ccreative

 commons

 commons}
$\begin{array}{lllllllllll}\text { C } & \mathrm{O} & \mathrm{M} & \mathrm{M} & \mathrm{O} & \mathrm{N} & \mathrm{S} & \mathrm{D} & \mathrm{E} & \mathrm{E} & \mathrm{D}\end{array}$

저작자표시-비영리-변경금지 2.0 대한민국
이용자는 아래의 조건을 따르는 경우에 한하여 자유롭게

- 이 저작물을 복제, 배포, 전송, 전시, 공연 및 방송할 수 있습니다.

다음과 같은 조건을 따라야 합니다:

저작자표시. 귀하는 원저작자를 표시하여야 합니다.

비영리. 귀하는 이 저작물을 영리 목적으로 이용할 수 없습니다.

- 귀하는, 이 저작물의 재이용이나 배포의 경우, 이 저작물에 적용된 이용허락조건 을 명확하게 나타내어야 합니다.
- 저작권자로부터 별도의 허가를 받으면 이러한 조건들은 적용되지 않습니다.

저작권법에 따른 이용자의 권리는 위의 내용에 의하여 영향을 받지 않습니다.

이것은 이용허락규약(Legal Code)을 이해하기 숩게 요약한 것입니다.

$$
\text { Disclaimer } \square
$$

c)Collection

A Doctoral Dissertation

Patterns of rpoB, rpoC, and pncA mutations in drug-resistant Mycobacterium tuberculosis isolated from patients in South Korea

Je Chul Yoo

Department of Medicine
Graduate School
Jeju National University

August, 2017

한국인 환자에서 분리한 약제내성 결핵균의 $r p o B, r p o C, p n c A$ 유전자 돌연변이 분석

지도교수 이 근 화

유 재 철

이 논문을 의학 박사학위 논문으로 제출함

2017 년 8 월

유재철의 의학 박사학위 논문을 인준함

제주대학교 대학원

Patterns of roB, roC, and incA mutations in drugresistant Mycobacterium tuberculosis isolated from patients in South Korea

Ne Chum Moo

(supervised by professor Keun Ha Lee)

A thesis submitted in partial fulfillment of the requirement for the degree of doctor of philosophy in medicine

Date Approved:

LEE, CHANG SUB
LEE, Keun Hwa

Department of Medicine
Graduate School
Jeju National University

Abstract

Background Rifampin (RIF) is one of the primary first-line combination antibiotics indicated for Mycobacterium tuberculosis, which greatly reduces the length of chemotherapy. Pyrazinamide (PZA) is also an antimicrobial agent, especially effective against multi-drug-resistant (MDR) tuberculosis (TB), resistant to isoniazid (INH) and RIF. M. tuberculosis acquires resistance to RIF through mutations in the rpoB gene, while compensatory mutations in the rpoC gene restore the fitness of RIF-resistant M. tuberculosis. M. tuberculosis acquires its resistance to PZA by having mutations in the pncA gene. A total of 93 M. tuberculosis isolates attained from patients were analysed to examine the mutation patterns of $r p o B, r p o C$, and $p n c A$ in South Korea.

Methods Antibiotic susceptibility was determined by carrying out bacterial cultures of drug-resistant mycobacterial isolates. Mutations in the $r p o B, r p o C$ and $p n c A$ genes were identified by sequencing analysis, while the attributes of mutations were determined by comparing a relevant wild-type DNA sequence with that of a mutant allele. (H37Rv, American Type Culture Collection 25618).

Results A drug susceptibility test was performed for the total of 93 M. tuberculosis isolates that had been successfully cultured. Of these 93 isolates that were subjected to drug susceptibility testing (DST), 75 were found to be resistant to multiple drugs. Of these 75 isolates, 20 were MDR-TB; 7 were MDR-Plus; 36 were extensively drugresistant XDR-TB; and 12 were drug-resistant (DR)-TB. A total of 66 cultured M. tuberculosis isolates were found to be RIF-resistant; 40 cultured isolates were found to be PZA-resistant; 39 cultured isolates were found to be both RIF- and PZA-resistant; and 18 were identified as being pan-susceptible (pan-S). Substitutions or multiple-site

mutations in the $r p o B$ region were identified in 56 isolates (56/80, 70.0\%), of which 91.1\% (51/56) were resistant to RIF and 9 distinctive-site mutations were identified. Fifteen (15) different types of rpoC mutations were identified in 24 isolates (24/93, 25.8%), all of which were resistant to both INH and RIF. The mutation rates in MDRand XDR-TB were 37.0% (10/27) and 38.9% (14/36), respectively. Substitutions of a single nucleotide (22/24, 91.7%) or substitutions of multiple-site mutations (2/24, 8.3\%) in the rpoC region were identified, and neither deletion nor insertion mutation was detected in any of the isolates. No mutations were identified in the rpoC region of any drug-susceptible strains. Various mutations were identified in the pncA gene in 46 isolates: Nucleotide substitutions, deletions, insertion, multiple-site mutations and 25 different mutation sites were found. Of these various mutations detected in 46 isolates, substitution of a single nucleotide was most common (27/46, 58.7\%), followed by multiple-site mutations (4/46, 8.7\%) and insertion (4/46, 8.7\%). Frameshifts caused by an insertion or a deletion of a single or multiple nucleotides at various sites accounted for $15.2 \%(7 / 46)$ of all mutations.

Conclusion Mutations of the rpoB, rpoC and pncA genes are the essential mechanism of RIF and PZA resistance in drug-resistant M. tuberculosis isolates. Detection of rpoB, rpoC and pncA gene mutations can complement in vitro DST and DNA-based diagnosis of RIF and PZA resistance, and is a promising method for the rapid detection of drug resistance.

Key Words: Mycobacterium tuberculosis, multi-drug resistance, rpoC mutations, rpoB mutations, pncA mutations, MDR, and XDR

CONTENTS

ABSTRACT i
CONTENTS iii
LIST OF TABLE v
LIST OF FIGURES vi

1. INTRODUCTION 1
2. MATERIALS AND METHODS 3
3. Mycobacterial isolates and susceptibility testing 3
4. DNA preparation for polymerase chain reaction (PCR) 3
5. PCR and sequencing of the rpoB 4
6. PCR and sequencing of the $r p o C$ 5
7. PCR and sequencing of the pncA 6
8. RESULTS 7
9. The patterns of $r p o B$ mutations 7
10. The patterns of rpoC mutations 8
11. The patterns of pncA mutations 8
12. DISCUSSION 23
13. REFERENCES 26
14. ABSTRACT IN KOREAN 29
ACKNOWLEDGEMENT 31

LIST OF TABLES

Table 1. Drug resistance profiles of 93 M. tuberculosis isolates 10
Table 2. Mutations detected in the rpoB of 80 isolates. 12
Table 3. Mutations detected in rpoC of 93 M. tuberculosis isolates. 14
Table 4. Mutations detected in the pncA gene of 89 cultured isolates 16

LIST OF FIGURES

Figure 1. Genomic DNA sequences of rpoB encoding the β subunit of RNA polymerase in M. tuberculosis. Mutations spot in 80 isolates were marked (bold), and the underlined sequence has not been previously reported. Nucleotides were numbered from the start codon (ATG) of rpoB.

Figure 2. Genomic DNA sequences of rpoC in M. tuberculosis. Mutation spots in 93 isolates were marked.

Figure 3. Genomic DNA sequences of pncA encoding pyrazinamidase in M. tuberculosis. Mutations spot in 89 isolates were marked (bold), and the underlined sequence has not been previously reported. Nucleotides were numbered from the start codon (ATG) of pncA.22

1. INTRODUCTION

In 1882, Robert Koch discovered the causative agent of tuberculosis (TB), an airborne infectious disease caused by Mycobacterium tuberculosis. TB still continues to be a major cause of morbidity and mortality, primarily in deprived or moderately poor countries (World Health Organization, 2015) in 2016. Having primarily a pulmonary pathophysiology, M. tuberculosis may be manifested as extra-pulmonary TB as part of a primary or late, generalized systemic infection. Also, the clinical manifestations of TB may be widely extended from asymptomatic infection to a life-threatening malady (Barry, et al., 2009, Esmail, et al., 2014). From a clinical and public health perspective, TB may be pragmatically classified into two: (1) asymptomatic non-transmissible latent TB infection (LTBI) and (2) transmissible active-pulmonary TB, for which culture-based or molecular diagnostics can be used. Patients with active TB may present general symptoms, such as fever, fatigue, lack of appetite and weight loss, while those with pulmonary TB can experience persistent cough and hemoptysis of an advanced ailment. However, some patients with active, culture-positive disease may be asymptomatic and are best described as having subclinical TB (Barry, et al., 2009, Esmail, et al., 2014).

