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Abstract

Lattices of Formations of Algebraic Structures

In the dissertation, various lattices of formations of algebraic structures are investi-

gated. The languages corresponding to multiply local formations are described. Let

σ be a partition of the set of all primes. It is proved that every law of the lattice of

all formations is ful�lled in the lattice of all multiply σ-local formations. It is shown

that the lattice of all functor-closed totally composition formations is algebraic, and

that the law system of the lattice of all functor-closed formations coincides with the

law system of the lattice of all functor-closed multiply partially composition forma-

tions. It is proved that the lattice of all X-local formations is algebraic and modular.

Let M be the class of all multioperator T -groups satisfying the minimality and max-

imality conditions for T -subgroups. It is proved that every law of the lattice of all

functor-closed M-formations is ful�lled in the lattice of all functor-closed multiply

partially foliated M-formations.
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Chapter 1

Introduction

”After completion of the classification of simple groups, the main problem in the theory

of finite groups remains the problem of mastering mechanisms of their interaction in

arbitrary groups. The most important handicap here is p-groups. These small bricks

are encountered almost everywhere and, in addition, the possibilities of their interaction

are displayed infinitely, like a horde of insects.

The theory of formations is an attempt to be engaged in the theory of groups, that

is to say, modulo p-groups. For all that, separate groups are considered through these

classes as if in a diminishing glass, and structured operations on groups can be treated,

in a definite respect, as construction of normalizers, extensions, joins, etc.”

January 28, 1994 (Kiel, Germany [96])

Wolfgang Gaschütz

A formation of �nite groups is a class of �nite groups closed under taking

quotients and subdirect products (Gaschütz, 1962 [42]).

1
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1.1 The initial idea

All considered groups are �nite. A class X is a set of groups with the property that

if G ∈ X, then every group isomorphic to G belongs to X. A variety of groups

may be de�ned as a nonempty class of groups closed under taking homomorphic

images and subcartesian products [75], formations extend this notion.

The theory of saturated formations introduced by Gaschütz [42] became an

integrated part of group theory by now. Recall that the Frattini subgroup Φ(G) of

a group G is the intersection of all maximal subgroups of G. A formation F is said

to be saturated if G/Φ(G) ∈ F always implies G ∈ F.

Gaschütz–Lubeseder–Schmid theorem states that any formation is saturated i�

it is local. That makes saturated formations one of the most suitable classes for a

better understanding of a group structure. Further it was found various generaliza-

tions of saturated formations, such as Baer-local, X-local, σ-local, foliated formations,

etc.

Let M and N be normal subgroups of a �nite group G such that N ⊆ M .

Then M/N is said to be a chief factor of G if M/N is a minimal normal subgroup

of G/N . This chief factor is complemented if there exists a maximal subgroup K

of G such that G = KM and K ∩M = N . If M ⊆ Φ(G), then the chief factor

M/N is not complemented. The centralizer of a chief factor M/N in G is denoted

by CG(M/N), i.e., it is the set of all elements of G that commute with all elements

gN of M/N .
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The symbol P denotes the set of all primes. Consider a function f with do-

main P whose images are formations of groups. The class F = LF (f) of all groups

G, such that either G = 1 or G 6= 1 and G/CG(M/N) ∈ f(p) for every comple-

mented chief factor M/N of G and any prime p dividing the order of M/N , is a

formation. The notation F = LF (f) originally has the implicit meaning that F is

a local formation with a formation function f .

If F = LF (f) for some formation function f , then f is called a local satellite

of F. When values of local satellite of a formation are themselves local formations,

then that leads to the following de�nition. Every formation is 0-multiply local. For

a positive integer n, a formation F is called n-multiply local if F = LF (f), and all

nonempty values of f are (n − 1)-multiply local formations. If n = 1, then F is

just a local formations. A formation is called totally local if it is n-multiply local for

all positive integers n.

Consider some standard examples of local formations [37, IV, (3.4)]. The class

of all nilpotent groups is a local formation with f(p) = 1 for all p ∈ P. Indeed,

a chief factor M/N of a nilpotent group is always central, i.e., CG(M/N) = G.

The class of all supersolvable groups is also a local formation. A chief factor of a

supersolvable group has always prime order. Then the formation of all supersolvable

groups has a local satellite whose value is with the class of all abelian groups of

exponent dividing p−1 for all primes p. However, a nonsaturated formation cannot

be de�ned locally. For instance, the class of all abelian groups is a nonsaturated
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formation, and it is impossible to �nd a local de�nition for it.

It is well-known that the lattice of all varieties of groups is modular but is not

distributive [75]. The lattice of all locally �nite varieties is a sublattice of the lattice

of all hereditary formations [107]. Although many results of the theory of forma-

tions are some counterparts to the corresponding results of the theory of varieties,

at the same time, the methods of their proof are very di�erent from the correspond-

ing proofs of the theory of varieties. Moreover, unlike the lattice of all varieties of

groups, it turned out that many lattices of formations are algebraic.

In 1986 Skiba [107] proved that the lattice of all saturated formations is modu-

lar. Later it was found fruitful applications of this fact, in particular law systems of

the lattices of formations have been studied; see Chapters 4 and 5 in [107], Chap-

ter 4 in [44], and [135]. In [107] it is shown that the law system of the lattice of all

τ -closed m-multiply saturated formations coincides with the law system of the lat-

tice of all τ -closed n-multiply saturated formations for nonnegative integers m and

n, and in [47] it is proved that for any in�nite set of primes ω the law system of

the lattice of all m-multiply ω-saturated formations coincides with the law system of

the lattice of all n-multiply ω-saturated formations. The mentioned result was gen-

eralized for the lattices of functor-closed n-multiply ω-saturated formations [100]. In

[137] the analogous fact established for multiply ω-composition formations.

Finally we note that in the papers [13, 14] it was proposed a new approach of

formation theory application in the theory of formal languages.
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1.2 Research contribution

The present work contains some contributions to the theory of formations of al-

gebraic structures, which originated in 1962 after the introduction by Gaschütz the

concept of local formation of �nite solvable groups, and has been enriched by the

contributions of Baer, Ballester-Bolinches, Dixon, Förster, Guo, Shemetkov, Skiba,

Vedernikov, Vorob’ev, et al. Further studies revealed that formations are of a general

algebraic nature and can be applied to the study of not necessarily solvable �nite and

in�nite groups, Lie algebras, monoids, rings, and even of general algebraic systems

such as multirings and multioperator T -groups.

Structure of the dissertation

The work is organized as follows.

Chapter 2

This chapter contains the relevant literature review details. The basic concepts of

formation theory are introduced. It is shown that the lattice of all formations of

�nite rings is algebraic and modular. Some applications for fuzzy rings are discussed.

Chapter 3

Ballester-Bolinches, Pin, and Soler-Escrivà developed a general method to describe

the languages corresponding to saturated formations of �nite groups. In the present
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chapter it is shown that the mentioned result is applicable to the languages corre-

sponding to multiply local formations of �nite groups. Moreover for a subgroup

functor τ (in Skiba’s sense), the languages corresponding to τ -closed saturated for-

mations of �nite groups are described.

Let n be a positive integer, and let σ = {σi | i ∈ I} be a partition of the set

of all primes. It is shown that every law of the lattice of all formations is ful�lled

in the lattice of all n-multiply σ-local formations of �nite groups. This immediately

implies the modularity of the lattice of all n-multiply σ-local formations of �nite

groups, i.e., it is obtained as a corollary the recent result of Chi, Safonov and Skiba.

Chapter 4

Let τ be a subgroup functor such that all subgroups of a �nite group G containing

in τ(G) are subnormal in G. It is shown that the lattice of all τ -closed totally com-

position formations of �nite groups is inductive and algebraic. Thus it was found

the solution of Skiba–Shemetkov problem on algebraic lattices of composition for-

mations of �nite groups.

Let n be a positive integer and ω be a nonempty set of primes. It is established

that the lattice of all τ -closed n-multiply ω-composition formations is G-separated,

where G is the class of all �nite groups. It is proved that every law of the lat-

tice of all τ -closed formations is ful�lled in the lattice of all τ -closed n-multiply

ω-composition formations. As an application, it is shown that the lattice of τ -closed
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n-multiply ω-composition formations is modular but not distributive.

It is established that the law system of the lattice of all τ -closed formations of

�nite groups coincides with the law system of the lattice of all τ -closed n-multiply

ω-composition formations of �nite groups. Thus it was found the solution of Skiba–

Shemetkov problem on laws in the case of in�nite set of primes ω.

Chapter 5

Let X be a class of simple groups with a completeness property π(X) = charX.

Förster introduced the concept of X-local formation in order to obtain a common

extension of well-known theorems of Gaschütz–Lubeseder–Schmid and Baer. It is

proved that the lattice of all X-local formations of �nite groups is algebraic and

modular.

Chapter 6

Let M be the class of all multioperator T -groups satisfying the minimality and max-

imality conditions for T -subgroups, and let n be a positive integer. It is proved that

every law of the lattice of all τ -closed M-formations is ful�lled in the lattice of all

τ -closed n-multiply Ω1-foliated M-formations with direction ϕ, such that ϕ0 6 ϕ.

The Frattini theory of τ -closed n-multiply Ω1-foliated M-formations is developed.
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Chapter 7

The chapter devoted to further applications. We give a brief discussion of further

possible applications of our results and future directions for research involving the

methods and results of this work.

To the best author’s knowledge the main results presented here, and not attributed

to others or described as well-known, are new. They have a theoretical signi�cance

and may be used in the study on the theory of algebraic structures and their classes.

Derived works

The contributions appearing in the present dissertation have been published as re-

search papers. The corresponding bibliographical references are papers without co-

authors [117, 118, 119, 120, 121, 122, 123, 124, 125]. The authors contributed equally to

the papers [126, 127, 128, 129, 130, 137, 138]. The author also thanks the authors of

the literature for the provision of the initial ideas for this work.
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Chapter 2

Formations of Algebraic Structures

2.1 Literature review & background

In the universe of all �nite groups, the de�nition of a variety leads to the concept of

a formation, — a class closed under taking homomorphic images and �nite subdirect

products is called a formation. This concept of the 1960s appeared �rst in the scope

of �nite solvable groups. Later, several authors investigated formations of algebraic

structures. Jakubı́k [62] proved that the collection of all formations of lattice ordered

groups is a complete Brouwerian lattice, also the collection of all formations of �nite

monounary algebras forms a complete lattice; see [63].

In the papers [13, 14, 19], it was proposed an approach of formation theory

application in the theory of formal languages. The Eilenberg theorem [38] implies

that there exists a bijection between the set of all varieties of regular languages and

10
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the set of all varieties of �nite groups. The Formation Theorem (Ballester-Bolinches,

Pin, Soler-Escrivà [13]) states that there is a one-to-one correspondence between for-

mations of �nite groups and formations of languages. This result makes formations

useful for the study of abstract machines and automata, which commonly appear in

theory of computation, compiler construction, arti�cial intelligence, parsing, formal

veri�cation and another aspects of theoretical computer science. Moreover, forma-

tions are a useful tool to study �nite rings (see [32, 125]) which �nd interesting

applications in coding theory (see [20, 102]).

In the group theory, formations are some of the most important classes. In the

books [12, 44, 45, 99, 107, 135], it was demonstrated that constructions and results of

lattice theory are useful for studying groups and formations of groups. In the scope

of groups, formations generalize some notions such as σ-solvability and σ-nilpotency,

and help to understand better the structure of groups. The motivation to study σ-

local formations rises from the result of Chi, Safonov and Skiba [29, Theorem 1.3],

which deals with so-called Σt-closed formations. Recently these interesting classes of

groups, introduced �rst by Kramer [68] and studied by Shemetkov [95], have found

new powerful applications set out in [29, 30, 111].

Thus methods of the general formations theory �nd various applications for

investigation of groups, rings, and modules. There is some duality in the research of

formations of �nite groups and formations of other algebraic structures. This rea-

soning gives us the motivation to consider their properties from a uni�ed viewpoint.
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Such a uni�ed approach can be realized considering formations of so-called (multi-

operator) T -groups. Some particular cases of T -groups are groups, modules, rings,

and multirings (i.e., T -groups with the condition every t ∈ T on G is distributive

with respect to addition). Lattices of formations of T -groups have been studied in

the theory of partially foliated formations introduced by Vedernikov [131, 34].

The references contain about 140 entries. However, it is not a comprehensive

bibliography of this �eld of study. With numerous exceptions, it may contain only

items referred to in the text. To �nd the references for a topic, please use online

databases, such as MathSciNet or Zentralblatt.

2.2 Formations of monoids and formal languages

2.2.1 Classes of monoids

Recall that a monoid is an algebraic structure with a single associative binary op-

eration and an identity element. A group is a monoid where each element has an

inverse element. The simplest example of a monoid that is not a group is the set

{0, 1} with the usual multiplication.

Monoids are commonly used theoretical foundations of computer science. Var-

ious abstract data types in computer programming may be described using monoids:

because the operation takes two values of a given type and returns a new value of

the same type, it can be chained inde�nitely, and associativity abstracts away the de-
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tails of construction. We note that a list (array) is a �ne example of a monoid (the

identity of a list is an empty list, and the associative operation is appending).

Example 2.1 (R [54]). Following Hammill [54], we use R to show that numeric

vectors with concatenation and an empty vector form a monoid. Given a set of

values is all the numeric vectors. We take R’s c function as the monoidal operation.

To check that this is indeed a monoid, �rst we shall make an in�x version of c.

”%c%” <− c

Does applying the monoidal operation to two elements of our set give another ele-

ment of that set?

A <− 1 : 3

B <− 4 : 7

C <− 8 : 1 0

c l a s s (A ) ; c l a s s ( B ) ; c l a s s (C)

# # [ 1 ] ” i n t e g e r ”

# # [ 1 ] ” i n t e g e r ”

# # [ 1 ] ” i n t e g e r ”

c l a s s (A %c% B %c% C)
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# # [ 1 ] ” i n t e g e r ”

Thus, the operation appears to preserve the type. Let us check now if it is associative.

v 1 <− (A %c% B ) %c% C

v 2 <− A %c% ( B %c% C)

a l l . e q u a l ( v 1 , v 2 )

# # [ 1 ] TRUE

It is. Let us check if we have an identity element.

O <− i n t e g e r ( 0 )

v 1 <− A %c% O

v 2 <− O %c% A

a l l . e q u a l ( v 1 , A)

# # [ 1 ] TRUE

a l l . e q u a l ( v2 , A)

# # [ 1 ] TRUE

Thus, we deal with a monoid.

Example 2.2 (C# [124]). We describe a monoid using C# code as follows.
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• public interface IMonoid<T>{

T Zero { get; }

T Append(T a, T b); }

We implement a monoid a singleton.

• public static class Singleton<T> where T : new() {

private static readonly T instance = new T();

public static T Instance { get { return instance; } }

}

For instance we may implement monoid gcd(a, b).

