. Comparisons of power consumption prediction results

Figure 5.41, 5.42, 5.43 and 5.44 shows the comparisons of power consumption. X-axis 

shows the time in hours while Y-axis shows the predicted power consumption in kilowatts, 

and comfort index between 0.0 and 1.0 is the minimum and maximum comfort index 

respectively. From the results of Figure 5.41 it can be observed that in case of power 

consumption for temperature, proposed serial hybrid optimization and hybrid prediction with 

multi-preprocessing model consumed less power as compared to the GA based syst em with 

no hybrid optimization and multi-preprocessing. When environmental intermission occur, 

serial hybrid optimization, hybrid prediction and multi-preprocessing model consumed less 
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power as compared to GA based predicted model where no hybrid optimizat ion and 

preprocessing involved. Less power consumption is ensured by controllers using optimized 

parameters. For illumination as shown in Figure 5.42, serial hybrid optimization and 

prediction with multi-preprocessing/ model consumed minimum power as compared to GA 

based predicted model. 

Figure 5.41. Comparison of predicted power consumption for temperature with GA based predicted 

system and serial hybrid optimization and prediction (with multi-preprocessing)

Figure 5.42. Comparison of predicted power consumption for illumination with GA based predicted 

system and serial hybrid optimization and prediction (with multi-preprocessing)

Figure 5.43 shows the results for the air-quality control. Here we can see that serial hybrid 
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optimization and hybrid prediction model consumed little power as compared to its equivalent 

GA based predicted system. Figure 5.44 shows the total predicted power consumption in case 

of proposed serial hybrid optimization model and GA based predicted model with no hybrid 

prediction and multi-preprocessing involved. The total predicted power consumption of serial 

hybrid optimization and prediction model with multi-preprocessing consumed less power than 

its counterpart GA based prediction system with no hybrid prediction and preprocessi ng.

Figure 5.43. Comparison of predicted power consumption for air-quality with GA based predicted 

system and serial hybrid optimization and prediction (with multi-preprocessing)

The power disturbance at first time arises at 82hrs. At this time comfort l evel of hybrid 

optimization based proposed system with prediction and preprocessing/post -processing goes 

down to 0.9870 same as to GA based predicted system with no hybrid prediction and multi-

preprocessing. When second time power disturbance occurs, the comfort index of GA based 

predicted system immediately goes down as compared to proposed hybrid optimization based 

prediction and multi-preprocessing model. When second time power disturbance occurs 

proposed serial hybrid optimization model degraded to 0.984 as compared to 0.970 of GA 
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based prediction model with no multi-preprocessing. Similarly in all cases of degradation the 

proposed hybrid optimization based predicted with multi-preprocessing system provides 

improved comfort index as compared to GA based predicted system where no preprocessing 

applied. So whenever there is an environmental disturbance, hybrid optimization based 

prediction and multi-preprocessing system provides better comfort index as compared to its 

counterpart GA based predicted system. 

Figure 5.44. Comparison of total predicted power consumption with GA based predicted system and 

serial hybrid optimization and prediction (with multi-preprocessing)

Figure 5.45, 5.46, 5.47 and 5.48 shows the comparisons of power consumption for serial 

hybrid optimization based on MIGA and PSO and prediction with single and multi-

preprocessing. From the results of Figure 5.45 it can be observed that in case of power 

consumption for temperature, serial hybrid optimization and prediction with multi-

preprocessing model consumed more power as compared to the single preprocessing based 

system. For illumination as shown in Figure 5.46, serial hybrid optimization and prediction 

with single preprocessing model consumed less power as compared to multi-preprocessing
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based predicted model. 

Figure 5.45. Comparison of predicted power consumption for temperature with GA based predicted 

system and serial hybrid optimization and prediction (with multi-preprocessing)

Figure 5.46. Comparison of predicted power consumption for illumination with GA based predicted 

system and serial hybrid optimization and prediction (with multi-preprocessing)

Figure 5.47 shows the results for the air-quality control. Here we can see that serial hybrid 

optimization and prediction model with multi-preprocessing consumed more power as 

compared to its equivalent single preprocessing based predicted system. Figure 5.48 shows 

the total predicted power consumption in case of single and multi-preprocessing based hybrid 

optimization. The total predicted power consumption of single preprocessing based on 
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optimization and prediction model consumed less power than its counterpart multi-

preprocessing based prediction system.