The first-line anti-TB agents that constitute a standard treatment regimen are isoniazid (INH), rifampicin (RIF), pyrazinamide (PZA), and ethambutol (EMB). Bacterial resistance to multiple-drugs are reality and the notion of multidrug-resistant TB (MDR-TB) to INH and RIF has been accepted worldwide (World Health Organization. 2015). Extensively drug-resistant TB (XDR-TB) strains, which cause even more severe clinical manifestations, are resistant to not just INH and RIF but also fluoroquinolones and aminoglycosides. The worldwide emergence of MDR-TB and XDR-TB threatens global efforts to contain tuberculosis (Gandhi, et al., 2010, World Health Organization. 2015). The combination of INH and RIF is an effective primary first-line anti-TB
regimen (Abate et al., 2014, Jeon et al., 2015, Park, et al., 2016). MDR-TB strains, resistant to INH and RIF, have placed an increasing burden on South Korea (Jeon, et al., 2015, Park, et al., 2016, Tauhid, et al., 2014). M. tuberculosis can acquire resistance to RIF through mutations in $r p o B$, encoding the β subunit of RNA polymerase (Cavusoglu, et al., 2002, Yue, et al., 2003, Yun, et al., 2005). Mutations in the rpoC gene, encoding the β^{\prime} subunit of RNA polymerase, were also associated with increased in vitro fitness. Such mutations were overrepresented among patients inflicted with MDR-TB isolates in the high MDR-TB burdened countries (Comas, et al., 2011, de Vos, et al., 2013). Mutations in the rpoC gene were overrepresented among MDR-TB strains and one study showed that M. tuberculosis isolates harbouring rpoB mutations also carried nonsynonymous mutations in the rpoC gene (de Vos, et al., 2013). PZA is an effective anti-tubercular agent as well as an important treatment option in cases with MDR-TB strains resistant to INH and RIF. PZA, administered concurrently with a first-line drug regimen of INH and RIF, shortens the duration of anti-tubercular treatment (Mphahlele et al., 2008). M. tuberculosis can acquire resistance to PZA through mutations in the pncA gene, which encode pyrazinamidase (PZase). PZA is a prodrug that must be enzymatically converted to the active form pyrazinoic acid by PZase reaction. PZase activities, revealed through study findings of drug resistance to PZA, are apparently the pathophysiologic mechanism responsible for PZA resistance. PZA-resistant strains having mutations in the $p n c A$ gene contribute to the loss of its activity (Scorpio, et al., 1996). Furthermore, mutations in $p n c A$ have demonstrated a solid correlation between the loss of PZase activities and PZA resistance in M. tuberculosis (Hirano, et al., 1998, Kim, et al., 2012, Mphahlele, et al., 2008,). In this study, we investigated the patterns of rpoB, rpoC and pncA mutations in drug-resistant and susceptible M. tuberculosis among patients in South Korea.

2. MATERIALS AND METHODS

2.1. Mycobacterial isolates and susceptibility testing

Ninety three (93) M. tuberculosis isolates with clinically observed drug resistance or with susceptibility to anti-tuberculosis drugs were collected at National Masan Hospital and Pusan National University Colleague of Medicine in South Korea. Each isolate was cultured on Löwenstein-Jensen (LJ) medium at $37^{\circ} \mathrm{C}$ for $3-4$ weeks and tested for resistance at critical concentrations of capreomycin (CPM) ($40 \mu \mathrm{~g} / \mathrm{mL}$), EMB (2.0 $\mu \mathrm{g} / \mathrm{mL}$), INH ($0.2 \mu \mathrm{~g} / \mathrm{mL}$), kanamycin (KM) ($40 \mu \mathrm{~g} / \mathrm{mL}$), ofloxacin (OFX) $(2 \mu \mathrm{~g} / \mathrm{mL})$, streptomycin (SM) (4 $\mu \mathrm{g} / \mathrm{mL}$), PZA ($100 \mu \mathrm{~g} / \mathrm{mL}$, Wayne's pyrazinamidase assay) (Wayne et al., 1974), and RIF ($40 \mu \mathrm{~g} / \mathrm{mL}$).
M. tuberculosis H37Rv (American Type Culture Collection (ATCC) 27294) was used as a positive control for all experiments. Regarding drug resistance profiles, MDR was defined as having resistance to both RIF and INH; XDR, MDR plus resistance to any of the second-line injectable drugs and fluoroquinolones; DR , any drug resistance other than MDR or XDR; and Pan-S, susceptible to all drugs. Sixty-six (66) isolates were RIFresistant M. tuberculosis (Table 1). This study was approved by the institutional review board (IRB) of the International Tuberculosis Research Centre, and informed consent was obtained from all subjects.

2.2. DNA preparation for plymerase chain reaction (PCR)

The bead beater-phenol extraction method was utilized to extract DNA (Kim, et al., 1999). Two or three fragmented specimens were suspended in $200 \mu \mathrm{~L}$ of distilled water in Screw Cap Microcentrifuge tubes filled with $200 \mu \mathrm{~L}$ (packed volume) of glass beads
(diameter, 0.1 mm ; Biospec Products; Bartlesville, Okla) and $200 \mu \mathrm{~L}$ of phenol-chloroform-isopropyl alcohol (50:49:1). The tube was oscillated on a Mini-Bead Beater (Biospec Products) for 1 minute to disrupt the tissues and bacteria, and then centrifuged $(12,000 \times g, 5 \mathrm{~min})$. After the aqueous phase was transferred to another clean tube, $10 \mu \mathrm{~L}$ of 3 M sodium acetate and $250 \mu \mathrm{~L}$ of ice-cold ethanol were added, and the mixture was kept at $-20^{\circ} \mathrm{C}$ for 10 minutes. The obtained DNA pellets were then washed with 70% ethanol. Then, the solution was dissolved in $60 \mu \mathrm{~L}$ of TE buffer (10 mM Tris-HCl, 1 mM EDTA [pH 8.0]), and used it as a template for PCR.

2.3. Polymerase chain reaction (PCR) and sequencing of the rpoB

The rpoB DNAs (342 bp), encompassing the Rif ${ }^{\text {r }}$ region, which is associated with RIF resistance in M. tuberculosis, were amplified by PCR with the GeneAmp PCR System 9600 (PerkinElmer, Foster City, CA, USA) using MF,) (Kim, et al., 1999). Briefly, the PCR parameters were 5 minutes at $95^{\circ} \mathrm{C}$, followed by 40 cycles of 45 seconds at $94^{\circ} \mathrm{C}, 45$ seconds at $60^{\circ} \mathrm{C}$, and 60 seconds at $72^{\circ} \mathrm{C}$, with a final extension at 10 minutes at $72^{\circ} \mathrm{C}$. The PCR products were purified using the QIAEX II Gel Extraction Kit (Qiagen Inc., Mainz, Germany) according to the manufacturer's instructions and sequenced using the BigDye Terminator cycle sequencing kit with AmpliTaq DNA polymerase (Applied Biosystems, Foster City, CA). Nucleotide sequences were analyzed using the BioEdit software (version 5.0.9.1, Ibis Biosciences, Carlsbad, CA, USA), Chromas version 2.33 (Technelysium, Brisbane, QLD, Australia) (http://www.technelysium.com.au/chromas.html), and Basic Local Alignment Search Tool (National Center for Biotechnology Information, Bethesda, MD, USA) (http://blast.ncbi.nlm.nih.gov/Blast.cgi). Mutations in rpoB encoding regions were
defined as any nucleotide difference compared with those in the RIF-susceptible strain H37Rv (ATCC 25618).

2.4. PCR and sequencing of the rpoC

The rpoC region (1730 bp) was amplified by PCR with the GeneAmp PCR System 9600 (PerkinElmer, Foster City, CA, USA) using the primers 5'-CGAAAACCTCTACCGCGAAC-3' and 5’-CACGGAAGGAGGACTTGACC-3 (de Vos, et al., 2013). Briefly, the PCR parameters were 5 minutes at $95^{\circ} \mathrm{C}$, followed by 40 cycles of 45 seconds at $94^{\circ} \mathrm{C}, 45$ seconds at $60^{\circ} \mathrm{C}$, and 60 seconds at $72^{\circ} \mathrm{C}$, ending with a final extension of 10 minutes at $72^{\circ} \mathrm{C}$. The PCR product was purified using the QIAEX II Gel Extraction Kit (Qiagen Inc., Mainz, Germany) according to the manufacturer's instructions and sequenced using the BigDye Terminator cycle sequencing kit with AmpliTaq DNA polymerase (Applied Biosystems, Foster City, CA, USA) using primers 5'-CGAAAACCTCTACCGCGAAC-3' and 5'-CACGGAAGGAGGACTTGACC-3 (Comas, et al., 2011). Nucleotide sequences were analysed using the BioEdit software (version 5.0.9.1; Ibis Biosciences, Carlsbad, CA), Chromas version 2.33 (Technelysium, Brisbane, QLD, Australia) (http://www.technelysium.com.au/chromas.html), and the Basic Local Alignment Search Tool (National Center for Biotechnology Information, Bethesda, MD, USA) (http://blast.ncbi.nlm.nih.gov/Blast.cgi). Mutations in the rpoCencoding regions were defined as any nucleotide difference leading to translational changes of RpoC compared with those in the RIF-susceptible strain, H37Rv (ATCC 25618).