• public class GCDMonoid : IMonoid<int> {

public GCDMonoid() {}

private int gcd(int a, int b) {

return b == 0 ? a : gcd(b, a % b); }

public int Zero {

get { return 0; } }

public int Append(int a, int b) {

return gcd(a, b);}}

Example 2.3 (Scala [74]). Following Noll [74], we use Scala to implement a monoid

using a trait as a type class.
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• trait Monoid[T] {

def e: T

def op(a: T, b: T): T }

In Algebird [1], an additive monoid for the standard type Seq is de�ned as

follows:

• Seq is a concatenation monoidSeq is a concatenation monoid;

• op (plus) is the concatenation operation;

• e (zero), the identity element, is the empty Seq.

The implementation is listed below.

• class SeqMonoid[T] extends Monoid[Seq[T]] {

override def zero = Seq[T]()

override def plus(left : Seq[T], right : Seq[T])

= left ++ right }

Implicits need to be used because this is how the notion of type classes is imple-

mented in Scala.

• implicit def seqMonoid[T] : Monoid[Seq[T]]

= new SeqMonoid[T]

In Chapter 10 of the book [31], we may �nd some interesting samples of monoids

implemented in Scala.
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More samples of monoids in computer programming are discussed here:

• marmelab.com/blog/2018/04/18/functional-programming-2-monoid.html

• blog.axosoft.com/monoids-practical-category-theory

• fsharpforfunandprofit.com/posts/monoids-without-tears

• medium.com/@sjsyrek/five-minutes-to-monoid-fe6f364d0bba

• doc.sagemath.org/pdf/en/reference/monoids/monoids.pdf

De�nition 2.4. ([13]) A formation of monoids is a class of monoids F satisfying the

following two conditions:

1. any quotient of a monoid of F also belongs to F;

2. the subdirect product of any �nite family of monoids of F is also in F.

Example 2.5 (Example 5 [10]). Following Ballester-Bolinches et al. [10], we consider

some nontrivial examples of monoid formations.

• A monoid M has a zero if there exists an element 0 ∈ M such that the

equation m0 = 0 = 0m holds for each element m ∈ M . Note that this 0

is unique. Finite monoids with zero constitute a formation, which is not a

variety of �nite monoids. Moreover, monoids with zero of a given formation

of monoids constitute a formation.

• A monoid is called periodic if all its cyclic submonoids are �nite. The set of

all periodic monoids is a formation of monoids.

marmelab.com/blog/2018/04/18/functional-programming-2-monoid.html
blog.axosoft.com/monoids-practical-category-theory
fsharpforfunandprofit.com/posts/monoids-without-tears
medium.com/@sjsyrek/five-minutes-to-monoid-fe6f364d0bba
doc.sagemath.org/pdf/en/reference/monoids/monoids.pdf
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• A monoid M is called aperiodic if there exists a positive integer k such that

mk = mk+1 for all m ∈M . The class of all aperiodic monoids is a formation

of monoids.

• A monoid is called relatively regular if it contains a fnite ideal. The class of

all relatively regular monoids is a formation of monoids.

2.2.2 Formations of languages

Recall that languages are subsets of a certain type of monoid, the free monoid over

an alphabet, and regular languages are precisely the behaviours of �nite automata

[10]. A language is called regular [10] if its syntactic monoid is a �nite monoid (note

that a regular language is a group language if its syntactic monoid is a �nite group).

Following the standard notation, we denote by A∗ a free monoid on a set A, i.e.,

the set of all words with letters from A. In the sequel, a class of regular languages

C will associate with any �nite alphabet A a set C(A∗) of regular languages of A∗;

see [14, Section 4].

De�nition 2.6 ([13]). A formation of languages is a class of regular languages F

satisfying the following two conditions:

1. for each alphabet A, F(A∗) is closed under Boolean operations and quotients;

2. if L is a language of F(B∗) and η : B∗ →M denotes its syntactic morphism,

then for each monoid morphism α : A∗ → B∗ such that η ◦ α is surjective,
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the language α−1(L) belongs to F(A∗).

Following [13], we associate with any formation of monoids M the class of languages

F(M) as follows: for any alphabet A, we denote by F(M)(A∗) the set of languages

of A∗ fully recognised by some monoid of M (note that this is equivalent that the

syntactic monoid is in M). For a formation of languages F , we denote by M(F)

the formation of monoids generated by the syntactic monoids of the languages of

F ; see [13].

Theorem 2.7 (Formation Theorem [13]). The correspondences

M→ F(M) and F →M(F)

are two mutually inverse, order preserving, bijections between formations of monoids

and formations of languages. In particular, there is a one-to-one correspondence between

formations of finite groups and formations of languages.

2.3 Formations of �nite groups

We consider only �nite groups. Closure operations on classes of groups were intro-

duced in [95, p. 12], [37, pp. 374–375] and [12, p. 89]. Let Y be a class of �nite

groups. Following [37], we de�ne the closure operations as follows.

qY = (G : ∃H ∈ Y and an epimorphism from H onto G);

r0Y = (G : ∃Ni E G (i = 1, . . . , r) with G/Ni ∈ Y, N1 ∩ · · · ∩ Nr = 1).

Formations are classes of groups introduced in the 1960s (see [42]).
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2.3.1 Semigroup of all formations

De�nition 2.8 ([37]). A formation is a class of groups F which is both q-closed

and r0-closed, i.e., satisfying the following two conditions:

1. if G ∈ F, then G/N ∈ F;

2. if G/N1, G/N2 ∈ F, then G/N1 ∩N2 ∈ F,

for any normal subgroups N , N1, N2 of G. Note that, a class F is a formation i�

F = qr0F. If X is a class of groups, we write formX instead of qr0X to denote

the formation generated by X. Let G be a group. Then the formation

formG = qr0(G)

is called one-generated.

Example 2.9 (p. 11 [135]). The following classes of groups are formations.

• ∅ is the empty formation.

• (1) is the class of all identity groups.

• G is the class of all �nite groups.

• A is the class of all abelian groups.

• N is the class of all nilpotent groups.

• S is the class of all solvable groups.
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• Gp or Np is the class of all p-groups, where p is a prime.

However, the class of all �nite cyclic groups is not a formation.

De�nition 2.10 ([37]). For any group G and a class of �nite groups F ⊇ (1), we

denote by GF the F-radical of G, i.e., the product of all normal F-subgroups of

the group G.

De�nition 2.11 ([37]). For any group G and a nonempty formation F, we denote

by GF the F-residual of G, i.e., the intersection of all normal subgroups N of G

such that G/N ∈ F.

De�nition 2.12 ([37]). The formation

MF = {G | GF ∈M}

is the product of formations M and F.

For any formations F1, F2, and F3, we have

(F1F2)F3 = F1(F2F3);

see [37, p. 338]. Thus, the set of all formations with the formation product de�ned

above is a semigroup. We denote it by GG.

By Corollaries 7.14 and 7.15 in [99], the sets of all local formations, all n-

multiply local formations and all totally local formations are subsemigroups of GG.

We will study these types of formations in the next subsections.
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2.3.2 τ -Closed formations

The concept of subgroup functor turned out to be useful in group theory; see, e.g.,

[107, 64, 11] .

De�nition 2.13 ([107]). In each group G we select a system of subgroups τ(G) and

say that τ is a subgroup functor if

1. G ∈ τ(G) for every group G;

2. for every epimorphism ϕ : A → B and any H ∈ τ(A) and T ∈ τ(B), we

have Hϕ ∈ τ(B) and Tϕ
−1 ∈ τ(A).

If τ(G) = {G} then the functor τ is called trivial.

For any set of groups Y, the symbol sτ denotes the set of groups H such

that H ∈ τ(G) for some group G ∈ Y.

A class of groups F is called τ -closed if sτ (F) = F. For instance F is called

s-closed [37] (or hereditary) if it contains all the subgroups of G ∈ F (i.e., τ(F) =

s(F)), and sn-closed [37] (or normally hereditary) if it contains all the normal sub-

groups of G ∈ F (i.e., τ(F) = sn(F)). A formation F is τ -closed if τ(G) ⊆ F for

every group G of F.

Let Θ be a set of formations. By ΘformY, we denote the intersection of all

formations of Θ containing a set of groups Y, i.e., the classes

• τ formY,
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• lτnformY,

• lτ∞formY

are the the intersections, respectively, of all τ -closed formations, all τ -closed n-multiply

local formations and all τ -closed totally local formations containing a given set of

groups Y. For trivial subgroup functor, we have formY, lnformY, and l∞formY.

We say that τ is a closed subgroup functor if for any groups G and H ∈ τ(G)

we have τ(H) ⊆ τ(G).

Following [107], we de�ne a partial order ≤ on the set of all subgroup functors

as follows: τ1 ≤ τ2 if and only if τ1(G) ⊆ τ2(G) for any group G ∈ X. By τ , we

denote the intersection of all closed subgroup functors τi such that τ ≤ τi. The

functor τ is called the closure of τ ; see [107].

Recall that a group class closed under taking homomorphic images is called a

semiformation [95].

Let Y be a class of groups. By [107], the intersection of all τ -closed semifor-

mations containing Y is called the τ -closed semiformation generated by Y.

Lemma 2.14 (Lemma 1.2.21 [107]). Let F be a τ -closed semiformation generated by

Y. Then F = qsτ (Y).

Lemma 2.15 (Lemma 1.2.22 [107]). Let Y be a set of groups. Then

τ formY = qr0sτ (Y).



2.3. FORMATIONS OF FINITE GROUPS 24

Let Y be a class of groups. The symbol τ formY denotes the τ -closed forma-

tion generated by Y, i.e., the intersection of all τ -closed formations containing Y;

see [107].

Lemma 2.16 (Corollary 1.2.24 [107]). Let {Mi | i ∈ I} be a set of τ -closed formations.

Then

τ form

(⋃
i∈I

Mi

)
= form

(⋃
i∈I

Mi

)
.

The symbol fin(M) denotes the class of all �nite groups such that G ∈ M

where M is a variety of groups; see [107].

Lemma 2.17 (Lemma 3.4.3 [107]). For every variety of groups M the map fin of the

form

M→ finM

is an embedding of the lattice and semigroup of locally finite varieties into the algebra

of all formations.

2.3.3 Lattices of formations

By Θ, we denote a set of classes of �nite groups. Any formation of �nite groups

in Θ will be called a Θ-formation. In the present work, we study complete lattices

of formations.

De�nition 2.18 (p. 151 [107]). When the intersection of each set of Θ-formations

is in Θ, and we can �nd a Θ-formation F such that M ⊆ F for any Θ-formation
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M, then Θ is called a complete lattice of formations. Note that any complete lattice

of formations is a complete lattice in the ordinary sense. Let M and H belong to

Θ. Then M
∨

Θ H is the least upper bound for {M,H} in Θ, and M ∩ H is the

greatest lower bound for {M,H} in Θ.

Let Θ be a complete lattice of formations of �nite groups, and let formations

M and H belong to Θ. Denote by M
∨

Θ H the formation formΘ(M ∪ H). In

particular, for the lattice of all formation of �nite groups the following equation

holds:

M
∨

H = form(M ∪ H).

De�nition 2.19. A lattice of formations Θ is called modular if for any Θ-formations

X, H, and F such that X ⊆ H, we have H ∩ (X
∨

Θ F) = X
∨

Θ(H ∩ F).

De�nition 2.20. A lattice of formations Θ is called distributive if for any Θ-formations

F1, F2 and F3 we have F1 ∩ (F2
∨

Θ F3) = (F1 ∩ F2)
∨

Θ(F1 ∩ F3).

2.3.4 Saturated formations

The Frattini subgroup Φ(G) of a group G is the intersection of all maximal sub-

groups of G; see [37].

De�nition 2.21 ([37]). A formation F is said to be saturated

if G/Φ(G) ∈ F implies G ∈ F.
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It is well-known that a formation is saturated i� it is local, this circumstance makes

saturated formations one of the most suitable classes for studying the structure of

�nite groups.

De�nition 2.22 ([37, 44, 12]). The set of all primes is denoted by P. For any for-

mation function

f : P→ {formations of groups}, (2.1)

the symbol LF (f) denotes the set of all groups G such that either G = 1 or

G 6= 1 and G/CG(H/K) ∈ f(p) for every chief factor H/K of G and each

p ∈ π(H/K). The class LF (f) is a saturated formation for any function f of the

form 2.1. If F = LF (f) for some formation function f , then f is called a local

satellite of the formation F; see [44, p. 2] for more details.

Remark 2.23 ([37, 118]). The notation F = LF (f) originally has the implicit mean-

ing that F is a local formation with a formation function f ; see Section 3 in [37,

IV]. By the Gaschütz–Lubeseder–Schmid theorem, a formation of �nite groups is

saturated i� it is local; see Section 4 in [37, IV].

Let p be a prime. Following [107], we put for every set of groups Y:

Yτ (Fp) =


τ form(G/Fp(G) | G ∈ Y) if p ∈ π(Y);

∅ if p 6∈ π(Y).



2.3. FORMATIONS OF FINITE GROUPS 27

For trivial subgroup functor, we use the notion

Y(Fp) =


form(G/Fp(G) | G ∈ Y) if p ∈ π(Y);

∅ if p 6∈ π(Y).

Recall that π(Y) =
⋃
G∈Y π(G), and Fp(G) = Op′,p(G); for more details see [37].

We use the notion of canonical satellite of a formation F to study the con-

struction of F from a simpler formation.

De�nition 2.24 ([113]). Let F = LF (F ), where F (p) = NpF(Fp) for all p ∈ P.

Then F is called the canonical local satellite of the formation F. Note that any local

(saturated) formation has the unique canonical local satellite.

2.3.5 Multiply local formations

When values of local satellite of a formation are themselves local formations, then

that leads to the following de�nition.

De�nition 2.25 (p. 275 [44]). Every formation is 0-multiply local. For n > 0, a

formation F is called n-multiply local if F = LF (f), and all nonempty values of f

are (n− 1)-multiply local formations. If n = 1, then we have just local formations.

Example 2.26 ([107]). Let M = NnH and F = NpM, where the formation H 6= ∅

is not local. By Example 1.3.3 in [107], formations M and F are n-multiply local.

Remark 2.27 ([113]). Let n be a positive integer, and F = LF (F ) be an n-multiply

local formation. Then by Lemma 11 in [113] F (p) is an (n− 1)-multiply local for-
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mation for all primes p. Moreover, by Theorem 2 in [113] F is an n-multiply local

i�

NplnformF(Fp) ⊆ F

for all primes p. If F = lnformX, then Theorem 1.3.13 in [107] implies π(F) =

π(X). By Remarks 1 and 2 in [113] we have

NpF(Fp) = Npln−1formF(Fp).

The following lemma e�ciently describes n-multiply local formations.

Lemma 2.28 (Theorem 3 [113]). Let n be a positive integer, and F = lnformX for

any nonempty set of groups X. Then

F = form
⋃
p∈P

Npln−1formX(Fp).

De�nition 2.29 ([44, 107]). A formation is called totally local if it is n-multiply

local for all positive integers n.

Note that some well-studied formations are totally local; see [99, 107]. For in-

stance the classes of all π-nilpotent and π-solvable groups are totally local formations

for all sets π of primes.

The following lemma e�ciently describes totally local formations.