Figure 5.47. Comparison of predicted power consumption for air-quality with GA based predicted 

system and serial hybrid optimization and prediction (with multi-preprocessing)

Figure 5.48. Comparison of total predicted power consumption with GA based predicted system and 

serial hybrid optimization and prediction (with multi-preprocessing)

5.2.2.3.2. Comparisons of occupants comfort index results

Figure 5.49 shows the results of user comfort index in case of proposed hybrid 

optimization based prediction with multi-preprocessing model and GA based prediction 
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system. In Figure 5.49, it is clear that serial hybrid optimization based prediction and multi-

preprocessing model provides better and improved comfort index as compared to GA based 

prediction model [3]. Although in serial hybrid optimization, hybrid prediction and multi-

preprocessing model, less power is consumed as compare to that of GA based prediction 

system, but still proposed model achieved improved and better comfort index as compared to 

GA and based predicted system.

Figure 5.49. Comparison of comfort value/index with GA based predicted system and serial hybrid 

optimization and prediction (with multi-preprocessing)

Figure 5.50 shows the results of user comfort index in case of proposed hybrid serial 

optimization based on prediction with multi-preprocessing model and single preprocessing 

based prediction system. In Figure 5.50, it is clear that serial hybrid optimization based 

prediction and multi-preprocessing model provides better and improved comfort index as 

compared to single preprocessing based prediction model. Although serial hybrid 

optimization, prediction and multi-preprocessing model consumed more power than its 

counterpart single preprocessing based optimization and prediction model , but the comfort 

index it provided is much better than single preprocessing based optimization and prediction 
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model.

Figure 5.50. Comparison of comfort value/index (MIGA and PSO based serial hybrid energy 

optimization with single and multi-preprocessing systems)

Figure 5.51 shows the overall comparisons of power consumption and comfort index using 

basic model (GA based prediction and PSO based prediction models), model 1 (Single pre -

processing hybrid optimization and prediction models) and model 2 (Multi -preprocessing 

hybrid optimization and prediction models). Step by step comparison is described below.

1. GA based prediction model consumed less power as compared to PSO based 

prediction model.

2. GA based prediction model provides better comfort index as compared to PSO 

based prediction model.

3. Single preprocessing hybrid optimization and prediction models consumed less 

power as compared GA based prediction model and PSO based prediction model.

4. Single preprocessing hybrid optimization provides better comfort index as 

compared to GA based prediction model and PSO based prediction model.

5. Multi-preprocessing hybrid optimization and prediction models consumed less 
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power as compared to GA based prediction model and PSO based prediction.

6. Multi-preprocessing hybrid optimization and prediction models provides better 

comfort index as compared to GA based and PSO based prediction models.

7. Although multi-preprocessing hybrid optimization and prediction models 

consumed more power as compared to single preprocessing hybrid optimization 

and prediction models, but it provides better comfort index than single 

preprocessing hybrid optimization and prediction models.

Figure 5.51. Overall comparison of power consumption and comfort index
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6. Conclusions

In this work, we propose hybrid energy optimization methodologies for users comfort 

index and energy saving in building environment. Our proposed techniques address both 

energy savings and occupants comfort index simultaneously. Proposed hybrid techniques 

integrates in its fitness function the indoor occupants’ comfort index and the corresponding 

energy consumption. Hybrid energy optimization techniques targets to satisfy the occupant’s 

requirements along with minimal energy consumption. A range of user set parameters 

(temperature, illumination, air-quality) which constitute occupants’ comfort index in building 

are selected and then optimized using proposed hybrid energy optimization algorithms 

according to the user’s comfort index.

The error difference of optimal parameters and real environmental parameters is input to 

the fuzzy controller. The output of the fuzzy controller is the minimum required power 

according to the user’s comfort index. Coordinator agent takes required power (fuzzy 

controller output) and optimal parameters from the hybrid optimization algorithms as input. 

The coordinator agent adjusts the input power of the building on the basis of available power, 

required power and user comfort index. The adjusted power is compare with the required 

power to get the actual consume power. The consumed power is input to the Kalman filter and 

ARIMA prediction algorithms to predict consume power. The predicted consume power is 

used by the actuators.
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Our proposed single and multi-preprocessing based optimization and prediction algorithms 

consumed less power as compared to basic models. Multi-preprocessing based optimization 

and prediction models provides much better comfort index as compared to single 

preprocessing models, but consumed more power than single preprocessing models. Our 

proposed hybrid energy optimization based on prediction models are simple, user friendly and 

maintains better user’s comfort index and minimized the power consumption without 

compromising the comfort index as compare to previous works [1-3, 23-32].
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