2.5. PCR and sequencing of the $p n c A$

The pncA (670 bp) region was amplified by PCR with the GeneAmp PCR System 9600 (PerkinElmer, Foster City, CA, USA) using primers 5'-GGCGTCATGGACCCTATATC-3' and 5'-CAACAGTTCATCCCGGTTC-3 (Kim, et al., 1999, Kim, et al., 2012, Yun, et al., 2005). Briefly, the PCR parameters were 5 minutes at $95^{\circ} \mathrm{C}$, followed by 40 cycles of 45 seconds at $94^{\circ} \mathrm{C}, 45$ seconds at $60^{\circ} \mathrm{C}$, and 60 seconds at $72^{\circ} \mathrm{C}$, with a termination using a final extension step at $72^{\circ} \mathrm{C}$ for 10 minutes. The PCR products were purified using the QIAEX II Gel Extraction Kit (Qiagen Inc., Mainz, Germany) according to the manufacture6r's instructions and sequenced using the BigDye Terminator cycle sequencing kit with AmpliTaq DNA polymerase (Applied Biosystems, Foster City, CA). Nucleotide sequences were analyzed using the BioEdit software (version 5.0.9.1; Ibis Biosciences, Carlsbad, CA, USA), Chromas version 2.33 (Technelysium, Brisbane, QLD, Australia) (http://www.technelysium.com.au/chromas.html), and the Basic Local Alignment Search Tool (National Center for Biotechnology Information, Bethesda, MD, USA) (http://blast.ncbi.nlm.nih.gov/Blast.cgi). Mutations in pncA encoding regions were defined as any nucleotide difference compared with those in the PZA-susceptible strain H37Rv (ATCC 25618).

3. RESULTS

Ninety three (93) clinical isolates, obtained from South Korean patients, were included in this study. In the drug-susceptibility testing (DST), 75 isolates were found to be multidrug-resistant. Twenty (20) were categorized as MDR-TBs; 7, MDR-Plus; 36, XDR-TB; and 12, DR-TB. Sixty-six (66) cultured M. tuberculosis isolates were found to be RIF-resistant, 40 cultured M. tuberculosis isolates were found to be PZA-resistant, 39 cultured M. tuberculosis isolates were found to be both RIF and PZA-resistant, and 18 were categorized as pan S. (Table 1).

3.1. The patterns of rpoB mutations

The $r p o B$ PCR products were obtained from 80 cultured isolates, among the total of 93 isolates ($80 / 93,86.0 \%$), and sequenced (Table 2). Substitutions or multiple-site mutations in the $r p o B$ region were identified in 56 isolates (56/80, 70.0\%), and found that 91.1\% (51/56) were resistant to RIF (Table 2). The mutation rates in MDR- and MDR Plus-TB were 86.4% (19/22) and XDR-TB was 93.5% (29/31). Nine (9) different mutation sites were identified (Figure 1). Substitution of a single nucleotide was most common ($52 / 56,92.9 \%$), and the most frequent mutation site was at codon 531 (nucleotide (nt) 1594), which resulted in amino acid substitution from Ser to Glu, Leu or Tyr in 34 isolates (34/52, 65.4\%) (Table 2). Neither deletion nor insertion mutation was detected in any of the isolates, while no mutation was identified in 5 isolates, despite the fact that they were proven to be MDR- and MDR Plus-TB (3/22, 13.6\%) or XDR-TB $(2 / 31,6.5 \%)$. Six (6) isolates (no. 22, 28, 30, 35, 37, and 77) had mutations in the rpoB, but were sensitive to RIF (Table 2). Some of the mutations and multi-site mutations revealed in this investigation had not been previously reported. These new mutations
were indicated in Table 2. The wild-type DNA sequences of rpoB and the mutation sites in this study were shown in Figure 1.

3.2. The patterns of rpoC mutations

The rpoC PCR products were amplified from 93 isolates, and sequenced. Fifteen (15) different types of mutations were identified in 24 isolates (24/93, 25.8\%), all of which were resistant to both INH and RIF, multidrug-resistant tuberculosis and mutation rates in MDR- and XDR-TB were 37.0% (10/27) and 38.9% (14/36), respectively (Table 3). Substitutions of a single nucleotide (22/24, 91.7%) or substitutions of multiple-site mutations $(2 / 24,8.3 \%)$ in the rpoC region were identified. However, neither deletion nor insertion mutation was detected in any of the isolates. No mutation was identified in the $r p o C$ region of any drug-susceptible strain.

A mutation at codon 452 (nt 1356), detected in 7 isolates, was the most common mutation (7/24, 29.2\%) and a mutation at codon 531 (nt 1594), which is the nucleotide most frequently involved in rpoB mutation, were also detected in these isolates (Table 2 and 3) (Cavusoglu, et al., 2002, Yue, et al., 2003, Yun, et al., 2005). Twelve (12) different mutation sites (at codon 281 (nt 843), 416 (nt 1249), 434 (nt 1302), 446 (nt 1338), 561 (nt 1683), 575 (nt 1726), 581 (nt 1745), 728 (nt 2186), 747 (nt 2242), 801 (nt 2403), 812 (nt 2437), and 813 (nt 2441)) were first reported in this study (Comas, et al., 2011, de Vos, et al., 2013); these new mutations are indicated in Figure 2 and Table 3.

3.3. The patterns of pncA mutations

Of the 93 isolates, the pncA PCR products were obtained in 89 cultured isolates ($89 / 93,95.7 \%$), and sequenced. Various mutations, identified by the pncA gene of 46 isolates, include nucleotide substitution, deletion, insertion, and multiple-site mutations
(Table 4). Twenty-five (25) different mutation sites were identified, and substitutions of single nucleotides were the most common (27/46, 58.7\%), followed by multiple-site mutations (4/46, 8.7\%) and insertions (4/46, 8.7\%). Frameshifts caused by insertion or deletion of a single or multiple nucleotides in various sites accounted for $15.2 \%(7 / 46)$ of all mutations. The most frequently mutated sites were at nt 403 , which showed a substitution from adenosine to cytosine, resulting in an amino acid substitution from Thr to Pro in 8 isolates that are resistant to PZA $(8 / 46,17.4 \%)$. One isolate was MDR-TB and 7 isolates were XDR-TB). Ten (10) isolates were identified with no mutation (10/89, 11.2\%), despite having proven drug resistance to PZA. The 10 PZA-resistant isolates comprised 7 of the 36 XDR-TB strains (19.4\%); 2 of the 21 MDR-TB (9.5\%); and 1 of the DR-TB. Some mutations revealed in this investigation were not reported previously. These new mutations are shown in Table 3, and the wild-type DNA sequences of $p n c A$ and the mutation sites including the promoter regions in this study are shown in Figure 3. Mutations in both rpoB and pncA were found in 28 isolates. Twentythree (23) out of the 28 isolates (82%), all of which are MDR or XDR-TB, were RIF- and PZA- resistant. Four (4) of these isolates (1 XDR, 1 MDR, 1 MDR Plus and 1 DR) were RIF-resistant, while one isolate was INH-resistant. One MDR isolate (no. 68, resistant to RIF) and two XDR-TB isolates (No. 32 and 55, resistant to RIF and PZA) had new mutations in rpoB and pncA that had not been previously reported.
Table 1. Drug resistance profiles of $\mathbf{9 3}$ M. tuberculosis isolates.