Lemma 2.30 (Theorem 1.3.16 [107]). Let F = l∞formX for any nonempty set of

groups X. Then

F = form
⋃
p∈P

Npl∞formX(Fp).
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Remark 2.31 (see [107]). If there exits such integer t that F is a t-multiply local

formation but it is not a (t+1)-local formation, then we write indl(F) = t. We have

indl(F) = ∞ if F is a totally local formation, and indl(F) = 0 if F is not local.

Let F = LF (F ). Then by Lemma 1.3.1 in [107], indl(F) = n i� there exists a prime

p such that indl(F (p)) = n− 1 and indl(F (q)) ≥ n− 1 for all q ∈ π(F) \ {p}.

Example 2.32 (Example 1.3.2 [107]). Let F be a formation of all supersolvable groups.

Then F = LF (F ), where F (p) = Ab(p − 1) for all primes p; see Example 6.3

in [14]. In particular, F (3) is formation of all elementary abelian 2-groups. Then

F (3) = N3F (3) is not a local formation. Thus indl(F) = 1.

2.3.6 σ-Local formations

Let σ = {σi | i ∈ I} be a partition [29] of the set of all primes P, i.e.,

σ = {σi | i ∈ I}, where P = ∪i∈Iσi and σi ∩ σj = ∅ for all i 6= j.

De�nition 2.33. A �nite group G is said to be

• σ-primary [108] if it is a σi-subgroup for some i;

• σ-solvable [108] if every its chief factor is σ-primary;

• σ-nilpotent [49] if it is a the direct product of some its σ-primary subgroups;

• meta-σ-nilpotent [109] if it is an extension of some σ-nilpotent �nite group

be the σ-nilpotent group.
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When σ = {{2}, {3}, . . .}, a �nite group is σ-solvable (respectively, σ-nilpotent) i�

it is solvable (respectively, nilpotent).

The σ-nilpotent groups and classes of meta-σ-nilpotent groups are of a very

special interest in the resent years (refer for instance to [109], [111, Introduction] and

[27, 49, 48, 50, 51, 52, 67, 71, 110, 140] for an account of recent headway).

In the scope of groups, formations generalize some notions such as σ-solvability

and σ-nilpotency, and help to understand better the structure of groups. The moti-

vation to study σ-local formations rises from the result of Chi, Safonov and Skiba

[29, Theorem 1.3], which deals with so-called Σt-closed formations. Recently these in-

teresting classes of groups, introduced �rst by Kramer [68] and studied by Shemetkov

[95], have found new powerful applications set out in [29, 30, 111].

De�nition 2.34 ([29]). Given a partition σ of the set of all primes P and a function

f with domain σ whose images are formations of groups, i.e., f is a function of

the form f : σ → {formations of groups}. The class F = LFσ(f) of all σ-groups

G such that either G = 1 or G 6= 1 and G/Oσ′i,σi(G) ∈ f(σi) for all σi ∈ σ(G)

is a formation. Such a formation is called the σ-local formation [29] de�ned by the

formation σ-function f (a σ-local definition of F) with support

Supp(f) = {σi | f(σi) 6= ∅}.

The σ-function f is called integrated if f(σi) ⊆ LFσ(f) for all σi, and full if

f(σi) = Gσif(σi) for all σi. Here Gσif(σi) = {G | Gf(σi) ∈ Gσi}, and Gσi is
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the class of all σi-groups.

If the values of σ-local de�nitions of some formation are themselves σ-local

formations, then this leads to the de�nition of multiply σ-local formation.

De�nition 2.35 ([29]). Every formation is 0-multiply σ-local, by de�nition. For n >

0, we say that the formation F is n-multiply σ-local provided either F = (1) is the

class of all identity groups or F = LFσ(f), where f(σi) is (n−1)-multiply σ-local

for all σi ∈ σ(F).

2.3.7 Solvably saturated formations

Baer-local (or composition) formations build a broader than saturated formations

family of classes of �nite groups. Baer’s theorem states that Baer-local formations of

�nite groups are precisely solvably saturated formations of �nite groups; see p. 373

in [37].

De�nition 2.36 ([44]). A formation F is said to be solvably saturated if it contains

each group G with G/Φ(N) ∈ F for some solvable normal subgroup N of G.

Remark 2.37 ([44]). Each local (saturated) formation is composition (solvably satu-

rated) formation.

Let p be a prime, and G be a �nite group. The subgroup Cp(G) of G is the

intersection of the centralizers of all the abelian p-chief factors of G. It is assumed

that Cp(G) = G if G has no abelian p-chief factors.
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Let X be a set of �nite groups. Following [114], we will write Com(X) to

denote the class of all groups L such that L is isomorphic to some abelian compo-

sition factors of some group in X. When X = {G} we just use Com(G) instead

of Com(X). Later on, the symbol R(G) means the product of all solvable normal

subgroups of G, and π(X) denotes the set of all primes dividing the order of all

groups G ∈ X.

De�nition 2.38 ([44]). Consider a function f of the form

f : P ∪ {0} → {formations of groups}, (2.2)

and the class of �nite groups

CLF (f) = (G | G/R(G) ∈ f(0); G/Cp(G) ∈ f(p) for all p ∈ π(Com(G))).

If F is a formation such that F = CLF (f) for a function f of the form 2.2, then

F is said to be composition formation with composition satellite f .

When values of composition satellites of some formation are themselves com-

position formations, we have the following de�nition.

De�nition 2.39 ([114]). Every formation is 0-multiply composition, by de�nition.

For n > 0, a formation F is said to be n-multiply composition if F = CLF (f), and

all nonempty values of f are (n − 1)-multiply composition formations. If n = 1,

then we have composition formations. A formation is totally composition when it is

n-multiply composition for any n > 0. Note that, many formations of �nite groups

are totally composition. For instance, ∅ and (1) are totally composition formations.
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2.3.8 Multiply ω-composition formations

The symbol Rω(G) is the Sω-radical of a �nite group G.

De�nition 2.40 ([114]). Let f be a function of the form

f : ω ∪ {ω′} → {formations of groups}. (2.3)

Given the class of �nite groups CFω(f) =

(G | G/Rω(G) ∈ f(ω′) and G/Cp(G) ∈ f(p) for all p ∈ ω ∩ π(Com(G))).

If F is a formation such that F = CFω(f) for a function f of the form (2.3), then

F is said to be ω-composition formation with an ω-composition satellite f .

De�nition 2.41 ([114] ). Any formation is 0-multiply ω-composition. For n > 0, a

formation F is said to be n-multiply ω-composition if F = CFω(f) and all nonempty

values of f are (n− 1)-multiply ω-composition formations.

Note that n-multiply ω-composition formations of �nite groups have many

interesting applications in the theory of formations of �nite groups; see [114, 44].

2.3.9 X-local formations

In 1985, Förster [39] introduced X-local formations of �nite groups to obtain a com-

mon extension of Gaschütz-Lubeseder-Schmid and Baer’s theorems. We note that

these classes of groups have been studied later on in [7, 8, 9, 26, 12, 98]. Let X = J,

i.e., the class of all simple groups. Then X-local formations saturated (local). Let
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X = P, i.e., the class of all abelian simple groups. Then X-local formations are

solvably saturated (Baer-local); see [12, p. 125].

Let X be a class of �nite groups. In the sequel, charX is the set of orders of

all simple abelian groups in X. By π(X), we denote the set of all primes dividing

the orders of all groups G ∈ X. We �x X as a nonempty class of simple groups

satisfying the condition π(X) = charX, and denote X′ = J \ X.

De�nition 2.42 ([12]). Let f be a function of the form

f : (charX) ∪ X′ → {formations of groups}, (2.4)

where a formation f(X) could be possibly empty. Then we say that f is an X-

formation function. The X-local formation LFX(f) defined by f is the class of all

groups G satisfying the following two conditions:

1. if H/K is an Xp-chief factor of G, then G/CG(H/K) ∈ f(p);

2. G/L ∈ f(E), whenever G/L is a monolithic quotient of G such that the

composition factor of Soc(G/L) is isomorphic to E, if E ∈ X′.

(Here the symbol Soc(G) denotes the socle of a group G 6= 1, i.e., it is the product

of all minimal normal subgroups of �nite group G.) A formation F of �nite groups

is called an X-local formation if F = LFX(f) for some X-formation function f ,

and we say that f is an X-local definition of F or f defines F; for more details see

pp. 126–127 in [12], and pp. 374–375 in [37].
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Remark 2.43 (Example 3.1.61 [12]). Note that any formation F of �nite groups is

X-local when X = ∅ because F = LFX(f), where f(S) = F for all S ∈ J.

Remark 2.44 (Lemma 2.1 [9]). We note that without loss of generality in the de�ni-

tion of X-local formation, can be assumed that X-formation function has the same

value on all X ∈ X′.

By Remark 2.44, we can modify the second condition in De�nition 2.42 for

X′ 6= ∅ as follows: if G/L is a monolithic quotient of G such that Soc(G/L) is

an X′-chief factor of G, then G/L ∈ f(X′); see e.g., p. 29 in [26], and De�nition

2.1 in [9].

Remark 2.45 (Theorem 5.1 [98]). Every nonempty X-local formation has an X-compo-

sition satellite. Thus, we can apply the properties of partially composition formations

of �nite groups for studying X-local formations of �nite groups.

Remark 2.46 (De�nition 3.2.12, Remarks 3.2.13 [12]). We note that Frattini-like sub-

group associated with a class X of simple groups have been introduced in [7]. The-

orem 3.2.14 in [12] states that the corresponding X-saturated formations of �nite

groups are exactly X-local formations of �nite groups.

2.4 Formations of rings and some generalizations

By Theorem 4.6 in the book [37], every formation of �nite groups is saturated i�

it is local. In contrast to the group case, not every saturated formation of Lie and
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Leibniz algebras, rings, etc. can be locally de�ned. However, these formations have

found various applications. Consider some examples.

Example 2.47 (Formations of monounary algebras). The lattice all formations of

�nite monounary algebras is isomorphic to the lattice of all hereditary subsets of a

certain poset [63]. The lattice of all formations of �nite monounary algebras is dis-

tributive, but for the lattice of formations of at most countable monounary algebras

this is not true; see [80].

Example 2.48 (Formations of lattice ordered groups). Jakubı́k [62] showed that the

set of all formations of lattice ordered groups forms a complete Brouwerian lattice,

and the set of all formations of GMV -algebras is isomorphic to a principal ideal of

the lattice all formations of lattice ordered groups.

Example 2.49 (Formations of solvable Lie and Leibniz algebras). The theory of sat-

urated formations of solvable Lie algebras is set out in Barnes and Gastineau-Hills

[18], and Barnes [16]. Over a �eld of nonzero characteristic, a saturated formation

of solvable Lie algebras has at most one local de�nition, but a locally de�ned sat-

urated formation of solvable Leibniz algebras other than that of nilpotent algebras

has more than one local de�nition [17].

Example 2.50 (Formations of multirings). Christensen [32] showed that there exist

Frattini closed formations of �nite rings that are not local. Shemetkov [99] intro-

duced the concept of formations of multirings, which a special case is formations of
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�nite rings. In the book [99], we can �nd not only various examples of applications

of this formations, but also related problems are discussed.

Question 2.1 (Problem 3.51 [99]). Is it true that any one-generated n-multiply local

formation of rings has only a finite set of n-multiply local subformations?

Question 2.2 (Problem 22.8 [99]). How to describe finite non-one-generated forma-

tions of rings for which all proper subformations are one-generated?

This short overview gives the motivation to study formations of �nite rings.

2.4.1 Classes of �nite rings

A class of rings Y is a set of rings with the following property: if R ∈ Y, then any

ring isomorphic to R belongs to Y.

De�nition 2.51 ([32]). We refer to a class of rings as a homomorph whenever it

contains all homomorphic images of its members and as a formation if in addition

it is subdirect product closed; i.e., a formation is a class of �nite rings F which is

both q-closed and r0-closed in the sense of [99, 37, 12, 32].

The smallest formation of �nite rings containing a class of �nite rings Y is

qr0 Y, composed of all rings that can be expressed as quotients of subdirect prod-

ucts of a �nite number of rings in Y. When Y = (R) consists only of the rings

isomorphic to R, we obtain that the smallest formation containing R is qr0(R);
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such a formation is called one-generated. Let F be a class of �nite rings, then F is

a formation i� F = qr0 F.

In the scope of groups, formations generalize some notions as solvability, su-

persolvability and nilpotency of groups. Let us consider an example for formations

of rings.

Example 2.52 (Locally de�ned formations of �nite rings [32]). For any ring R, the

intersection Φ(R) of its maximal ideals, when such exist, is called the Frattini sub-

ring of R. For �nite rings Φ(R) is contained in the Jacobson radical J(R) of R.

We are concerned with classes of rings that contain a ring R whenever they contain

it Frattini factor ring R/Φ(R). Such classes are said to be Frattini closed.

A nontrivial examples of a Frattini closed formation of �nite rings is the class

N of all �nite nilpotent rings. This class can be described locally in the sense that

R ∈ N i� the minimal ideals of its factor rings R/K are trivial left R-modules.

Following [32] we refer to the minimal ideals of the factor rings of a �nite

ring R as chief factors of R. Since each chief factor has prime characteristic it can

be classi�ed, according to which prime p is involved, as a p-chief factor. Denote for

each chief factor H/K of R its left annihilator {r | r ∈ R and rH ⊆ K} in R

by AR(H/K). Given a set of primes π and a function f with domain π whose

images are formations of �nite rings. The class F of π-rings whose p-chief factors

H/K have the property

R/AR(H/K) ∈ f(p) for each p ∈ π
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is a formation. Such a formation is called the local formation de�ned by the forma-

tion function f with support π.

In view of the primary decomposition of �nite rings, we see that for any p ∈ π,

the class Fp of p-rings in F is a formation and is de�ned locally by the formation

function fp with support {p} and image {f(p)}. The most elementary nontrivial

local formations are the formations Np of �nite nilpotent p-rings in the sense that

they contain no proper local formations.

2.4.2 Lattices of formations of �nite rings

All rings considered are �nite. Complete lattices of formations of �nite rings are

de�ned analogously to the case of formations of �nite groups. We note that ∅ and

(0) are formations and the set of all formations of �nite rings is the complete lattice

of formations. Let Θ be a complete lattice of formations of �nite rings, and let M

and H belong to Θ. Then qr0(M ∪ H) is the least upper bound for {M,H} in

Θ, and M ∩ H is the greatest lower bound for {M,H} in Θ.

De�nition 2.53 ([21]). An element a of a lattice Θ is compact if a ≤ ∨(xj | j ∈ S)

holds for a ≤ ∨(xj | j ∈ J) and some �nite subset S ⊂ J . Compact elements are

important in domain theory [2] which has major applications for functional pro-

gramming languages. A complete lattice is called algebraic if each element of it is

the union (i.e. the least upper bound) of some set of compact elements.
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The notation J / R means that J is an ideal of a ring R, and we use the

notation R/I for a quotient ring of R modulo I if I / R.

Remark 2.54. We observe that a class of rings F is a formation i� it satis�es the

following two conditions:

1. if R ∈ F and J / R, then R/J ∈ F; and

2. if R/I1, R/I2 ∈ F, then R/I1 ∩ I2 ∈ F for any I1, I2 /R.

Theorem 2.55 ([125]). The lattice of all formations of finite rings is algebraic and

modular.