No.	Drug resistance	Drug resistance profile	No.	Drug resistance	Drug resistance profile	No.	Drug resistance	Drug resistance profile
1	SM, INH, RFP, CPM, KM, OFX, MFX, PZA	XDR	44	SM, INH, RFP, CPM, KM, MFX, PZA	XDR	87	CPM	DR
2	SM, INH, RFP, CPM, KM, OFX, MFX, PZA	XDR	45	SM, INH, RFP, CPM, KM, OFX, MFX, PZA	XDR	88	None Detected	Pan-S
3	SM, INH, RFP, EMB, CPM, KM, OFX, MFX, PZA	XDR	46	SM, INH, RFP, CPM, KM, OFX, MFX	XDR	89	INH, RFP	MDR
4	INH, RFP, CPM, KM, PZA	MDR	47	SM, INH, RFP, OFX, MFX, PZA	MDR	90	INH, RFP, MFX, CPM	XDR
5	SM, INH, RFP, EMB, OFX, MFX, PZA	MDR	48	None Detected	Pan-S	91	INH, RFP, CPM	MDR Plus
6	INH, RFP, OFX, MFX	MDR	49	CPM	DR	92	None Detected	Pan-S
7	SM, INH, RFP, EMB CPM, KM, MFX, PZA	XDR	50	INH, RFP, OFX, MFX, PZA	MDR	93	None Detected	Pan-S
8	SM, INH, RFP, MFX, PZA	MDR	51	INH, RFP, KM, OFX, MFX, PZA	XDR			
9	INH, RFP, CPM, KM, OFX, MFX, PZA	XDR	52	INH, RFP	MDR			
10	SM, INH, RFP, CPM, KM, OFX, MFX, PZA	XDR	53	SM, INH, RFP, EMB, CPM, KM, OFX, MFX, PZA	XDR			
11	SM, INH, RFP, EMB, CPM, KM, OFX, MFX, PZA	XDR	54	SM, INH, RFP, EMB, OFX, PZA	XDR			
12	SM, INH, RFP, KM, OFX, MFX, PZA	XDR	55	SM, INH, RFP, OFX, MFX, PZA	XDR			
13	INH, RFP, CPM, KM, OFX, MFX, PZA	XDR	56	SM, INH, RFP, CPM, OFX, MFX, PZA	XDR			
14	SM, INH, RFP, EMB, CPM, KM, OFX, MFX	XDR	57	SM, INH, RFP, EMB, CPM, KM, OFX, MFX, PZA	XDR			
15	INH, RFP, CPM, KM, OFX, MFX, PZA	XDR	58	INH, RFP, CPM, OFX, MFX, PZA	XDR			
16	SM, INH, RFP, CPM, KM, OFX, MFX, PZA	XDR	59	SM, INH, RFP, CPM, KM, OFX, MFX, PZA	XDR			
17	SM, INH, RFP, CPM, KM, PZA	MDR	60	RFP, CPM	DR			
18	INH, RFP, OFX, MFX, PZA	MDR	61	INH, RFP	MDR			
19	INH, RFP, CPM, KM, OFX, MFX, PZA	XDR	62	INH	DR			
20	INH, RFP, CPM, KM, OFX, MFX, PZA	XDR	63	INH, RFP, LEV, OFX, MFX,	MDR Plus			
21	INH, RFP, CPM, KM, MFX, PZA	XDR	64	INH, RFP, LEV, OFX, MFX, KM, AMK, CPM	XDR			
22	None Detected	Pan-S	65	INH, RFP, LEV, OFX, MFX, KM, AMK, CPM	XDR			
23	None Detected	Pan-S	66	INH, RFP, OFX, KM	XDR			

24	None Detected	Pan-S	67	RFP	DR
25	None Detected	Pan-S	68	INH, RFP,	MDR
26	None Detected	Pan-S	69	INH, RFP, CPM	MDR Plus
27	SM, INH, CPM, PZA	DR	70	None Detected	Pan-S
28	INH	DR	71	INH, RFP, LEV, OFX	MDR Plus
29	None Detected	Pan-S	72	INH, RFP	MDR
30	None Detected	Pan-S	73	INH, RFP	MDR
31	None Detected	Pan-S	74	INH, RFP	MDR
32	SM, INH, RFP, EMB, KM, OFX, MFX, PZA	XDR	75	INH, RFP	MDR
33	None Detected	Pan-S	76	RFP, CPM	DR
34	SM, INH, RFP, CPM, KM, OFX, MFX, PZA	XDR	77	None Detected	DR
35	None Detected	Pan-S	78	INH, RFP, LEV, OFX, MFX, KM, AMK, CPM	XDR
36	None Detected	Pan-S	79	INH, RFP, LEV, OFX	MDR Plus
37	INH	DR	80	INH, RFP, LEV, OFX	MDR Plus
38	SM, INH, RFP, EMB CPM, KM, MFX, PZA	XDR	81	CPM	DR
39	INH, RFP, EMB, OFX, MXF, PZA	MDR	82	INH, RFP, LEV, OFX	MDR Plus
40	INH, RFP, CPM, KM, PZA	MDR	83	None Detected	Pan-S
41	SM, INH, RFP, EMB, CPM, KM, OFX, MFX, PZA	XDR	84	INH, RFP	MDR
42	SM, INH, RFP, CPM, KM, OFX, MFX, PZA	XDR	85	None Detected	Pan-S
43	SM, INH, RFP, EMB, CPM, KM, PZA	MDR	86	CPM	DR

[^0]Table 2. Mutations detected in the rpoB of $\mathbf{8 0}$ isolates.

Nucleotide change (nucleotide no.)	Translational change (codon no.)	Cultured isolates ($n=80$) (100\%)	MDR-TB isolates $(n=18)$ (22.5%)	XDR-TB isolates $\begin{gathered} (n=31) \\ (38.75 \%) \end{gathered}$	Others isolates $\begin{gathered} (n=5) \\ (6.25 \%) \end{gathered}$	Pan-s isolates ($n=12$) (15\%)	MDR-Plus isolates $(n=4)$ (5\%)	DR Isolates $\begin{aligned} & (n=5) \\ & (6.25 \%) \end{aligned}$	All S isolate $\begin{gathered} (n=5) \\ (6.25 \%) \end{gathered}$	Remarks	No.
Substitution											
CAA(1539)->AAA	Gly(513)->Lys	1(1.25)	1(1.25)								75
GAC(1549)->GTC	Asp(516)->Val	8(10)	2(2.5)	5(6.25)			1(1.25)			Substitution	$10,15,34,40,42,43,45,71$
GAC(1549)-> TAC	Asp(516)-> Tyr	1(1.25)			1(1.25)					Substitution	28
CAC(1578)->GAC,	His(526)->Asp,	3(3.75)	3(3.75)								5, 6, 47
CAC(1578)->CGC	His(526)->Arg	1(1.25)					1(1.25)				63
CAC(1578)-> TAC	His(526)-> Try	1(1.25)	1(1.25)								84
TCG(1594)->TGG	Ser(531)->Try	2(2.5)	1(1.25)	1(1.25)						Substitution	14,50
TCG(1594)->CAG	Ser (531)->Glu	1(1.25)		1(1.25)						Substitution	41
TCG(1594)-> ${ }^{\text {TTG }}$	Ser (531)->Leu	31(38.7)	6(7.5)	19(23.7)	1(1.25)	1(1.25)	2(2.5)	2(2.5)		Substitution	$\begin{aligned} & 1, \mathbf{2 , 3}, \mathbf{7}, \mathbf{8}, \mathbf{9}, \mathbf{1 1}, 12, \mathbf{1 3}, \mathbf{1 7}, 18,19, \mathbf{2 0}, \\ & 21,30, \mathbf{3 8}, 39, \mathbf{4 4}, \mathbf{4 6}, 52,53,54,56,57 \text {, } \\ & 59,60,67,69,74,77,79 \end{aligned}$
CTG(1635)->TTG	Leu(545)->Leu	1(1.25)			1(1.25)					Substitution	37
Multi-site mutation											
$\begin{aligned} & \text { ACC(1441)->ATC } \\ & \text { TCG(1594)->TTG } \end{aligned}$	$\begin{aligned} & \text { Thr (480)->Iso } \\ & \text { Ser(531)->Leu } \end{aligned}$	1(1.25)		1(1.25)						Substitution	55
$\begin{aligned} & \text { TCG(1594)->TTG } \\ & \text { GGG(1634)->GGC } \\ & \text { CTG(1635)->TTG } \end{aligned}$	Ser(531)->Leu Gly(544)->Gly Leu(545)->Leu	1(1.25)				1(1.25)				Substitution	22
$\begin{aligned} & \text { GAC(1549)->AAC } \\ & \text { CAC(1578)->AAC } \end{aligned}$	$\begin{aligned} & \text { Asp(516)->Asn } \\ & \text { His(526)->Asn } \end{aligned}$	1(1.25)	1(1.25)							Substitution	68

$\begin{aligned} & \text { GGG(1634)->GGC } \\ & \text { CTG(1635)->TTG } \\ & \text { CAC(1655)->CAT } \end{aligned}$	Gly(544)->Gly Leu(545)->Leu His(551)->His	1(1.25)		1(1.25)					Substitution	32
$\begin{aligned} & \text { TCG(1594)->TTG } \\ & \text { CTG-(1635)->TTG } \end{aligned}$	$\begin{aligned} & \text { Ser(531)->Leu } \\ & \text { Leu-(545)->Leu } \end{aligned}$	1(1.25)				1(1.25)			Substitution	35
$\begin{aligned} & \text { GAC(1549)->GGC } \\ & \text { CTG(1600)->CCG } \end{aligned}$	$\begin{aligned} & \text { Asp(516)->Gly } \\ & \text { Leu(533)->Pro } \end{aligned}$	1(1.25)		1(1.25)					Substitution	78
Wild type	No change	24(30)	3(3.75)	2(2.5)	2(2.5)	9(11.2)	3(3.75)	5(6.25)		$\begin{aligned} & 4,16,23,24,25,26,27,29,31,33,36 \\ & 48,49,51,61,62,70,73,76,85,86,88 \\ & 92,93 \end{aligned}$

Table 3. Mutations detected in rpoC of $\mathbf{9 3}$ M. tuberculosis isolates.