Proof. Step 1 (algebraicity). We show �rst that each one-generated formation

F = qr0(R) is a compact element in the lattice of all formations of rings.

Let F ⊆ qr0(
⋃
i∈I Fi), where {Fi | i ∈ I} is a set of formations. Then

R ∈ qr0(
⋃
i∈I Fi). Hence R ' T/J , where J / T ∈ r0(∪i∈IFi). Then there are

some Jk / T (k = 1, . . . , r) such that T/Jk ∈ ∪i∈IFi and J1 ∩ · · · ∩ Jr = {0}.

Consequently, T/J1 ∈ Fi1 , . . . , T/Jr ∈ Fir for some i1, . . . , ir ∈ I .

Thus for any k ∈ {1, . . . , r}, we have T/Jk ∈ Fi1 ∪ · · · ∪ Fir . Therefore

T ∈ r0(Fi1∪· · ·∪Fir). From R ' T/J and J/T , we have R ∈ qr0(Fi1∪· · ·∪Fir),

then

F = qr0(R) ⊆ qr0(Fi1 ∪ · · · ∪ Fir).

We show next that any nonempty formation of rings M is the union (in the

lattice of all formations of rings) of its one-generated subformations Ml = qr0(Rl),
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where l ∈ L. Let Y = qr0(∪l∈LMl). We show now that M = Y. Let R ∈ M.

Then

R ∈ qr0(R) ⊆
⋃
i∈L

Mi ⊆ qr0(
⋃
i∈L

Mi) = Y.

Consequently, M ⊆ Y. The inverse inclusion is obvious; Mi ⊆M implies ∪i∈LMi ⊆

M, and, consequently, Y ⊆M.

Step 2 (modularity). We wish to show that the following equality holds,

for any formations of rings X ⊆ Y and F:

Y ∩ qr0(X ∪ F) = qr0(X ∪ (Y ∩ F)).

The inclusion ”⊇” is trivial. Let A ∈ Y ∩ qr0(X ∪ F). Then A is a homo-

morphic image of some ring R ∈ r0(X ∪ F), and we can �nd some ideals J1 and

J2 of the ring R such that R/J1 ∈ X and R/J2 ∈ F with J1 ∩ J2 = {0}.

Let A ∼= R/I , where I /R. It is well known that the set of all ideals of a ring

forms a complete modular lattice with respect to set inclusion. Thus, by modular

law, we have J1 ∩ ((J1 ∩ I) + J2) = (J1 ∩ I) + (J1 ∩ J2) = J1 ∩ I. We note that

(R/(J1 ∩ I))/(J1/(J1 ∩ I)) ∼= R/J1 ∈ X, and

(R/(J1 ∩ I))/((J1 ∩ I) + J2/(J1 ∩ I)) ∼= R/(J1 ∩ I) + J2 ∈ F.

Hence, R/(J1 ∩ I) ∈ r0(X ∪ F). From R/I ∈ Y and X ⊆ Y, we conclude that

R/(J1 ∩ I) ∈ Y.

Consequently, R/(J1 ∩ I) ∈ r0(X∪ (Y∩F)) implies A ∈ qr0(X∪ (Y∩F)).

This proves the theorem.



2.4. FORMATIONS OF RINGS AND SOME GENERALIZATIONS 42

Let F and H be formations such that H ⊆ F. We denote by F/H the lattice

of all formations M such that H ⊆ M ⊆ F. As an immediate corollary from the

modularity of the lattice of all formations of rings, we obtain the following result.

Corollary 2.56. For any two formations M and F the lattices qr0(M∪ F)/M and

F/(F ∩M) are isomorphic.

Fuzzy sets, which have been introduced by Zadeh [141] and Klaua [65], have

found many applications in �elds such as data mining, machine learning, and pattern

recognition; see [60, 22]. Focusing on the structure of ring, Liu [70] introduced and

studied the notions of fuzzy subrings and fuzzy ideals, and showed that the images

and preimages under onto homomorphisms of fuzzy ideals are fuzzy ideals. Many

authors have developed the fuzzy ring theory. However, as we may see that not each

result on rings can be fuzzi�ed. For instance, Dixit, Kumar, and Ajmal [35] discussed

the conditions under which a given fuzzy ideal can or cannot be expressed as a union

of two proper fuzzy ideals.

De�nition 2.57 ([141]). A fuzzy subset of a set X is a function from X into the

closed interval [0, 1]. Let X and X ′ be any two sets, and f : X → X ′ be any

function. A fuzzy subset µ of X is called f -invariant if f(x) = f(y) implies

µ(x) = µ(y), where x, y ∈ X .

De�nition 2.58 ([35]). Let ‘·’ be a binary composition in a set X , and µ and µ′
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be any two fuzzy subsets of X . The product µµ′ is de�ned by

µµ′(z) =


sup(min{µ(x), µ′(y)}), for x, y ∈ X, and z = x · y;

0, if z is not expressible as z = x · y for all x, y ∈ X.

Clearly, µµ′ is a fuzzy subset of X .

De�nition 2.59 ([35]). A fuzzy subset µ of a ring R is called a fuzzy ideal of R if

it has the following two properties:

1. µ(x− y) ≥ min{µ(x), µ(y)} for any x, y ∈ R; and

2. µ(xy) ≥ max{µ(x), µ(y)} for any x, y ∈ R.

In the sequel, by a ring we shall always mean a �nite commutative ring with

identity. A fuzzy ideal µ of a ring R is called fuzzy prime if for any fuzzy ideals µ

and µ′ of R, the condition µµ′ ⊆ µ implies that either µ ⊆ µ′ or µ′ ⊆ µ.

We shall write formR instead of qr0(R) for the formation generated by R.

Lemma 2.60 ([125]). Let R be a ring, and F = formR. Then the following two

conditions hold.

1. Any invariant fuzzy prime ideal of R corresponds in a natural way to a fuzzy

prime ideal of each member of F.

2. Any fuzzy prime ideal of each member of F corresponds in a natural way to a

fuzzy prime ideal of R.
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Proof. We note that the formation F consists of all quotients of subdirect products

of copies of R. Let f be any homomorphism from the ring R onto a ring A ∈

formR. Then f(R) = A.

(1) Let µ be an f -invariant fuzzy prime ideal of R. Then by [35, Theorem 4.4],

f(µ) (see [35, Lemma 4.1]) is a fuzzy prime ideal of A.

(2) Let ν be a fuzzy prime ideal of A. Then f−1(ν) (see [35, Lemma 4.1]) is

a fuzzy prime ideal of R by [35, Theorem 4.5].

The proved lemma implies the following result.

Proposition 2.61 ([125]). Let R be a ring, and F = formR. Then there is a one-to-

one correspondence between the set of all invariant fuzzy prime ideals of R and the

set of all fuzzy prime ideals of each ring of F.

We note that by Theorem 2.55 every formation of finite rings is the join of some

one-generated formations.

2.4.3 Classes of T -groups

Methods and results of formation theory have found fruitful applications in studies

of �nite and in�nite groups, rings, and modules. There is the kind of duality in the

research of formations of �nite groups and formations of other algebraic systems.

That rises up the motivation to study formations of di�erent algebraic structures

from a uni�ed viewpoint, and to introduce formations of multioperator T -groups.
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De�nition 2.62 ([34]). Let G be an additive (not necessarily commutative) group

with zero 0. We say that G is a multioperator T -group whenever we have a system T

of k-ary algebraic operations on G for k > 0, while t(0, . . . , 0) = 0 for all t ∈ T ,

where 0 appears on the left k times if t is an k-ary operation; see Chapter III of

the book [69], [58] and Chapter VI of the book [116].

Remark 2.63. We note that groups, modules, rings and multirings are particular cases

of multioperator T -groups. Multiring is a multioperator T -group with the condition

every t ∈ T on G is distributive with respect to addition; see [99]. Special types of

multioperator T -group are discussed in Chapter 4 in [116] and Section 4 in [58].

De�nition 2.64 ([116]). Let G be a multioperator T -group. A normal subgroup

N of G is called an ideal of G if for any positive integer n, any t ∈ Tn, any

i ∈ {1, . . . , n}, for arbitrary elements g1, . . . , gn ∈ G and x ∈ N , we have

t(g1, . . . , gn)− t(g1, . . . , gi−1, gi + x, gi+1, . . . , gn) ∈ N.

We write K /G to denote that K is an ideal of a multioperator T -group G.

De�nition 2.65 ([34]). A formation of multioperator T -groups is a class F of mul-

tioperator T -groups satisfying the following two conditions:

1. if G ∈ F and N / G, then G/N ∈ F; and

2. if N1, N2 / G and G/N1, G/N2 ∈ F, then G/N1 ∩N2 ∈ F.
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By C, we denote the class of all multioperator T -groups with �nite composition

series.

Remark 2.66 ([34]). A variety of multioperator T -groups is a class of multioperator

T -groups closed under taking multioperator T -subgroups, quotients and �nite direct

products. Thus, formations of multioperator T -groups of extend the notion of a

variety of multioperator T -groups. The class C is a formation but it is not a variety,

but any variety of multioperator T -groups is a formation of multioperator T -groups.

Let M be the class of all multioperator T -groups satisfying the minimality and

maximality conditions for multioperator T -subgroups. Following [34], we write I1 to

denote the class of all simple M-groups, i.e., those nonzero multioperator T -groups

P whose only ideals are {0} and P itself. In the sequel, all considered multioperator

T -groups are in the class C.

De�nition 2.67 ([34]). A class F of multioperator T -groups is called a Fitting class

whenever

1. if G ∈ F and N / G, then N ∈ F; and

2. if N1, N2 / G and N1, N2 ∈ F, then N1 +N2 ∈ F.

Let F be a Fitting class of multioperator T -groups. The symbol GF denotes

the F-radical of G, i.e., the sum of all F-ideals of a multioperator T -group G; see

[34].
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A Fitting formation is a Fitting class of multioperator T -groups which is at

the same time a formation of multioperator T -groups.

2.4.4 Ω1-Foliated formations

Vedernikov [131] introduced an elegant concept of partially foliated formation. The

idea have led to the necessity of considering the Ω-satellites of various directions

to construct new types of formations. The direction of an Ω-satellites f has been

de�ned as a mapping of the class I of all �nite simple groups into the set of all

nonempty Fitting formations. Obviously, we may �nd in�nitely many such direc-

tions. For a �xed nonempty class Ω, we can form in�nitely many new types of

classes, which are called Ω-foliated formations of �nite groups.

We use notations and terminologies from [34, 131]. Let Ω1 be a nonempty

subclass of I1, Ω′1 = I1 \ Ω1. The symbol K(G) denotes the class of all simple

M-groups isomorphic to the composition factors of an M-group G. The group G

is called an Ω1-group if K(G) ⊆ Ω1. The symbol MΩ1 means the class of all Ω1-

groups belonging to M; {0} ∈MΩ1 . We set

OΩ1(G) = GMΩ1
and OΩ′1,Ω1

(G) = GMΩ′1
MΩ1

.

De�nition 2.68 ([131]). A function f of the form

f : Ω1 ∪ {Ω′1} → {formations of T -groups}
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is called an Ω1F -function, and a function ϕ of the form

ϕ : I1 → {nonepty Fitting formations of T -groups}

is called an FR-function. We introduce a partial order 6 on the set of all Ω1F -

functions and all FR-functions. For every two functions µ1 and µ2, put µ1 6 µ2

if µ1(A) ⊆ µ2(A) for all A ∈ Ω1 ∪ {Ω′1} (A ∈ I1). The set of all functions ϕ

with µ1 6 ϕ 6 µ2 is called a segment and is denoted by [µ1, µ2]. If µ1 6 µ2 and

µ1 6= µ2 then write µ1 < µ2. The class Ω1F (f, ϕ) =

(G ∈M | G/OΩ1(G) ∈ f(Ω′), G/Gϕ(A) ∈ f(A)∀A ∈ Ω1 ∩ K(G))

is called an Ω1-foliated formation of multioperator T -groups with Ω1-satellite f and

a direction ϕ (or an Ω1F -formation). A formation Ω1F (f, ϕ) is called Ω1-free if

ϕ(A) = MA′ for any A ∈ I1 (we denote the direction of this formation by ϕ0).

De�nition 2.69 ([34]). For any multioperator T -group G, we select a system of

multioperator T -subgroups τ(G), and say that τ is a T -subgroup functor if the fol-

lowing two conditions hold:

1. G ∈ τ(G) for each multioperator T -group G; and

2. for every epimorphism % : A → B and any H ∈ τ(A) and K ∈ τ(B), the

following holds: H% ∈ τ(B) and K%−1 ∈ τ(A).

We say that τ is trivial if τ(G) = {G}.
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Let Y be a set of multioperator T -groups. Then the symbol sτ (Y) denotes

the set of multioperator T -groups H such that H ∈ τ(G) for some multioperator

T -group G in Y.

A class of multioperator T -groups F is called τ -closed if sτ (F) = F. In par-

ticular, a formation F is said to be τ -closed if τ(G) ⊆ F for every multioperator

T -group G of F.

Remark 2.70 ([34]). It is easy to see that the class C of all multioperator T -groups

with �nite composition series is not a τ -closed formation, in the general case. For

instance, consider a C-group G such that τ(G) 6⊆ C for every subgroup C-functor

with τ(G) 6⊆ {G, {0}}. By Theorem 28.3 in [76], G is a simple group of Olshanskii

with in�nite cyclic proper subgroups.

In the forthcoming chapters, we assume that M is a subclass of the class C,

and M is a class of multioperator T -groups of one of the following two types:

1. the class of all �nite multioperator T -groups, or

2. the class of all multioperator T -groups satisfying the conditions of minimality

and maximality for T -subgroups.

We note that for any subgroup M-functor τ , the class M is a τ -closed C-

formation of multioperator T -groups. The Ω1F -function is said to be τ -closed (or

τΩ1F -function), if all its values are τ -closed M-formations of multioperator T -

groups. We suppose later on that any Ω1-foliated τ -closed M-formation of multiop-
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erator T -groups is τΩ1-foliated M-formation of multioperator T -groups. We study

these formations in Chapter 6.

Conclusion

The basic concepts of formation theory are introduced. It is shown that the lattice

of all formations of �nite rings is algebraic and modular. Let R be a �nite com-

mutative ring with an identity element. It is established that there is a one-to-one

correspondence between the set of all invariant fuzzy prime ideals of R and the set

of all fuzzy prime ideals of each ring of the formation generated by R.



Chapter 3

Lattices of Saturated Formations

and Group Languages

3.1 Languages associated with multiply local formations of

�nite groups

We borrow notations and terminology from the papers of Ballester-Bolinches, Pin,

and Soler-Escrivà [13, 14]. All considered monoids are �nite in this section. The For-

mation Theorem, and Lemmas 2.28 and 2.30 imply the following two results.

Proposition 3.1. Let F be an n-multiply local formation of groups with canonical

local satellite F , and let F be a formation of languages associated with F. Then F

is the join of the formations of languages Fp associated with (n − 1)-multiply local

51
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formations F (p) for all primes p.

Proposition 3.2. Let F be a totally local formation of groups with canonical local

satellite F , and let F be a formation of languages associated with F. Then F is the

join of the formations of languages Fp associated with totally local formations F (p)

for all primes p.