Nucleotide change (s) (Nucleotide no.)	Translational change (codon no.)	$\begin{gathered} \text { Cultured } \\ \text { Isolates } \\ (n=93) \\ n(\%) \\ \hline \end{gathered}$	MDR-TB Isolates $(n=20)$ $n(\%)$	$\begin{gathered} \text { XDR-TB } \\ \text { isolates } \\ (n=36) \\ n(\%) \\ \hline \end{gathered}$	Others Isolates $\begin{gathered} (n=5) \\ n(\%) \end{gathered}$	$\begin{gathered} \text { Pan-S } \\ \text { Isolates } \\ (n=12) \\ n(\%) \\ \hline \end{gathered}$	MDRPlus isolates ($n=7$) n (\%)	DR Isolates $(n=7)$ $n(\%)$	All S Isolate $\begin{gathered} (n=6) \\ n(\%) \end{gathered}$	NO.	Remarks
Substitution											
ATC (843)->GTC	Iso (281)->Val ${ }^{\text {a }}$	3 (3.2)	2 (2.2)				1 (1.1)			71, 73, 89	Substitution
AAC (1249)->AGC	Asn (416)->Ser ${ }^{\text {a }}$	1 (1.1)		1 (1.1)						20	Substitution
CCG(1302)->ACG	Pro (434)-> Thr ${ }^{\text {a }}$	1 (1.1)					1 (1.1)			79	Substitution
CTG (1338)->ATG	Leu (446)->Met ${ }^{\text {a }}$	1 (1.1)					1 (1.1)			63	Substitution
TTC (1356)-> ${ }^{\text {CTC }}$	Phe (452)->Leu	7 (7.5)	1 (1.1)	6 (6.4)						2, 11, 13, 17, 44, 53, 57	Substitution
GTG (1450)->GCG	Val (483)->Ala	1 (1.1)		1 (1.1)						38	Substitution
GTG (1450)->GGG	Val (483)->Gly	1 (1.1)		1 (1.1)						46	Substitution
TCC (1683)->CCC	Ser (561)->Pro ${ }^{\text {a }}$	1 (1.1)		1 (1.1)						54	Substitution
GCC (1726)->GTC	Ala (575)->Val ${ }^{\text {a }}$	1 (1.1)		1 (1.1)						16	Substitution
GGC(2186)->GGT	Gly (728)->Gly ${ }^{\text {a }}$	1 (1.1)	1 (1.1)							74	Substitution
GAC (2242)->GGC	Asp (747)->Gly ${ }^{\text {a }}$	2 (2.2)	1 (1.1)	1 (1.1)						8, 65	Substitution
ACC (2437)->ATC	Thr (812)->Iso ${ }^{\text {a }}$	1 (1.1)	1 (1.1)							50	Substitution
CAG (2441)->CAC	Glu (813)->His ${ }^{\text {a }}$	1 (1.1)		1 (1.1)						32	Substitution
Multi-site mutation ${ }^{\text {a }}$											
$\begin{aligned} & \text { TCC (1683)->CCC, } \\ & \text { ATG (1745)->ATA } \end{aligned}$	$\begin{aligned} & \text { Ser (561)->Pro }{ }^{\text {a }} \\ & \text { Met (581)-> } \text { Iso }^{\text {a }} \end{aligned}$	1 (1.1)		1 (1.1)						9	Substitution
$\begin{aligned} & \text { CCG(1302)->GTG, } \\ & \text { ACC(2403)->TCC } \end{aligned}$	$\begin{aligned} & \text { Pro (434)->Val, } \\ & \text { Thr (801)->Sera } \end{aligned}$	1 (1.1)					1 (1.1)			80	Substitution
Wild type	No change										
		69 (74.2)	14 (15.1)	22 (23.6)	5 (5.3)	12 (12.9)	3 (3.2)	7 (7.5)	6 (6.4)	1, 3, 4, 5, 6, 7, 10, 12, 14, 15, 18, 19, 21,	

$34,35,36,37,39,40,41,42,43,45,47$, $48,49,51,52,55,56,58,59,60,61$,
$62,64,66,67,68,69,70,72,75,76$,
$77,78,81,82,83,84,85,86,87,88$,
$90,91,92,93$
Table 4. Mutations detected in the pncA gene of 89 cultured isolates.

Nucleotide change (s) (nucleotide no.)	Translational change (codon no.)	$\begin{gathered} \text { Cultured } \\ \text { Isolates } \\ (n=89) \\ (99 \%) \\ \hline \end{gathered}$	MDR-TB Isolates $\begin{aligned} & (n=19) \\ & (21.3 \%) \\ & \hline \end{aligned}$	XDR-TB isolates $\begin{aligned} & (n=33) \\ & (37.0 \%) \\ & \hline \end{aligned}$	Others isolates $\begin{gathered} (n=5) \\ (5.61 \%) \\ \hline \end{gathered}$	Pan-S Isolates ($n=12$) (13.4\%)	MDR- Plus isolates $(n=7)$ (7.86%)	$\begin{gathered} \text { DR } \\ \text { Isolates } \\ (n=7) \\ (7.86 \%) \\ \hline \end{gathered}$	$\begin{gathered} \text { All S } \\ \text { isolate } \\ (n=6) \\ (6.74 \%) \\ \hline \end{gathered}$	Remarks	No.
Substitution											
TAT->TGT(-11)	Tyr(-4)->Cys	3(3.3)	2(2.2)	1(1.1)						Substitution	8, 6, 90
TTG->TGG(11)	Leu(4)-> Try	1(1.1)		1(1.1)						Substitution	20
CAG->CGG(29)	Gly(10)->Arg	1(1.1)					1(1.1)			Substitution	71
CAG->CCG(29)	Gly(10)->Pro	1(1.1)	1(1.1)							Substitution	43
* CTG->CCG(104)	Leu(35)->Pro	1(1.1)	1(1.1)							Substitution	4
*GTG->GAG(134)	Val(44)->Met	1(1.1)		1(1.1)						Substitution	78
AAG->GAG(142)	Lys(48)->Glu	1(1.1)		1(1.1)						Substitution	46
* $\mathrm{CAC}->\mathrm{CCC}(170)$	His(57)->Pro	1(1.1)		1(1.1)						Substitution	38
TCG->CCG(199)	Ser(66)->pro	1(1.1)		1(1.1)						Substitution	45
TGG->TCG(203)	Try(68)->Ser	1(1.1)		1(1.1)						Substitution	9
TGG->TAG(203)	Try(68)->Stpo	1(1.1)		1(1.1)						Substitution	65
*TGG->TGT(204)	Try(68)->Cys	1(1.1)		1(1.1)						Substitution	64
*CAT-> TAT(211)	$\operatorname{His}(70)->\mathrm{Tyr}$	1(1.1)			1(1.1)					Substitution	60
ACT->CCT(226)	Try(76)->Pro	1(1.1)		1(1.1)						Substitution	51
*TTC->GTC (241)	Phe->(80)Val	1(1.1)						1(1.1)		Substitution	67
*CTG->CGG(254)	Leu->(87)->Arg	1(1.1)	1(1.1)							Substitution	72
*GGT->AGT(289)	Gly(97)->Ser	1(1.1)	1(1.1)							Substitution	5
*ACC->CCC(298)	Thr(99)->Pro	1(1.1)		1(1.1)						Substitution	41

$$
\begin{aligned}
& \xlongequal[\Xi]{\rightrightarrows} \quad \xlongequal[\Xi]{\Xi} \\
& \xlongequal[\Xi]{\Xi} \\
& \xlongequal{\Xi} \\
& \text { ヨ } \\
& \underset{\rightrightarrows}{\rightrightarrows} \text { € ヨ }
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
\operatorname{Thr}(102)->\text { His } \\
\mathrm{Ser}(104)->\operatorname{Arg}
\end{array}
\end{aligned}
$$