These results show that computing the formation of languages F reduces to

computing Fp for all primes p. Value of the canonical de�nition F of n-multiply

(totally) local formation F = LF (f) can be compute by the following formula

F (p) = Np(f(p) ∩ F)

for all primes p.

De�nition 3.3 (Section 5 [14]). Given a prime p. Let L0, . . . , Lk be languages of

A∗; a1, . . . , ak be letters of A and let r < p be a nonnegative integer. De�ne

(L0a1L1 . . . akLk)r,p, — the modular product [14] of the languages L0, . . . , Lk

with respect to r and p, as the set of all words u in A∗ such that the number of

factorizations of u in the form u = u0a1u1 . . . akuk, with ui ∈ Li for 0 ≤ i ≤ k,

is congruent to r modulo p. A language is a p-modular product of the languages

L0, . . . , Lk if it is of the form (L0a1L1 . . . akLk)r,p for some r.

Following [14], we use next the modular product to describe the formation of

languages corresponding to LNp •M.
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Remark 3.4 (Proposition 3.16 [14] ). For any formation M of �nite groups, the

formation product NpM coincides with the Mal’cev product LNp •M, where LNp

is the class of semigroups which are locally a p-group.

Let Cp be the formation of languages associated with (n−1)-multiply (totally)

local formation of groups M = f(p) ∩ F. Then by Theorem 6.2 in [14] and the

propositions above we obtain the following proposition.

Proposition 3.5. Let F be an n-multiply (totally) local formation, and F be the

formation of languages associated with F. Then for each alphabet A, F(A∗) is the

Boolean algebra generated by the languages of the form

(L0a1L1 . . . akLk)r,p,

where Li ∈ Cp(A∗), 0 ≤ i ≤ k, 0 ≤ r < p, and p runs over all primes.

Analogously we obtain a dual result for τ -closed local formations.

Proposition 3.6 ([118]). Given F = lτ formY. Let F be the formation of languages

associated with F, and let Cp be the formation of languages associated with Y(p).

Then for each alphabet A, F(A∗) is the Boolean algebra generated by the languages

of the form

(L0a1L1 . . . akLk)r,p,

where Li ∈ Cp(A∗), 0 ≤ i ≤ k, 0 ≤ r < p, and p runs over all primes.
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Corollary 3.7. Given F = lformY and π(Y) = ∪G∈Yπ(|G|). Let F be the forma-

tion of languages associated with F, and let Cp be the formation of languages associated

with

Y(p) =


form(G/Op′,p(G) | G ∈ Y) if p ∈ π(Y);

∅ if p 6∈ π(Y).

Then for each alphabet A, F(A∗) is the Boolean algebra generated by the languages

of the form (L0a1L1 . . . akLk)r,p, where Li ∈ Cp(A∗), 0 ≤ i ≤ k, 0 ≤ r < p, and

p runs over all primes.

Corollary 3.8. Given F = ln+1formY. Let F be the formation of languages associ-

ated with F, and let Cp be the formation of languages associated with

Yn(p) =


lnformY(p) if p ∈ π(Y);

∅ if p 6∈ π(Y).

Then for each alphabet A, F(A∗) is the Boolean algebra generated by the languages

of the form (L0a1L1 . . . akLk)r,p, where Li ∈ Cp(A∗), 0 ≤ i ≤ k, 0 ≤ r < p, and

p runs over all primes.

Corollary 3.9. Given F = l∞formY. Let F be the formation of languages associated

with F, and let Cp be the formation of languages associated with

Y∞(p) =


l∞formY(p) if p ∈ π(Y);

∅ if p 6∈ π(Y).
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Then for each alphabet A, F(A∗) is the Boolean algebra generated by the languages

of the form (L0a1L1 . . . akLk)r,p, where Li ∈ Cp(A∗), 0 ≤ i ≤ k, 0 ≤ r < p, and

p runs over all primes.

3.2 Lattices of σ-local formations

Notations and terminology are borrowed from [29], where σ-local formations have

been introduced. We refer to the mentioned paper for more details and de�nitions

on the scope of the topic. The symbol lσnformY denotes the intersection of all

n-multiply σ-local formations containing the set of groups Y.

Remark 3.10 (Theorem 1.15 [29]). The set lσn of all n-multiply σ-local formations is

partially ordered by the set inclusion and forms a complete lattice in which
⋂
j∈J Fj

is the greates lower bound and
∨σ
n(Fj | j ∈ J) = lσnform (

⋃
j∈J Fj) is the smallest

upper bound.

De�nition 3.11 ([29]). A formation σ-function f is said to be lσn−1-valued if f(σi)

is an (n− 1)-multiply σ-local formation for every σi ∈ Supp(f).

The smallest lσn−1-valued definition of a formation F have been introduced in

Lemma 2.6 in [29].
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3.2.1 Laws of the lattices of multiply σ-local formations

Let ξ be a term of the signature {
⋂
,
∨σ
n}. By ξ, it is denoted the term of the

signature {
⋂
,
∨σ
n−1}, which we obtain from ξ by replacing of each symbol

∨σ
n by

the symbol
∨σ
n−1.

Lemma 3.12 ([124]). Let ξ(xi1 , . . . , xim) be a term of signature {
⋂
,
∨σ
n}, and let fi

be an integrated lσn−1-valued definition of an n-multiply σ-local formation Fi, where

i = 1, . . . ,m and n > 1. Then

ξ(F1, . . . ,Fm) = LFσ(ξ(f1, . . . , fm)).

Proof. Following [120], we proceed by induction on the number r of occurrences

of the symbols of {
⋂
,
∨σ
n} into ξ. The case r = 1 follows by Lemmas 2.2 and 3.1

in [29].

Let ξ have r > 1 occurrences of the symbols {
⋂
,
∨σ
n}. We set

ξ(x1, . . . , xm) = ξ1(xi1 , . . . , xia)4ξ2(xj1 , . . . , xjb),

where 4 ∈ {
⋂
,
∨σ
n} and {xi1 , . . . , xia} ∪ {xj1 , . . . , xjb} = {x1, . . . , xm}. We

suppose that the assertion is true for the terms ξ1 and ξ2. Then

ξ1(Fi1 , . . . ,Fia) = LFσ(ξ(fi1 , . . . , fia))

and

ξ1(Fj1 , . . . ,Fjb) = LFσ(ξ(fj1 , . . . , fjb)).
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For every i we have ξ(fi1 , . . . , fia)(σi) ⊆ ξ1(Fi1 , . . . ,Fia) and

ξ(fj1 , . . . , fjb)(σi) ⊆ ξ1(Fj1 , . . . ,Fjb).

Hence

ξ(F1, . . . ,Fm) =

ξ1(Fi1 , . . . ,Fia)4ξ1(Fj1 , . . . ,Fjb) = LFσ(ξ(fi1 , . . . , fia)4̄ξ(fj1 , . . . , fjb))

= LFσ(ξ(f1, . . . , fm)),

where 4̄ =
⋂

if 4 =
⋂

, and 4̄ =
∨σ
n−1 if 4 =

∨σ
n. The result is now immediate.

Theorem 3.13 ([124]). Let n > 0. Then every law of the lattice of all formations lσ0

is fulfilled in the lattice of all n-multiply σ-local formations lσn.

Proof. Fix a law

ξ1(xi1 , . . . , xia) = ξ2(xj1 , . . . , xjb) (3.1)

of signature {
⋂
,
∨σ
n}. Let

ξ1(xi1 , . . . , xia) = ξ2(xj1 , . . . , xjb) (3.2)

be the same law of signature {
⋂
,
∨σ
n−1}.

Suppose that law (3.2) ful�lled in the lattice lσn−1. Given arbitrary n-multiply

σ-local formations Fi1 , . . . ,Fia ;Fj1 , . . . ,Fjb , we show that

ξ1(Fi1 , . . . ,Fia) = ξ2(Fj1 , . . . ,Fjb).



3.2. LATTICES OF σ-LOCAL FORMATIONS 58

Let fic be the smallest lσn−1-valued de�nition of Fic , where c = 1, . . . , a, and let fjd

be the smallest lσn−1-valued de�nition of Fjd , where d = 1, . . . , b. Then applying

Lemma 6.4, we obtain

ξ1(Fi1 , . . . ,Fia) = LFσ(ξ1(fi1 , . . . , fia)),

ξ2(Fj1 , . . . ,Fjb) = LFσ(ξ2(fj1 , . . . , fjb)).

By Lemma 2.6 in [29], fi1 , . . . , fia ; fj1 , . . . , fjb are lσn−1-valued. Then by induction

for any index i we obtain the following equality:

ξ1(fi1 , . . . , fia)(σi) =

ξ1(fi1(σi), . . . , fia(σi)) = ξ2(fj1(σi), . . . , fjb(σi)) =

ξ2(fj1 , . . . , fjb)(σi).

Hence ξ1(Fi1 , . . . ,Fia) = ξ2(Fj1 , . . . ,Fjb). So, law (3.1) is ful�lled in the lattice lσn,

as required.

By Theorem 1.15 in [29] the lattice lσn is modular. We obtain the same result

as an immediate corollary of Theorem 3.13.

Corollary 3.14 ([124]). The lattice of all n-multiply σ-local formations lσn is modular

but not distributive for any nonnegative integer n.

Proof. Corollary 4.2.8 in [107] states that the lattice of all formations lσ0 is modular,

and then applying Theorem 3.13, we conclude that the lattice lσn is modular for any

nonnegative integer n.
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Let us show now that the lattice lσn is not distributive. Given the class M of

locally �nite groups whose exponents divide a given prime p 6= 2, which is a variety

by [66]. Let L(M) be the lattice of the subvarieties of M. By Higman [59], L(M)

is not distributive, and Lemma 2.17 implies that the map fin : M → finM is an

embedding of the lattice and the semigroup of locally �nite varieties into the algebra

of all formations of �nite groups lσ0 . Then again applying Theorem 3.13, we see that

the lattice lσn is not distributive for any nonnegative integer n.

When σ = {{2}, {3}, . . .}, a formation σ-function and a σ-local formation

are a formation function and a local formation, respectively; see Example 1.2 in [29].

Then Theorem 3.13 implies the following two results.

Corollary 3.15 (Chapter 4 [107]). Let n be a positive integer. Then every law of the

lattice of all formations of finite groups is fulfilled in the lattice of all n-multiply local

formations of finite groups.

Corollary 3.16 (Corollary 4.2.8 [107]). The lattice of all n-multiply local formations

of finite groups is modular but not distributive for any nonnegative integer n.

A formation of groups is said to be totally σ-local if it is n-multiply σ-local for

every positive integer n [29]. Theorem 3.13 rises up the motivation for the following

question.

Question 3.1 ([124]). Is it true that every law of the lattice of all formations is fulfilled

in the lattice of all totally σ-local formations?
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Safonov [89] showed that the lattice of all totally saturated formations of �nite

groups is distributive.

Question 3.2 ([124]). Is it true that the lattice of all totally σ-local formations is

distributive (or modular at least)?

Remark 3.17. We note that Guo, Zhang and N.T. Vorob’ev [53] have described the

properties of σ-local Fitting classes of �nite grops.

3.2.2 Frattini subformations

Given n-multiply σ-local formations F and H such that H ⊆ F. We write F/σnH to

denote the lattice of all n-multiply σ-local formations of �nite groups M such that

H ⊆M ⊆ F. Corollary 3.14 implies the following result.

Corollary 3.18 ([124]). The lattices (M
∨σ
n F)/σnM and F/σn(F

⋂
M) are isomorphic

for any n-multiply σ-local formations M and F

De�nition 3.19. If M ⊂ F and the lattice F/σnM consists of only two elements

then M is called a maximal n-multiply σ-local subformation of F.

Lemma 3.20. Let G be a group and Y be a nonempty set of groups. Then the

formation F = lσnform(Y ∪ {G}) contains a maximal lσn-subformation containing

lσnformY 6= F for every n ≥ 0.

Proof. The assertion follows by the Kuratowski–Zorn lemma (for instance see the

proof of [122, Lemma 3.3] or [119, Lemma 3.1]).
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The study of maximal subformations of saturated formations and their intersec-

tions was originated by Skiba [104, 105, 107], Förster [40], and Herzfeld [55, 56, 57].

De�nition 3.21. We denote the intersection of all maximal n-multiply σ-local sub-

formations of F by the symbol Φσ
n(F), and call it the n-multiply σ-local Frattini

subformation of F (we set Φσ
n(F) = F if there are no such subformations).

Let Y be a nonempty set of groups. If F = lσnform (Y∪{G}) always implies

that F = lσnformY then we say that G is an lσn-nongenerator of F.

Proposition 3.22 ([124]). Given n-multiply σ-local formations ∅ 6= F0 ⊆ F 6= (1).

Then

1. Φσ
n(F0) ⊆ Φσ

n(F), and

2. Φσ
n(F) consists of all lσn-nongenerators of F.

Proof. (1) Suppose that Φσ
n(F0) 6⊆ Φσ

n(F). Let M be a maximal lσn-subformation

of F with Φσ
n(F0) 6⊆ M. Thus F0 6⊆ M. By Corollary 6.12 we have F/σnM =

(M
∨σ
n F0)/σnM ' F0/

σ
n(F0

⋂
M). We see that the lattice from the left side consists

of only two elements. Thus, F0
⋂
M is the maximal lσn-subformation of F0. Hence

Φσ
n(F0) ⊆M. A contradiction is obtained. Thus, Φσ

n(F0) ⊆ Φσ
n(F), as asserted.

(2) Let G be a lσn-nongenerator, and L be a maximal lσn-subformation of F.

Suppose G /∈ L. Consequently, lσnform(L∪{G}) = F = lσnformL = L. We have a

contradiction. Then G ∈ L. Denote by Y be a nonempty set of groups contained in
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F and G ∈ Φσ
n(F). Assume that lσnform(Y ∪ {G}) = F 6= lσnformY. Lemma 6.17

implies that F has a maximal lσn-subformation M with the property lσnformY ⊆M.

Because G ∈ Φσ
n(F), we obtain M = F. Again we have a contradiction. Finally,

F = lσnformY.

3.2.3 Languages associated with σ-local formations

We write Lσm to denote the lattice of the formations of languages corresponding to

the lattice lσm, where m ≥ 0. Then by Theorem 3.13, we have the following corollary.

Corollary 3.23. Let n be a positive integer. Then every law of the lattice Lσ0 is fulfilled

in the lattice Lσn.

Question 3.3. How to describe the languages corresponding to σ-local (n-multiply σ-

local, totally σ-local) formations?

By Corollary 2.6(1) in [111], for every formation σ-function f the class LFσ(f)

is a nonempty saturated formation. Thus using Theorem 6.2 in [14] and Proposi-

tion 5.1 in [118], the problem above can be solved in some fashion for σ-local for-

mations as follows.

Proposition 3.24 ([124]). Given F = lσformY where Y 6= ∅ and π(Y) = ∪G∈Yπ(G).

Let F be the formation of languages associated with F, and let Cp be the formation
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of languages associated with

Y(p) =


form(G/Op′,p(G) | G ∈ Y) if p ∈ π(Y);

∅ if p 6∈ π(Y).

Then for each alphabet A, F(A∗) is the Boolean algebra generated by the languages

of the form (L0a1L1 . . . akLk)r,p, where Li ∈ Cp(A∗), 0 ≤ i ≤ k, 0 ≤ r < p, and

p runs over all primes.

However, it will be interesting to �nd a description of the group languages

corresponding to multiply σ-local formation F = LFσ(F ) using properties of the

canonical σ-local de�nition F of F which is unique by Corollary 2.6(2) in [111].

Conclusion

The languages corresponding to to τ -closed local, multiply local and totally local

formations are described. Let σ be a partition of the set of all primes. It is shown

that every law of the lattice of all formations is ful�lled in the lattice of all multi-

ply σ-local formations of �nite groups. Some properties of Frattini subformations of

multiply σ-local formations are discussed. The main contributions have been pub-

lished in the papers [118, 124].



Chapter 4

Lattices of Partially Composition

Formations of Finite Groups

In the present chapter, we use only subgroup functors τ such that for every �nite

group G all subgroups of τ(G) are subnormal in G.

4.1 Inductive lattices

Inductive lattices of formations of �nite groups have been introduced in the book

[107]. The property of the lattice to being inductive is a very important one in the

study of formation lattices. In 2001 at the Gomel Algebraic Seminar (Belarus), Skiba

has proposed the following problem related to the lattices of Baer-local formations

of �nite groups.

64
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Question 4.1 (Skiba). Is it true that the lattice of all τ -closed n-multiply ω-composition

formations inductive?

Assuming that Θ is a complete lattice of formations, denote by the symbol Θωc

the set of all formations having an ω-composition Θ-valued satellite; see [114, 113].

In [114, p. 901] it is shown that Θωc is a complete lattice of formations.

De�nition 4.1 ([107]). A lattice Θωc is called inductive if for any set of partially

composition formations of �nite groups {Fi = CFω(fi) | i ∈ I}, where fi is an

integrated satellite of Fi ∈ Θωc , the following equality holds:
∨

Θωc (Fi | i ∈ I) =

CFω(
∨

Θ(fi | i ∈ I)).

Remark 4.2. The inductance of a lattice Θωc implies that instead of the study of

the operation
∨

Θωc on the set Θωc , we can reduce it to a study of the operation∨
Θ on the set Θ. So, the inductance is a very important property of Θωc .

In the present section, we establish the inductance of the lattices cτωn
and cτ∞.

4.1.1 Minimal satellites

De�nition 4.3 ([114]). Let Θ be a complete lattice of formations. A satellite f is

called Θ-valued if all its values belong to Θ. If F = CFω(f) and f(a) ⊆ F for all

a ∈ ω ∪ {ω′}, then f is called an integrated satellite of F.

The set of all τ -closed n-multiply ω-composition formations cτωn
is a com-

plete lattice by an inclusion ⊆; see [138]. By cτω0
and cωn we denote the lattice of
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all τ -closed formations and the lattice of all n-multiply ω-composition formations,

respectively.

Let {fi | i ∈ I} be a set of ω-composition satellites. Following [114]), we write⋂
i∈I

fi to denote the ω-composition satellite f such that f(a) =
⋂
i∈I

fi(a) for every

a ∈ ω ∪ {ω′}.

Lemma 4.4 (Lemma 2[114]). Let F =
⋂
i∈I

Fi where Fi = CFω(fi). Then F =

CFω(f) where f =
⋂
i∈I

fi.

Let {fi | i ∈ I} be the set of all ω-composition cτωn−1
-valued satellites of

a formation F. Because cτωn
is a complete complete lattice of formation of �nite

groups, applying Lemma 4.7, we see that f =
⋂
i∈I

fi is an ω-composition cτωn−1
-

valued satellite of F. The satellite f is called minimal.

Lemma 4.5 (Corollary 4.2.8[107]). The lattice of all τ -closed n-multiply saturated

formations is modular but not distributive for all n ≥ 0.

Let Θ be a complete lattice of formations, and let {Fi | i ∈ I} be a set

of Θ-formations. Then we use the notion
∨

Θ(Fi | i ∈ I) = Θform

(⋃
i∈I

Fi

)
.

In particular, if Θ = cτωn
we write

∨τ
ωn

(Fi | i ∈ I) = cτωn
form

(⋃
i∈I

Fi

)
. Let

{fi | i ∈ I} be a set of Θ-valued functions of the form (2.3). Then we write∨
Θ(fi | i ∈ I) to denote a function f such that f(a) = Θform

(⋃
i∈I

fi(a)

)
for

all a ∈ ω ∪ {ω′}. Applying Lemmas 2.1 and 3.1 in [138], we obtain the following

lemma.
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Lemma 4.6. Let n be a natural number. Then (cτωn−1
)ωc = cτωn

.

Lemma 4.7 (Lemma 2 [114]). Let F =
⋂
i∈I Fi, where Fi = CFω(fi). Then F =

CFω(f), where f =
⋂
i∈I fi.

Let G be a �nite group. Then following [37, p. 66], we write Zp oG to denote

the regular wreath product of groups Zp and G. Here p be a prime.

Lemma 4.8 (Lemma 2 [112]). Let Zp be a group of a prime order p, G be a group

with Op(G) = 1, and let T = Zp oG = [K]G is the regular wreath product, where

K is the base group of T . Then K = Cp(T ) = Op(T ).

Lemma 4.9 (Lemma 4 [114]). Let F = CFω(f). If G/Op(G) ∈ f(p) ∩ F for some

prime p ∈ ω, then G ∈ F.

The lemma below describes the minimal cτωn−1
-valued satellite of a formation.

Lemma 4.10 (Lemma 8 [128]). Let Y be a nonempty set of groups, F = cτωn
formY,

where n > 1, let π = ω ∩ π(Com(X)), and let f the minimal cτωn−1
-valued ω-

composition satellite of F. Then:

1. f(ω′) = cτωn−1
form(G/Rω(G) | G ∈ Y);

2. f(p) = cτωn−1
form(G/Cp(G) | G ∈ Y) for all p ∈ π;

3. f(p) = ∅ for all p ∈ ω \ π;
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4. if F = CFω(h), where h is a cτωn−1
-valued ω-composition satellite, then

f(p) = cτωn−1
form(G | G ∈ h(p) ∩ F and Op(G) = 1)

for all p ∈ π and

f(ω′) = cτωn−1
form(G | G ∈ h(ω′) ∩ F and Rω(G) = 1).

The lemma below is obtained by direct calculation.

Lemma 4.11 ([128]). Let n > 1, fi be the minimal cτωn−1
-valued ω-composition satel-

lite of a formation Fi, i ∈ I . Then

∨τ
ωn−1

(fi | i ∈ I) is the minimal cτωn−1
-valued

ω-composition satellite of F =
∨τ
ωn

(Fi | i ∈ I).

De�nition 4.12. Let F = CFω(f), and f(a) ⊆ F for all a ∈ ω ∪ {ω′}. Then the

composition satellite f is called an integrated satellite of formation F.

Following the paper [114], we put for any set of groups Y:

Y(Cp) =


form (G/Cp(G) | G ∈ Y) if p ∈ π(Com(Y));

∅ if p ∈ P \ π(Com(Y)).

De�nition 4.13 ([114]). Let F = CLF (F ), where F (0) = F and F (p) = NpF(Cp)

for all p ∈ P. Then the satellite F is called a canonical composition satellite of the

formation F. By [114, Remark 1], every composition formation possesses a canonical

composition satellite.
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Lemma 4.14 (Lemma 8 [114]). Let Θ be a complete lattice of formations such that

Θc ⊆ Θ; and let the formation NpH belongs to Θ for each formation H ∈ Θ, and

every p ∈ ω. If F = CLF (F ) ∈ Θc
, then the satellite F is Θ-valued.

Corollary 4.15. The following equality holds (cτ∞)c = cτ∞.

Proof. The inclusion (cτ∞)c ⊆ cτ∞ is obvious. Let F ∈ cτ∞ and F be a canonical

composition satellite of F. Then by Lemmas 4.14 and 6.19 for all a ∈ P ∪ {0}

and each positive integer n, we see that F (a) is τ -closed n-multiply composition

formation of �nite groups. So, the composition satellite F is cτ∞-valued. Thus, we

have F ∈ (cτ∞)c, and, �nally, cτ∞ ⊆ (cτ∞)c.

Lemma 4.16 (Lemma 2.1 [138]). Let F = CLF (F ) be a τ -closed n-multiply compo-

sition formation, where n is a positive integer. Then the satellite F is cτn-valued.

Lemma 4.16 implies the following corollary.

Corollary 4.17. Let F = CLF (F ) be a τ -closed totally composition formation. Then

the satellite F is cτ∞-valued.

De�nition 4.18. Let {fi | i ∈ I} be the set of all composition cτ∞-valued satellites

of a formation F. Because cτ∞ is a complete lattice of formations of �nite groups,

then Lemma 4.7 implies that f =
⋂
i∈I fi is a composition cτ∞-valued satellite of

formation F. This composition satellite f is called minimal.
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For a complete lattice of formations Θ, we write ΘformY to denote the in-

tersection of all Θ-formations containing a set of groups Y. So, cτ∞formY is the

intersection of all τ -closed totally composition formations containing a set of groups

Y. The lemma below, which immediately follows by Lemma 5 in [114] and Corol-

lary 4.15, describes the minimal cτ∞-valued satellite of a formation cτ∞formY.

Lemma 4.19 (Lemma 2.2 [121]). Let Y be a nonempty set of finite groups, and let

F = cτ∞formY. Denote π(Com(Y)) by π, and let f be the minimal cτ∞-valued

composition satellite of F. Then the following statements hold:

1. f(0) = cτ∞form (G/R(G) | G ∈ Y);

2. f(p) = cτ∞form (G/Cp(G) | G ∈ Y) for all p ∈ π;

3. f(p) = ∅ for all p ∈ P \ π;

4. if F = CLF (h) and the satellite h is cτ∞-valued, then for all p ∈ π we have

f(p) = cτ∞form (G | G ∈ h(p) ∩ F and Op(G) = 1); and

f(0) = cτ∞form (G | G ∈ h(0) ∩ F and R(G) = 1).

Lemma 4.19 implies the following assertion.

Corollary 4.20. Let f1 and f2 be the minimal composition cτ∞-valued satellites of

formations F1 and F2 respectively. Then F1 ⊆ F2 if and only if f1 ≤ f2.



4.1. INDUCTIVE LATTICES 71

4.1.2 Inductance of the lattice cτωn

We say that a group G is monolithic if it possesses the unique minimal normal

subgroup (monolith), which is contained in each nontrivial normal subgroup of G.

Lemma 4.21 (Corollary 1.2.26 [107]). Let Y be a τ -closed semiformation, a fininite

group A belongs to F = τ formY. Let A be a monolithic group, and A 6∈ Y. Then

there exists a group H in F and normal subgroups N, N1, . . . , Nt; M, M1, . . . ,Mt

(t > 2) of H such that the following statements hold:

1. H/N ∼= A, M/N = Soc(H/N);

2. N1 ∩ . . . ∩Nt = 1;

3. H/Ni is a monolithic Y-group and Mi/Ni is the socle of H/Ni which is H -

isomorhpic to M/N ;

4. M1 ∩ . . . ∩Mt ⊆M .

Lemma 4.22 (Lemma 4.1.3 [107]). Let N1 × . . . × Nt = Soc(G), where Ni is a

minimal normal subgroup of G (i = 1, . . . , t), t > 1, and Op(G) = 1. Let Mi be

the largest normal subgroup in G containing N1 × . . . ×Ni−1 ×Ni+1 × . . . ×Nt,

but not containing Ni, i = 1, . . . , t. Then

1. for every i ∈ {1, . . . , t}, Op(G/Mi) = 1, G/Mi is monolithic and its socle

NiMi/Mi is G-isomorphic to Ni;

2. M1 ∩ . . . ∩Mt = 1.
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Lemma 4.23 (Lemma 9 [128]). Let A be a monolithic group with a nonabelian socle

R, and let M be a τ -closed semiformation and A ∈ cτωn
formM, n > 0. Then

A ∈M.

Lemma 4.24 (Lemma 10 [128]). Let M be a semiformation. Suppose than a finite

group A belongs to the formation cτωn
formM, n > 0. Then:

1. if Op(A) = 1 and p ∈ ω, then A ∈ cτωn
formM1, where

M1 = (G/Op(G) | G ∈M);

2. if Rω(A) = 1, then A ∈ cτωn
formM2, where M2 = (G/Rω(G) | G ∈M).

Theorem 4.25 (Theorem [128]). Let n be a positive integer, and let ω 6= ∅ be a set

of primes. Then the lattice of all τ -closed n-multiply ω-composition formations cτωn
is

inductive.

Proof. Let {Fi | i ∈ I} be a set of τ -closed n-multiply ω-composition formations

of �nite groups, and let fi be an integrated cτωn−1
-valued ω-composition satellite of

formation Fi.

Denote M = CFω(
∨τ
ωn−1

(fi | i ∈ I)), and F =
∨τ
ωn

(Fi | i ∈ I). Let

hi be the minimal cτωn−1
-valued ω-composition satellite of formation Fi. Applying

Lemma 4.11, we see that h =
∨τ
ωn−1

(hi | i ∈ I) is the minimal cτωn−1
-valued

ω-composition satellite of formation F. Because hi ≤ fi for all i ∈ I , it holds

h ≤ f =
∨τ
ωn−1

(fi | i ∈ I). Hence, F ⊆M.
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Assume M 6⊆ F. Consider a group of minimal order in M\F, say G. Thus, G

is a monolithic group, and R = GF is the socle of this group. If ω ∩ π(Com(R)) =

∅, then Rω(G) = 1.

Thus, G ∼= G/1 = G/Rω(G) ∈ f(ω′) = (
∨τ
ωn−1

(fi | i ∈ I))(ω′) =

cτωn−1
form(

⋃
i∈I fi(ω

′)) = cτωn−1
form(

⋃
i∈I Fi). But Lemma 4.23 implies that

G ∈
⋃
i∈I

Fi ⊆ cτωn−1
form(

⋃
i∈I

Fi) = F,

i.e., we have a contradiction. So, ω ∩ π(Com(R)) 6= ∅.

Let R be a nonabelian group. Then π(Com(R)) = ∅. But ω ∩π(Com(R)) =

∅, and again we have a contradiction. Thus, R is a p-group, where prime p belongs

to ω ∩ π(Com(R)). Because G ∈ M = CFω(f), we have G/R ∈ M. Then by

induction because |G/R| < |G|, we see that G/R ∈ F = CFω(h). So,

(G/R)/Rω(G/R) = (G/R)/(Rω(G)/R) ∼= G/Rω(G) ∈ h(ω′),

(G/R)/Cq(G/R) = (G/R)/(Cq(G)/R) ∼= G/Cq(G) = h(q)

for any q ∈ ω ∩ π(Com(G/R)) \ {p}. However, G ∈M = CFω(f). Thus,

G/Cp(G) ∈ f(p) = cτωn−1
form(

⋃
i∈I

fi(p)).