Asp（136）－＞Gly
Glu（140）－＞Leu
Glu－（140）＞Pro

> Ala(146)Val
> Arg(153)->Gly
> $\operatorname{Tyr}(-4)->\mathrm{Cys}$

$$
\begin{aligned}
& \begin{array}{l}
\text { Gly(131)->Gly } \\
\text { Frameshift }
\end{array}
\end{aligned}
$$

＊TAC－＞CAC（307）
（ZIE）VDV＜－JDV
（ย0t）OวO $<$－OJV
＊GAT－＞GGT（407）
CAG－＞CTG（422）
CAG－＞CCG（422）
＊ $\mathrm{GAC}->\mathrm{GAA}(435)$
GCG－＞GTG（437）
AGG－＞GGG（460）
Multi－site mutation
TAT－＞TGT（－11）
ACC－＞CCC（403）
＊TCG－＞CCG（199）
＊AGC－＞GGC（535）
＊GAC－＞GAA（189）
＊GTC－＞GGC（392）
Insertion
＊－＞A（192）
＂－＞G（417）
＊－＞C（392）
Figure. 1. Genomic DNA sequences of rpoB encoding the β subunit of RNA polymerase in M. tuberculosis.

	GAC	CAC	TTC	GGA	AAC	CGC	CGC	CTG	CGT	ACG	GTC	GGC	GAG	CAG	CTG	ATC	CAA	AAC	CAG	ATC
1395																				
	CGG	GTC	GGC	ATG	TCG	CGG	ATG	GAG	CGG	GTG	GTC	CGG	GAG	CGG	ATG	ACC	ACC	AGG	ACC	GTG
1455																				
	GAG	GCG	ATC	ACA	CCG	CAG	ACG	TTG	ATC	AAC	ATC	CGG	CCG	GTG	GTC	GCC	GCG	ATC	AAG	GAG
1515																				
	TTC	TTC	GGC	ACC	AGC	CAG	CTG	AGC	CAA	TTC	ATG	GAC	CAG	AAC	AAC	CCG	CTG	TCG	GGG	TTG
1575																				
	ACC	CAC	AAG	CGC	CGA	CTG	TCG	GCG	CTG	GGG	CCC	GGC	GGT	CTG	TCA	CGT	GAG	CGT	GCC	GGG
1635																				
	CTG	GAG	GTC	CGC	GAC	GTG	CAC	CCG	GCC	GGG	CTG	GAG	GTC	CGC	GAC	GTG	CAC	CCG	TCG	CAC
1695																				
	TAC	GGC	CGG	ATG	TGC	CCG	ATC	GA												

[^1]from the start codon (ATG) of rpoB.
Figure 2. Genomic DNA sequences of rpoC in M. tuberculosis.

795																			
ATC	GAG	AAC	TTC	GAC	ATC	GAC	GCC	GAA	GCC	GAG	TCG	CTG	CGG	GAT	GTC	$\underline{\text { ATC }}$	CGA	AAC	GGC
855																			
AAG	GGG	CAG	AAG	AAG	CTT	CGC	GCC	CTC	AAG	CGG	CTG	AAG	GTG	GTT	GCG	GCG	TTC	CAA	CAG
915																			
TCG	GGC	AAC	TCG	CCG	ATG	GGC	ATG	GTG	CTC	GAC	GCC	GTC	CCG	GTG	ATC	CCG	CCG	GAG	CTG
975																			
CGC	CCG	ATG	GTG	CTG	CTC	GAC	GGC	GGC	CGG	TTC	GCC	ACG	TCC	GAC	TTG	AAC	GAC	CTG	TAC
1035																			
CGC	AGG	GTG	ATC	AAC	CGC	AAC	AAC	CGG	CTG	AAA	AGG	CTG	ATC	GAT	CTG	GGT	GCG	CCG	GAA
1095																			
ATC	ATC	GTC	AAC	AAC	GAG	AAG	CGG	ATG	CTG	CAG	GAA	TCC	GTG	GAC	GCG	CTG	TTC	GAC	AAT
1155																			
GGC	CGC	CGC	GGC	CGG	CCC	GTC	ACC	GGG	CCG	GGC	AAC	CGT	CCG	CTC	AAG	TCG	CTT	TCC	GAT
1215																			
CTG	CTC	AAG	GGC	AAG	CAG	GGC	CGG	TTC	CGG	CAG	A A $^{\text {C }}$	CTG	CTC	GGC	AAG	CGT	GTC	GAC	TAC
1275																			
TCG	GGC	CGG	TCG	GTC	ATC	GTG	GTC	GGC	CCG	CAG	CTC	AAG	CTG	CAC	CAG	TGC	GGT	CTG	CCC
1335																			
AAG	CTG	ATG	GCG	CTG	GAG	CTG	TTC	AAG	CCG	TTC	GTG	ATG	AAG	CGG	CTG	GTG	GAC	CTC	AAC
1395																			
CAT	GCG	CAG	AAC	ATC	AAG	AGC	GCG	AAG	CGC	ATG	GTG	GAG	CGC	CAG	CGC	CCC	CAA	GTG	TGG
1455																			
GAT	GTG	CTC	GAA	GAG	GTC	ATC	GCC	GAG	CAC	CCG	GTG	TTG	CTG	AAC	CGC	GCA	CCC	ACC	CTG
1515																			
CAC	CGG	TTG	GGT	ATC	CAG	GCC	TTC	GAG	CCA	ATG	CTG	GTG	GAA	GGC	AAG	GCC	ATT	CAG	CTG
1575																			
CAC	CCG	TTG	GTG	TGT	GAG	GCG	TTC	AAT	GCC	GAC	TTC	GAC	GGT	GAC	CAG	ATG	GCC	GTG	CAC
1635																			
CTG	CCT	TTG	AGC	GCC	GAA	GCG	CAG	GCC	GAG	GCT	CGC	ATT	TTG	ATG	TTG	TCC	TCC	AAC	AAC
1695																			
ATC	CTG	TCG	CCG	GCA	TCT	GGG	CGT	CCG	TTG	GCC	ATG	CCG	CGG	CTG	GAC	ATG	GTG	ACC	GGG
1755 -																			
CTG	TAC	TAC	CTG	ACC	ACC	GAG	GTC	CCC	GGG	GAC	ACC	GGC	GAA	TAC	CAG	CCG	GCC	AGC	GGG
1815																			

GAT	CAC	CCG	GAG	ACT	GGT	GTC	TAC	TCT	TCG	CCG	GCC	GAA	GCG	ATC	ATG	GCG	GCC	GAC	CGC
1875																			
GGT	GTC	TTG	AGC	GTG	CGG	GCC	AAG	ATC	AAG	GTG	CGG	CTG	ACC	CAG	CTG	CGG	CCG	CCG	GTC
1935																			
GAG	ATC	GAG	GCC	GAG	CTA	TTC	GGC	CAC	AGC	GGC	TGG	CAG	CCG	GGC	GAT	GCG	TGG	ATG	GCC
1995 (
GAG	ACC	ACG	CTG	GGC	CGG	GTG	ATG	TTC	AAC	GAG	CTG	CTG	CCG	CTG	GGT	TAT	CCG	TTC	GTC
2055																			
AAC	AAG	CAG	ATG	CAC	AAG	AAG	GTG	CAG	GCC	GCC	ATC	ATC	AAC	GAC	CTG	GCC	GAG	CGT	TAC
2115																			
CCG	ATG	ATC	GTG	GTC	GCC	CAG	ACC	GTC	GAC	AAG	CTC	AAG	GAC	GCC	GGC	TTC	TAC	TGG	GCC
2175																			
ACC	GCG	AGC	GGC	GTG	ACG	GTG	TCG	ATG	GCC	GAC	GTG	CTG	GTG	CCG	CCG	CGC	AAG	AAG	GAG
2235																			
ATC	CTC	G A $^{\text {C }}$	CAC	TAC	GAG	GAG	CGC	GCG	GAC	AAG	GTC	GAA	AAG	CAG	TTC	CAG	CGT	GGC	GCT
2295																			
TTG	AAC	CAC	GAC	GAG	CGC	AAC	GAG	GCG	CTG	GTG	GAG	ATT	TGG	AAG	GAA	GCC	ACC	GAC	GAG
2355																			
GTC	GGT	CAG	GCG	TTG	CGG	GAG	CAC	TAC	CCC	GAC	GAC	AAC	CCG	ATC	ATC	$\underline{\text { a }}$ CC	ATC	GTC	GAC
2415																			
TCC	GGC	GCC	ACC	GGC	AAC	TTC	ACC	CAG	ACT	CGA	ACG	CTG	GCC	GGT	ATG	AAG	GGC	CTG	GTG
2475																			
ACC	AAC	CCG	A																

Figure 3. Genomic DNA sequences of pncA encoding pyrazinamidase in M. tuberculosis.

[^2]
4. DISCUSSION

RIF is one of the primary first-line combination anti-tubercular agents indicated for Mycobacterium tuberculosis, and RIF resistance is a valuable surrogate marker of MDRTB. Over 90% of RIF resistance in clinical isolates of M. tuberculosis is identified with genetic alterations within the rpoB gene (Yue, et al., 2003, World Health Organization. 2015). RIF resistance is a valuable surrogate marker of drug-resistant tuberculosis, and detection of drug resistance to RIF is important in the treatment of tuberculosis (Cavusoglu, et al., 2002, Yue, et al., 2003, Yun, et al., 2005). M. tuberculosis can acquire resistance to RIF through mutations in the $r p o B$ gene, encoding the β subunit of RNA polymerase (Cavusoglu, et al., 2002, Yue, et al., 2003, Yun, et al., 2005). The β^{\prime} subunit of RNA polymerase is encoded by the rpoC gene. Iñaki Comas et al. suggested that the acquisition of particular mutations in rpoC in RIF-resistant M. tuberculosis strains over time leads to the emergence of MDR strains with a high fitness (Comas,et al., 2011). Moreover, de Vos M et al. showed that nonsynonymous mutations in the rpoC region are prevalent among RIF-resistant isolates in a highly-burdened setting in South Africa, and that these mutations are strongly associated with transmissions of RIF-resistant strains (de Vos, et al., 2013). Mutations of the rpoC gene have not been studied in South Korea yet, and this study investigated the patterns of rpoC mutations in drug-resistant and susceptible M. tuberculosis among patients in South Korea. Nucleotide substitutions and multiple-site mutations in rpoB were identified, and neither deletion nor insertion mutation was detected. Substitutions at codon 531 (nucleotide 1594) were the most commonly found variations (60.7%), while new mutations in rpoB, which had not been previously reported, were found (Table 2). Fifteen (15) different types of mutations in rpoC were identified, and 12 of these 15 mutation variations were first reported in this study (marked in Table 2) (Comas, et al., 2011, de Vos, et al., 2013). A mutation at codon

452 was the most common transformation (7/24, 29.2\%). Mutations at codon 531, a nucleotide most frequently involved in $r p o B$ mutation, were also detected in these isolates (Table 1) (Cavusoglu, et al., 2002, Yue, et al., 2003, Yun, et al., 2005). Mutations were only found among MDR-TB strains, all of which were resistant to both INH and RIF, while no mutation was identified in the rpoC region of any drug-susceptible strains (marked in Table 1 and Table 2). Therefore, M. tuberculosis can acquire resistance to RIF through mutations in the rpoB and rpoC, suggesting that mutations of rpoB and rpoC maybe used as a marker of MDR-TB and DNA-based diagnostic confirmation for the detection of INH and RIF resistance. Nonetheless, further extensive studies with a larger collection of isolates are necessary. PZA is also one of the most effective pharmacologic agents indicated for tuberculosis. When PZA is combined with the first-line drugs of INH and RIF, it shortens the duration of anti-tubercular treatment (Gandhi, et al., 2010, Mphahlele, et al., 2008, World Health Organization, 2015). In cases of MDR- and XDRTB, where tubercular bacilli are resistance to at least both INH and RIF, PZA becomes an important treatment option (Gandhi, et al., 2010, Mphahlele, et al., 2008, World Health Organization, 2015). Thus, the detection of drug resistance to PZA is important in the treatment of tuberculosis, and is especially an urgent issue when there are tubercular resistance to INH and/or RIF (Gandhi, et al., 2010, World Health Organization, 2015). In this study, we investigated the patterns of pncA mutations of M. tuberculosis isolates that identified MDR- and XDR-TB strains among patients in South Korea. This study identified nucleotide substitutions, multiple-site mutations, as well as insertion and deletion (frameshift) mutations in pncA (Table 3 and Figure 3). We observed newlydeveloped mutations in the $p n c A$ gene that had not been previously reported, and also discovered that pncA mutations were more scattered and diverse than rpoB mutations (Tables 3 and Figure 3). In summary, M. tuberculosis can acquire resistance to RIF and

PZA through mutations in rpoB, rpoC and pncA, respectively (Hirano, et al., 1998, Kim et al., 1999, Kim, et al., 2012, Mphahlele, et al., 2008, Yun, et al., 2005, Scorpio, et al., 1996). Explicitly, mutations of rpoB, rpoC and pncA in M. tuberculosis are important mechanisms of RIF and PZA resistance. There is a strong correlation between mutations of rpoB, rpoC and pncA and RIF and PZA resistance to M. tuberculosis among drugresistant isolates especially with MDR- and XDR-TB strains among patients in South Korea (Hirano, et al., 1998, Kim, et al., 2012, Kim et al., 1999, Mphahlele, et al., 2008, Yun, et al., 2005,). Therefore, the detection of rpoB, rpoC and pncA mutations, which complement the results of in vitro DST and DNA-based diagnosis of RIF and PZA resistance, would be a promising approach for the speedy detection of drug resistance (Kim, et al., 2012, Kim et al., 1999, Mphahlele, et al., 2008).

5. REFERENCES

Abate D, Tedla Y, Meressa D, Ameni G. Isoniazid and rifampicin resistance mutations and their effect on second-line anti-tuberculosis treatment. Int J Tuberc Lung Dis. 18(8):946-51 (2014).

Barry, C. E. 3rd et al. The spectrum of latent tuberculosis: rethinking the biology and intervention strategies. Nat. Rev. Microbiol. 7, 845-855 (2009).

Cavusoglu C, Hilmioglu S, Guneri S, Bilgic A. Characterization of rpoB mutations in rifampin-resistant clinical isolates of Mycobacterium tuberculosis from Turkey by DNA sequencing and line probe assay. J Clin Microbiol. 40(12):4435-8 (2002).

Comas I, Borrell S, Roetzer A, Rose G, Malla B, Kato-Maeda M, et al. Whole-genome sequencing of rifampicin-resistant Mycobacterium tuberculosis strains identifies compensatory mutations in RNA polymerase genes. Nat Genet. 18;44(1):106-10 (2011).
de Vos M, Müller B, Borrell S, Black PA, van Helden PD, Warren RM, et al. Putative compensatory mutations in the rpoC gene of rifampin-resistant Mycobacterium tuberculosis are associated with ongoing transmission. Antimicrob Agents Chemother. 57(2):827-32 (2013).

Esmail, H., Barry, C. E. 3rd, Young, D. B. \& Wilkinson, R. J. The ongoing challenge of latent tuberculosis. Phil. Trans. R. Soc. B 369, 20130437 (2014).

Gandhi NR, Nunn P, Dheda K, Schaaf HS, Zignol M, van Soolingen D, et al. Multidrugresistant and extensively drug-resistant tuberculosis: a threat to global control of tuberculosis. Lancet. 375(9728), 1830-43 (2010).

Hirano K, Takahashi M, Kazumi Y, Fukasawa Y, Abe C. (1998) Mutation in pncA is a major mechanism of pyrazinamide resistance in Mycobacterium tuberculosis. Tuber Lung Dis 78(2): 117-22 (1998).

Jeon D. Medical management of drug-resistant tuberculosis. Tuberc Respir Dis (Seoul). 78(3):168-74 (2015).

Kim, B. J., S. H. Lee, M. A. Lyu, S. J. Kim, G. H. Bai, G. T. Chae, E. C. Kim, C. Y. Cha, and Y. H. Kook. Identification of mycobacterial species by comparative sequence analysis of the RNA polymerase gene (rpoB). J. Clin. Microbiol. 58:1714-1720 (1999).

Kim HJ, Kwak HK, Lee J, Yun YJ, Lee JS, Lee MS, Min SY, Park SK, Kang HS, Maeng YH, Kim SY, Kim SY, Kook YH, Kim YR, Lee KH. Patterns of pncA mutations in drugresistant Mycobacterium tuberculosis isolated from patients in South Korea. Int J Tuberc Lung Dis. 16(1):98-103 (2012).

Mphahlele M, Syre H, Valvatne H, Stavrum R, Mannsåker T, Muthivhi T, Weyer K, Fourie PB, Grewal HM. Pyrazinamide resistance among South African multidrug resistant Mycobacterium tuberculosis isolates. J Clin Microbiol. 46(10): 3459-64 (2008).