Because Op(G/Cp(G)) = 1, then applying Lemmas 4.10 and 4.24, we obtain

G/Cp(G) ∈ cτωn−1
form(A/Op(A) | A ∈

⋃
i∈I

fi(p)) =

cτωn−1
form(

⋃
i∈I

(A/Op(A) | A ∈ fi(p))) =
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cτωn−1
form(

⋃
i∈I

cτωn−1
form(A/Op(A) | A ∈ fi(p))) = cτωn−1

form(
⋃
i∈I

hi(p)).

however, cτωn−1
form(

⋃
i∈I hi(p)) = (

∨τ
ωn−1

(hi | i ∈ I))(p) = h(p). So,

G/Rω(G) ∈ h(ω′) and G/Cr(G) ∈ h(r)

for any r ∈ ω ∩ π(Com(G)). Thus, G ∈ F, and we otbtain a contradiction. Finally,

F = M. The theorem is proved.

For the trivial subgroup functor, we obtain the following corollary.

Corollary 4.26. Let n > 0 and ω be nonempty set of primes. Then the lattice of all

n-multiply ω-composition formations is inductive.

Let ω = P, then we obtain the following result.

Corollary 4.27. Let n > 0. Then the lattice of all n-multiply composition formations

is inductive.

4.1.3 Inductance of the lattice cτ∞

We obtain the following lemma by direct calculation.

Lemma 4.28. Let fi be the minimal cτ∞-valued composition satellite of a formation

Fi, where i ∈ I . Then f =
∨τ
∞(fi | i ∈ I) is the minimal c∞-valued composition

satellite of formation F =
∨τ
∞(Fi | i ∈ I).

Theorem 4.29 (Theorem 1.1. [117]). The lattice of all τ -closed totally composition for-

mations cτ∞ is inductive.
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Proof. Let {Fi | i ∈ I} be a set of τ -closed totally composition formations, and

fi be an integrated cτ∞-valued composition satellite of Fi. Let F = CLF (f) =∨τ
∞(Fi | i ∈ I), and M = CLF (

∨τ
∞(fi | i ∈ I)). We shall show that F = M

proceeding by induction on i.

Step 1. Let i = 2, p ∈ P, and hj be the minimal cτ∞-valued composition

satellite of the formation Fj = CLF (fj), where j = 1, 2. Then by Corollary 4.17,

we have

hj(p) ⊆ fj(p) ⊆ Nphj(p) = Fj(p) ∈ cτ∞,

where Fj is the canonical cτ∞-valued composition satellite of the formation Fj . Let

F = CLF (F ), where F is the canonical cτ∞-valued composition satellite of the

formation F. Then by Lemma 4.19, we have

h(p) = cτ∞form ((F1 ∪ F2)(Cp)) = cτ∞form (F1(Cp) ∪ F2(Cp)) =

cτ∞form (h1(p) ∪ h2(p)) ⊆ f(p) ⊆

Npc
τ
∞form (h1(p) ∪ h2(p)) = Nph(p) = F (p).

Thus, we have h(p) ⊆ f(p) ⊆ F (p) for all p ∈ P; moreover, it holds h(0) ⊆

f(0) ⊆ F (0). Hence, h(a) ⊆ f(a) ⊆ F (a) for all a ∈ P∪{0} implies h ≤ f ≤ F .

Consequently, we have F1
∨τ
∞ F2 = CLF (f1

∨τ
∞ f2).

Step 2. Let i > 2, and the assertion is true for i = r− 1 by induction. Then

F1
∨τ
∞ ...

∨τ
∞ Fr−1 = CLF (f1

∨τ
∞ ...

∨τ
∞ fr−1).
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By Step 1, we have F = cτ∞form ((F1
∨τ
∞ ...

∨τ
∞ Fr−1)∪Fr) = CLF (f), and

f(a) = cτ∞form ((f1(a)
∨τ
∞ ...

∨τ
∞ fr−1(a)) ∪ fr(a)) = f1(a)

∨τ
∞ ...

∨τ
∞ fr(a) =

(f1
∨τ
∞ ...

∨τ
∞ fr)(a) for each a ∈ P∪ {0}. Therefore, f = f1

∨τ
∞ ...

∨τ
∞ fr. This

proves the theorem.

Each complete sublattice of the inductive lattice is an inductive lattice. Thus,

we obtain the following result.

Corollary 4.30. Let θ be a complete sublattice of the lattice cτ∞. Then θ is inductive.

If τ is trivial, we have the corollary.

Corollary 4.31. The lattice of all totally composition formations is inductive.

4.2 Algebraic lattices of formations

Skiba posed the following question:

Question 4.2 (Question 4.4.6 [107]). Let τ be a subgroup functor. Is it true that the

lattice of all τ -closed totally local formations algebraic?

In [87], it is given the solution of the mentioned problem. We known that the

following lattices of formations of �nite groups are alebraic:

• the lattice of all τ -closed n-multiply ω-composition formations [138];

• the lattice of all solvable totally local formations [136];
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• the lattice of all τ -closed totally ω-saturated formations [93];

• the lattice of all n-multiply σ-local formations [29];

• the lattice of all n-multiply L-composition formations [114].

Recently, the author [121] solved the following related problem:

Question 4.3 (Problem 1 [114]). Is the lattice of all totally composition formations of

finite groups algebraic?

The main goal of this section is to generalize this solution for τ -closed forma-

tions.

Lemma 4.32 (Lemma 7 [127]). Let F be a nonempty τ -closed formation of finite

groups. Then SπF is a τ -closed totally composition formation of finite groups, where

π(F) ⊆ π ⊆ P.

Lemma 4.33 (Lemma 8 [127]). Let F =
∨τ
∞(Fi | i ∈ I), Fi ∈ cτ∞ for any i ∈ I .

Suppose that A is a monolithic F-group with a nonabelian socle R. Then we have

A ∈
⋃
i∈I Fi.

Proof. Denote π = π(F). By Lemma 4.32 the following holds:

F ⊆M = Sπc
τ
0form(

⋃
i∈I

Fi).

So, we have A ∈ M. We note that A ∈ cτ0form(
⋃
i∈I Fi), because the socle R =

Soc(A) is nonabelian, and A belongs to
⋃
i∈I Fi by Lemma 4.23.
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Proposition 4.34 (Proposition 1 [127]). Let G be a finite group. Then one-generated

totally composition formation F = cτ∞formG is a compact element of the lattice cτ∞.

Proof. We shall proof the proposition using induction on |G|. Let A be a counter-

example of the minimal order, and let F = cτ∞formA ⊆M = cτ∞form(
⋃
i∈I Fi) =∨τ

∞(Fi | i ∈ I), where Fi ∈ cτ∞ for any i ∈ I . We shall show that the group A is

monolithic. Let us consider the cases below:

(i) Let M1 and M2 be two distinct minimal normal subgroups of the group

A. Assume �rst that Mj = cτ∞form(A/Mj) for j = 1, 2. So, |A/Mj | < |A|. Then,

using induction, we have Mj ⊆M. But then

M1 ⊆ cτ∞form(Fi1
⋃
. . .
⋃

Fit),M2 ⊆ cτ∞form(Fit+1

⋃
. . .
⋃

Fis)

for some i1, . . . , is. Consequently, F = M1
∨τ
∞M2 is a subformation of formation

cτ∞form(Fi1
⋃
. . .
⋃

Fit
⋃

Fit+1

⋃
. . .
⋃

Fis).

The contradiction obtained.

(ii) Assume that R = Soc(A). If R is nonabelian, then by Lemma 4.33 we

see that A ∈
⋃
i∈I Fi. So, A ∈M, and we obtain a contradiction again.

(iii) Let R be an abelian p-group for some prime p ∈ π(Com(A)). In this

case, we have A/Φ(A) ∈ formA. So, cτ∞form(A/Φ(A)) = cτ∞formA. But |A| >

|A/Φ(A)|; using induction, we see that R 6⊆ Φ(A).

Suppose B is a subgroup of A, such that R∩B = 1, and Op(B) = 1. Then,

A = Zp o B = [R]B, and applying Lemma 4.8 we obtain R = Cp(A) = Op(A).
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Let m, fi, and f be the minimal cτ∞-valued composition satellites of formations M,

F, and Fi, respectively.

Then Lemma 4.28 ensures that m =
∨τ
∞(fi | i ∈ I). So, applying the prop-

erties of regular wreath products, we see that B ∼= A/Op(A) = A/R = A/Cp(A)

is in m(p). Because of |B| < |A|, for some j1, j2, . . . , jk ∈ J ⊆ I , it follows that

B ∼= A/Cp(A) ∈ fj1(p)
∨τ
∞ . . .

∨τ
∞ fjk(p).

Now Lemma 4.28 ensures that m3 =
∨τ
∞(fj | j ∈ J) is the minimal cτ∞-

valued composition satellite of formation M3 =
∨τ
∞(Fj | j ∈ J). Therefore,

A/Op(A) ∼= B ∈ m3(p). Applying Lemma 4.9 we see that A belongs to formation

M3. So, F = cτ∞formA ⊆M3, and it is a contradiction.

Theorem 4.35 (Theorem [127]). The lattice cτ∞ of all τ -closed totally composition

formations of finite groups is algebraic.

Proof. Let F be a τ -closed totally composition formation of �nite groups. It is easy

to see that F = cτ∞form(
⋃
i∈I Fi) =

∨τ
∞(Fi | i ∈ I), where Fi = cτ∞formGi for

some group Gi (i ∈ I). We shall show that every one-generated formation of �nite

groups Fi is a compact element of the lattice of all τ -closed totally composition

formations of �nite groups. However, it immediately follows by Proposition 4.34.

For trivial subgroup functor τ we have

Corollary 4.36 ([121]). The lattice of all totally composition formations is algebraic.
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4.3 Separated lattices of formations

De�nition 4.37 ([107]). Fix a nonempty class Y of �nite groups. Let Θ be a lat-

tice of formations of �nite groups. Then Θ is called Y-separated if for any term

ξ(x1, . . . , xm) of signature {∩,
∨

Θ}, any formations of �nite groups F1, . . . ,Fm

of Θ, and any �nite group A ∈ Y ∩ ξ(F1, . . . ,Fm), there exist Y-groups A1 ∈

F1, . . . , Am ∈ Fm such that A ∈ ξ(ΘformA1, . . . ,ΘformAm).

Lemma 4.38 (Lemma 17 [137]). Let Θ be an Y-separated lattice of formations of

finite groups and let η be a sublattice of Θ such that η contains all one-generated

Θ-subformations of the form ΘformA, where A ∈ Y, of every formation of finite

groups F ∈ η. Let a law ξ1 = ξ2 of signature {∩,
∨

Θ} is true for all one-generated

Θ-formations belonging to η. Then the law ξ1 = ξ2 is true for all Θ-subformations

belonging to η.

Lemma 2.14 imply the following result.

Lemma 4.39. Let Ri be a τ -closed semiformation generated by some finite groups

G1 and G2. Then R1 ∪R2 is a τ -closed semiformation, and R1 = (B1, . . . , Bt),

R2 = (C1, . . . , Cs) for some finite groups B1, . . . , Bt ∈ qsτ (G1) and C1, . . . , Cs ∈

qsτ (G2).

Lemma 4.40 (Lemma 3.4. [129]). Let n be a nonnegative integer, and let F1 and

F2 be τ -closed n-multiply ω-composition formations of finite groups, and A be a finite
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group such that A ∈ cτωn
form (F1 ∪F2), Then there exist finite groups A1 ∈ F1 and

A2 ∈ F2 such that A ∈ (cτωn
formA1)

∨τ
ωn

(cτωn
formA2).

Proof. We shall use the induction on n. Let n = 0. We note that the formations

F1 and F2 are τ -closed. Then by Lemmas 2.16 and 2.15

A ∈ cτω0
form (F1 ∪ F2) = form (F1 ∪ F2) = qr0(F1 ∪ F2).

Consequently A ∼= H/N where H ∈ r0(F1 ∪F2). Using Lemma 15 in [137] we see

that A ∈ form (H/HF1)
∨

form (H/HF2) ⊆ F1
∨τ
ω0

F2.

Let n > 0, {p1, . . . , pt} = ω∩π(Com(A)) and A ∈ F1
∨τ
ωn

F2. Then by [128,

Lemma 8] and Lemma 4.11, A/Cpi(A) ∈ f1(pi)
∨τ
ωn−1

f2(pi) and A/Rω(A) ∈

f1(ω′)
∨τ
ωn−1

f2(ω′) where fj is the minimal cτωn−1
-valued ω-composition satellite

of Fj (j = 1, 2). By induction, we may �nd �nite groups

Ai1 ∈ f1(pi), Ai2 ∈ f2(pi), T1 ∈ f1(ω′), T2 ∈ f2(ω′)

such that A/Cpi(A) ∈ (cτωn−1
formAi1)

∨τ
ωn−1

(cτωn−1
formAi2) and A/Rω(A) ∈

(cτωn−1
formT1)

∨τ
ωn−1

(cτωn−1
formT2).

We claim that cτωn−1
form (Ai1 , Ai2) = (cτωn−1

formAi1)
∨τ
ωn−1

(cτωn−1
formAi2),

and cτωn−1
form (T1, T2) = (cτωn−1

formT1)
∨τ
ωn−1

(cτωn−1
formT2). Thus A/Cpi(A) ∈

cτωn−1
form (Ai1 , Ai2) and A/Rω(A) ∈ cτωn−1

form (T1, T2).

Let Rk be a τ -closed semiformation generated by the group Aik and Yk be a

τ -closed semiformation generated by the group Tk where k = 1, 2. By Lemma 4.39

the semiformations R1∪R2 and Y1∪Y2 are τ -closed, and R1 = (B1, . . . , Bt) and
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R2 = (C1, . . . , Cs) for some B1, . . . , Bt ∈ qsτ (Ai1) and C1, . . . , Cs ∈ qsτ (Ai2);

Y1 = (U1, . . . , Um) and Y2 = (V1, . . . , Vq) for some U1, . . . , Um ∈ qsτ (T1) and

V1, . . . , Vq ∈ qsτ (T2). Since Aik ∈ Rk (k = 1, 2), then cτωn−1
form (Ai1 , Ai2) ⊆

cτωn−1
form (R1 ∪R2).

We prove the inverse inclusion. Since sτ (Aik) ⊆ r0sτ (Aik) (k = 1, 2), then

by Lemma 2.15, Rk = qsτ (Aik) ⊆ qr0sτ (Aik) = τ form (Aik) where k = 1, 2.

Thus, we have the inclusion τ form (R1 ∪R2) ⊆ τ form (Ai1 , Ai2).

Hence cτωn−1
form (R1 ∪R2) ⊆ cτωn−1

form (Ai1 , Ai2). Thus,

cτωn−1
form (Ai1 , Ai2) = cτωn−1

form (R1 ∪R2).

Analogously cτωn−1
form (T1, T2) = cτωn−1

form (Y1 ∪Y2). Thus

A/Cpi(A) ∈ cτωn−1
form (Ai1 , Ai2) = cτωn−1

form (B1, . . . , Bt;C1, . . . , Cs),

A/Rω(A) ∈ cτωn−1
form (T1, T2) = cτωn−1

form (U1, . . . , Um;V1, . . . , Vq).