Scorpio A, Zhang Y. Mutations in $p n c A$, a gene encoding pyrazinamidase/nicotinamidase, cause resistance to the antituberculous drug pyrazinamide in tubercle bacillus. Nat Med. 2: 662-67 (1996).

Park JS. Issues related to the updated 2014 Korean Guidelines for Tuberculosis. Tuberc Respir Dis (Seoul). 79(1):1-4 (2016).

Tauhid Islam, Tom Hiatt, Cornelia Hennig, Nobuyuki Nishikiori. Drug-resistant tuberculosis in the WHO Western Pacific Region. Western Pac Surveill Response J. 5(4):34-46 (2014).

Yue J, Shi W, Xie J, Li Y, Zeng E, Wang H. Mutations in the rpoB gene of multidrugresistant Mycobacterium tuberculosis isolates from China. J Clin Microbiol. 41(5):220912 (2003).

Yun YJ, Lee KH, Haihua L, Ryu YJ, Kim BJ, Lee YH, Baek GH, Kim HJ, Chung MS, Lee MC, Lee SH, Choi IH, Cho TJ, Chang BS, Kook YH. Detection and identification of Mycobacterium tuberculosis in joint biopsy specimens by rpoB PCR cloning and sequencing. J Clin Microbiol 43(1):174-78 (2005).

Wayne LG. Simple pyrazinamidase and urease tests for routine identification of mycobacteria. Am Rev Respir Dis. 109(1):147-51 (1974).

World Health Organization. Global tuberculosis report. Geneva, Switzerland, WHO (2015).

6. ABSTRACT IN KOREAN

Rifampicin (RFP)은 결핵치료에 있어서 1 차 항결핵제로 많이 사용되는 약제이다. Pyrazinamide (PZA)은 INH 와 RFP 에 대해서 내성을 가지는 다제약제내성결핵균 (MDR-TB)에 효과적인 항결핵제이다. 본연구에서는 한국인 환자에서 분리된 93 주의 결핵균 (MDR-TB 포함)에 대해서 RFP 와 PZA 내성과 관련이 있는 유전자인 rpoB, rpoC 그리고 pncA 의 유전자 분석을 통하여 이들 유전자에서의 돌연변이 (mutation)와 이들 약제내성과의 관련성에 대해서 연구하였다. 93 개의 임상분리균주는 실험실에서 성공적으로 배양이 되었으며 약제내성검사 (drug susceptibility testing, DST)를 통하여 $\mathrm{INH}, \mathrm{PZA}, \mathrm{RFP}$ 를 포함한 항결핵제에 대한 내성 및 감수성을 확인하였다. 확인결과 75 개 분리주가 항결핵제에 대해서 내성을 갖는 것으로 확인되었다. 이중 20 주는 MDR-TB, 7 주는 MDR-Plus, 36 주는 XDR-TB 그리고 12 주는 $\mathrm{DR}-\mathrm{TB}$ 로 확인이 되었으며 66 주에서 RFP 내성, 40 주는 PZA 에 대해서 내성 그리고 39 주는 RFP 와 PZA 에 대해서 내성을 가지는 것으로 확인되었으며 18 주는 pan S 로 확인되었다. 56 주에서 $r p o B$ 유전자 에서의 substitutions 또는 multiple-site mutations 이 확인되었으며 (56/80, 70.0\%) 이중 51 주가 RFP 에 대해서 내성을 가지는 것으로 확인되었으며 (51/56, 91.1\%), 9 개의 다른 변이가 확인되었다. 24 주에서 $r p o C$ 에서 15 개의 다른 변이가 확인되었으며 (24/93, 25.8\%), 24 주 모두 INH 와 RFP 에 대해서 내성을 가지며 MDR-TB 에서 37.0% (10/27), XDR-TB 에서 38.9% (14/36)에서 내성을 가지는 것을 확인했다. Single nucleotide 의 substitutions (22/24, 91.7\%) 또는 multiple-site 의 substitutions (2/24, 8.3\%)이 확인되었으며 deletion 이나 insertion 은 확인되지

않았으며, 항결핵제에 대해서 감수성인 균주는 rpoC 에서 변이가 확인되지 않았다. $p n c A$ 유전자의 경우는 46 주에서 다양한 변이가 확인되었으며 (nucleotide substitutions, deletions, insertion 그리고 multiple-site mutations) 25 개의 다른 변이가 확인이 되었다. Single nucleotide 의 substitution 이 가장 많았으며 (27/46, 58.7\%), 그다음으로는 multiple-site mutation (4/46, 8.7\%) 그리고 insertion (4/46, 8.7\%) 순으로 많았다. 다양한 부위에서 insertion 또는 single 또는 multiple nucleotides 에서 deletion 에 의한 frameshifts 가 있었다 ($7 / 46,15.2 \%$). 본 연구를 통해서 결핵균 (M. tuberculosis)의 rpoB, rpoC 그리고 pncA 유전자의 변이는 RFP 와 PZA 내성과 연관이 있는 것으로 확인되었으며 rpoB, rpoC 그리고 $p n c A$ 유전자의 변이를 확인하는 것은 RFP 와 PZA 약제에 대해서 내성을 가지는 다제약제내성결핵균을 신속분자진단법 개발에 중요한 자료로 사용이 될 것으로 생각된다.

감사의 글

10 년 전으로 기억합니다. 2007 년 대구가톨릭대학병원 신경외과에서 전임의를 시작하면서 대학에 남을 계획을 하고 석사를 시작한 후 2009 년에 석사학위를 받았습니다. 대학교수의 꿈을 접고 제주도에 내려오면서 크게 학위에 대한 욕심을 버렸었는데 2012 년 제주한라병원에서 신경외과가 전공의 수련병원으로 지정되면서 제자를 키우려면 박사학위가 있는 것이 나을 수 있다는 이상평 과장님의 조언을 받아 박사과정 및 학위를 받을 과정을 밟기로 하였습니다. 먼저 이 학위를 받을 수 있도록 시작점이 되어 주신 대구가톨릭대학병원 여형태 교수님, 최기환 교수님, 김종기 교수님께 감사의 말씀을 먼저 드립니다.

제가 수련의과정을 할 때나 한라병원신경외과에 제직을 하면서나, 지금 서귀포유신경외과로 개원해 있을 때나 한결같이 지켜봐 주시고 든든한 버팀목이 되어 주시는 이상평 과장님께 말로는 부족한 감사를 드립니다. 아울러 사모님이신 한라대학교 박신영 교수님께도 감사의 말씀을 드립니다. 대학원과정을 시작하면서부터 지도교수님이 되어 주시고 논문작성과정에 꼼꼼히 지도 편달해 주시고 박사과정 전반에 많은 도움을 주신 이근화 교수님께 늘 감사드립니다. 박사학위를 시작할 때부터 늘 힘이 되어준 사랑하는 저의 부인께도 감사드립니다. 저를 제주대학교와 인연을 맺게 해주시고 늘 격려해주신 김성엽 교수님, 이근화 교수님의 해외출장기간 동안 지도교수님으로 수고해 주신 이창섭 교수님께도 감사의 말씀을 전합니다. 교육과정을 논문작성과정에 여러 모로 도와주신 이범석 선생님, 정재훈 선생님께도 감사의 말씀을 드립니다. 실험실에 도움을 주신 양미해 선생님, 부상언 선생님께도 감사드립니다.
고등학교를 졸업하고 대구에서만 살다가 제주도에 내려 온지 벌써 만 9 년이 다 되어 가는데 크고 좋은 결실을 맺는 것 같습니다. 이 과정에서 여기에 언급하지 못했지만 많은 분들께 감사드립니다.

[^0]: $\mathrm{CPM}=$ capreomycin; $\mathrm{EMB}=$ ethambutol; $\mathrm{INH}=$ isoniazid; $\mathrm{KM}=$ kanamycin; $\mathrm{MFX}=$ moxifloxacin; $\mathrm{OFX}=$ ofloxacin; $\mathrm{SM}=$ streptomycin; $\mathrm{PZA}=$ pyrazinamide; RFP $=$
 rifampicin; MDR $=$ multidrug-resistant; MDR plus $=I N G+R F P+F Q$ or $I N H+$ RFP + Inj. $\mathrm{D} ; \mathrm{XDR}=$ extensively drug-resistant; $\mathrm{DR}=$ resistant to any drug, but not MDR or
 XDR; others = any drug resistance(s) other than MDR or XDR-TB; Pan-S = pan-susceptible.Bold numbers indicate isolates with mutations in rpoC and resistance to both INH and RFP.

[^1]: Mutations spot in 80 isolates were marked (bold), and the underlined sequence has not been previously reported. Nucleotides were numbered

[^2]: from the start codon (ATG) of pncA.