Since Opi(A/Cpi(A)) = 1 and Rω(A/Rω(A)) = 1, then by Lemma 4.24

A/Cpi(A) ∈ cτωn−1
form (G/Opi(G) | G ∈ R1 ∪R2) =

cτωn−1
form (B1/Opi(B1), . . . , Bt/Opi(Bt);C1/Opi(C1), . . . , Cs/Opi(Cs)),

A/Rω(A) ∈ cτωn−1
form (G/Rω(G) | G ∈ Y1 ∪Y2) =

cτωn−1
form (U1/Rω(U1), . . . , Um/Rω(Um);V1/Rω(V1), . . . , Vq/Rω(Vq)).

Thus we have the inclusions cτωn−1
form (B1, . . . , Bt;C1, . . . , Cs) ⊆

cτωn−1
form (B1/Opi(B1), . . . , Bt/Opi(Bt);C1/Opi(C1), . . . , Cs/Opi(Cs)),
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cτωn−1
form (U1, . . . , Um;V1, . . . , Vq) ⊆

cτωn−1
form (U1/Rω(U1), . . . , Um/Rω(Um);V1/Rω(V1), . . . , Vq/Rω(Vq)).

On the other hand, since R1 ∪R2 and Y1 ∪Y2 are semiformations, then for

any �nite group G it holds:

if G ∈ R1 ∪R2, then G/Opi(G) ∈ R1 ∪R2;

if G ∈ Y1 ∪Y2, then G/Rω(G) ∈ Y1 ∪Y2.

Consequently

cτωn−1
form (B1/Opi(B1), . . . , Bt/Opi(Bt);C1/Opi(C1), . . . , Cs/Opi(Cs)) =

cτωn−1
form (G/Opi(G) | G ∈ R1 ∪R2) ⊆

cτωn−1
form (R1 ∪R2) = cτωn−1

form (B1, . . . , Bt;C1, . . . , Cs),

cτωn−1
form (U1/Rω(U1), . . . , Um/Rω(Um);V1/Rω(V1), . . . , Vq/Rω(Vq)) =

cτωn−1
form (G/Rω(G) | G ∈ Y1 ∪Y2) ⊆

cτωn−1
form (Y1 ∪Y2) = cτωn−1

form (U1, . . . , Um;V1, . . . , Vq).

Thus

A/Cpi(A) ∈ cτωn−1
form (B1, . . . , Bt;C1, . . . , Cs) =

cτωn−1
form (B1/Opi(B1), . . . , Bt/Opi(Bt);C1/Opi(C1), . . . , Cs/Opi(Cs)),

A/Rω(A) ∈ cτωn−1
form (U1, . . . , Um;V1, . . . , Vq) =

cτωn−1
form (U1/Rω(U1), . . . , Um/Rω(Um);V1/Rω(V1), . . . , Vq/Rω(Vq)).
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Hence we may suppose that Opi(Bk) = 1 = Opi(Cl) and Rω(Ux) = 1 = Rω(Vz)

for all k = 1, . . . , t and l = 1, . . . , s; x = 1, . . . ,m and z = 1, . . . , w.

Let Di1 = B1× . . .×Bt and Di2 = C1× . . .×Cs; U = U1× . . .×Um and

V = V1 × . . .× Vq. Then Opi(Di1) = 1 = Opi(Di2) and Rω(U) = 1 = Rω(V ).

It is clear that Di1 ∈ d0R1 ⊆ d0(cτωn−1
formAi1). Since d0 6 r0 (see II,

p. 267 in [37]), then Di1 ∈ r0(cτωn−1
formAi1) = cτωn−1

formAi1 . Analogously

Di2 ∈ cτωn−1
formAi2 . Consequently cτωn−1

form (Di1 , Di2) ⊆ cτωn−1
form (Ai1 , Ai2).

Since Bk 6 Di1 for all k = 1, . . . , t, then R1 ⊆ cτωn−1
form (Di1 , Di2). Analogously

R2 ⊆ cτωn−1
form (Di1 , Di2). Consequently R1∪R2 ⊆ cτωn−1

form (Di1 , Di2). Thus

A/Cpi(A) ∈ cτωn−1
form (R1 ∪R2) ⊆ cτωn−1

form (Ai1 , Ai2).

Let Zpi be a group of order pi, Wi1 = Zpi oDi1 and Wi2 = Zpi oDi2 . We

show that Wi1 ∈ F1. Let B = Z\pi be the base group of the wreath product Wi1 .

Applying the properties of wreath product, we see

Wi1/Opi(Wi1) = Wi1/B = (Zpi oDi1)/B ∼= Di1 .

Since Ai1 ∈ f1(pi) and qsτ (Ai1) = (B1, . . . , Bt) where B1, . . . , Bt ∈ qsτ (Ai1),

then qsτ (Ai1) ⊆ qsτ (f1(pi)) = f1(pi) and B1, . . . , Bt ∈ f1(pi). Consequently

Di1 = B1 × . . .×Bt ∈ d0f1(pi) = f1(pi).

Since f1 is the minimal cτωn−1
-valued ω-composition satellite of F1, then Di1 ∈

f1(pi)∩F1. Thus Wi1/Opi(Wi1) ∼= Di1 ∈ f1(pi)∩F1 for all pi ∈ ω∩π(Com(A)).

By Lemma 4 in [114] Wi1 ∈ F1. Analogously Wi2 ∈ F2. Since T1 ∈ f1(ω′) and f1
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is an integrated ω-composition satellite of F1, then T1 ∈ F1. Hence Ux ∈ F1 for

all x = 1, . . . ,m. Analogously Vz ∈ F2 for all z = 1, . . . , q.

Let A1 = W11×W21× . . .×Wt1×U and A2 = W12×W22× . . .×Wt2×V.

Then A1 ∈ F1 and A2 ∈ F2. Using Lemma 15 in [137], we see that A ∈ F =

(cτωn
formA1)

∨τ
ωn

(cτωn
formA2). The proof completed.

Theorem 4.41 (Theorem 3.2. [129]). Let n be a nonnegative integer. Then the lattice

of all τ -closed n-multiply ω-composition formations of finite groups is G-separated.

Proof. Let ξ(x1, . . . , xm) be a term of signature {∩,
∨τ
ωn
}, F1, . . . ,Fm be τ -closed

n-multiply ω-composition formations and A ∈ ξ(F1, . . . ,Fm). We proceed by in-

duction on the number r of occurences of the symbols in {∩,
∨τ
ωn
} into the term

ξ. We shall show that there exist groups Ai ∈ Fi (i = 1, . . . ,m) such that A ∈

ξ(cτωn
formA1, . . . , c

τ
ωn

formAm). Let r = 0. It is clear that A ∈ cτωn
formA.

We shall establish the assertion for r = 1. There are only two cases: either

A ∈ F1∩F2 or A ∈ F1
∨τ
ω0

F2 = cτω0
form (F1∪F2) = τ form (F1∪F2). In the �rst

case we have A ∈ τ formA∩ τ formA. In the second case by Lemma 4.40 there are

�nite groups Ai ∈ Fi (i = 1, 2) such that A ∈ (cτω0
formA1)

∨τ
ω0

(cτω0
formA2) =

(τ formA1)
∨τ
ω0

(τ formA2). The assertion of the theorem for r = 1 is true.

Let a term ξ have r > 1 occurences of the symbols in {∩,
∨τ
ωn
}. We sup-

pose proving by induction that the theorem holds for term with less number of

occurences. Let ξ be of the form ξ1(xi1 , . . . , xia)4ξ2(xj1 , . . . , xjb) where 4 ∈

{∩,
∨τ
ωn
} and {xi1 , . . . , xia} ∪ {xj1 , . . . , xjb} = {x1, . . . , xm}. By H1 we denote
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the formation ξ1(Fi1 , . . . ,Fia), and by H2 the formation ξ2(Fj1 , . . . ,Fjb). There

exist groups A1 ∈ H1, A2 ∈ H2 such that A ∈ cτωn
formA14cτωn

formA2. On

the other hand, by induction, there exist groups B1, . . ., Ba; C1, . . . , Cb such that

Bk ∈ Fik , Ck ∈ Fjk ,

A1 ∈ ξ1(cτωn
formB1, . . . , c

τ
ωn

formBa),

A2 ∈ ξ2(cτωn
formC1, . . . , c

τ
ωn

formCb).

Suppose that xi1 , . . . , xit are not contained in ξ2, but xit+1 , . . . , xia are con-

tained in ξ2. Let Dik = Bk if k < t + 1, Dik = Bk × Cq where q satis�es

xik = xjq for all k > t + 1. Let Djk = Ck if xjk 6∈ {xit+1 , . . . , xia}. We

denote by Rp the formation cτωn
formDip and by Yc we denote the formation

cτωn
formDjc , p = 1, . . . , a; c = 1, . . . , b. It follows that A1 ∈ ξ1(R1, . . . ,Ra),

A2 ∈ ξ2(Y1, . . . ,Yb). There exist the formations H1, . . . ,Hm such that A ∈

ξ1(Hi1 , . . . ,Hia)4ξ2(Hj1 , . . . ,Hjb) = ξ(H1, . . . ,Hm) where Hi = cτωn
formKi,

Ki ∈ Fi. Thus the lattice cτωn
is G-separated. The theorem is proved.

Corollary 4.42. Let n be a nonnegative integer. Then the lattice of all n-multiply

L-composition formations of finite groups is G-separated.

Corollary 4.43 (Proposition [137]). Let n be a nonnegative integer. Then the lattice

of all n-multiply ω-composition formations of finite groups is G-separated.
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4.4 Laws of the lattices of partially composition

formations

In [114], Skiba and Shemetkov proposed the question on the laws of the lattices

of multiply L-composition formations. We study in this section the following more

general question:

Question 4.4. Let m and n be nonnegative integers. Does it true that for any sugroup

functor τ and any nonempty set of primes ω the lattices cτωm
and cτωn

have the same

system of laws?

We shall solve the mentioned problem for an in�nite set of primes ω. An

important step towards this task is the theorem on the G-separability of the lattice

of all τ -closed n-multiply ω-composition formations of �nite groups established in

the previous section; see Theorem 4.41.

For every term ξ of signature {∩,
∨τ
ωn
} we write ξ to denote the term of

signature {∩,
∨τ
ωn−1
} obtained from ξ by replacing of every symbol

∨τ
ωn

by the

symbol
∨τ
ωn−1

.

Lemma 4.44 (Lemma 16 [137]). Let ξ(xi1 , . . . , xim) be a term of signature {∩,
∨τ
ωn
}

and let fi be an inner cτωn−1
-valued ω-composition satellite of a formation Fi where

i = 1, . . . ,m and n > 1. Then ξ(F1, . . . ,Fm) = CFω(ξ(f1, . . . , fm)).

The following result is a special case of Theorem 6.5.
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Theorem 4.45 (Theorem 3.1. [129]). Let n be a positive integer. Then every law of the

lattice of all τ -closed formations cτ0 is fulfilled in the lattice of all τ -closed n-multiply

ω-composition formations cτωn
.

Corollary 4.46 (Corollary 2.5 [138]). The lattice of all τ -closed n-multiply ω-composition

formations of finite groups cτωn
is modular, but not distributive for any nonnegative

integer n.

Proof. We apply Theorem 4.45 and proceed as in the proof of Corollary 3.14.

Theorem 4.47 (Theorem 3.3. [129]). Let n be a positive integer. If ω is an infinite

set, then the law system of the lattice of all τ -closed formations of finite groups cτ0

coinsides with the law system of the lattice of all τ -closed n-multiply ω-composition

formations of finite groups cτωn
.

Proof. Fix a law

ξ1(xi1 , . . . , xia) = ξ2(xj1 , . . . , xjb) (4.1)

of signature {∩,
∨τ
ωn
}. Let

ξ1(xi1 , . . . , xia) = ξ2(xj1 , . . . , xjb) (4.2)

be the same law of signature {∩,
∨τ
ωn−1
}.

Assume that law (4.1) is true in the lattice cτωn
. We shall show that law (4.2) is

true in the lattice cτωn−1
. By Lemma 4.38 and Theorem 4.41, it su�ces to prove that
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if Fi1 , . . . ,Fia ; Fj1 , . . . ,Fjb are arbitrary one-generated τ -closed (n−1)-multiply ω-

composition formations, then ξ1(Fi1 , . . . ,Fia) = ξ2(Fj1 , . . . ,Fjb). Let

Fi1 = cτωn−1
form Ai1 , . . . ,Fia = cτωn−1

form Aia ,

Fj1 = cτωn−1
form Aj1 , . . . ,Fjb = cτωn−1

form Ajb .

We choose prime p ∈ ω such that p /∈ π(Ai1 , . . . , Aia ;Aj1 , . . . , Ajb).

Let Bi1 = Zp o Ai1 , . . . , Bia = Zp o Aia ; Bj1 = Zp o Aj1 , . . . , Bjb = Zp o Ajb

where Zp is a group of order p. Since formations Mi1 = cτωn
form Bi1 , . . . ,Mia =

cτωn
form Bia ; Mj1 = cτωn

form Bj1 , . . . ,Mjb = cτωn
form Bjb belong to the lat-

tice cτωn
, then F = H where F = ξ1(Mi1 , . . . ,Mia) and H = ξ2(Mj1 , . . . ,Mjb).

Let fic be the minimal cτωn−1
-valued ω-composition satellite of Mic (where c =

1, . . . , a); fjd be the minimal cτωn−1
-valued ω-composition satellite of Mjd (where

d = 1, . . . , b). By Lemma 6.4,

ξ1(Mi1 , . . . ,Mia) = CFω(ξ1(fi1 , . . . , fia));

ξ2(Mj1 , . . . ,Mjb) = CFω(ξ2(fj1 , . . . , fjb)).

Let f and h be the minimal cτωn−1
-valued ω-composition satellites of F and

H, respectively. Then by Lemmas 4.10 and 4.11,

f(p) = ξ1(fi1 , . . . , fia)(p) = ξ1(fi1(p), . . . , fia(p)),

h(p) = ξ2(fj1 , . . . , fjb)(p) = ξ2(fj1(p), . . . , fjb(p)).
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Hence ξ1(fi1(p), . . . , fia(p)) = ξ2(fj1(p), . . . , fjb(p)). Since Op(Aic) = 1,

then by Lemma 4.10 fic(p) = Fic where c = 1, . . . , a. Analogously fjd(p) = Fjd

where d = 1, . . . , b. It follows that ξ1(Fi1 , . . . ,Fia) = ξ2(Fj1 , . . . ,Fjb), i.e., the

law (4.2) is true in the lattice cτωn−1
. Thus every law of the lattice cτωn

is true in

the lattice of all τ -closed formations cτ0 . Applying Theorem 4.45, we complete the

proof.

Corollary 4.48. Let ω be an infinite set. Let m and n be nonnegative integers. Then

the law systems of lattices cτωm
and cτωn

coincide.

Proof. Assume that a law is true in the lattice cτωn
. Applying Theorem 4.47, we see

that the law is true in cτ0 . Thus, using Theorem 4.45, we conclude that the law is

true in cτωm
.

Remark 4.49. Let m and n be nonnegative integers. We note that Vedernikov [103]

showed that the law system of the lattice of all m-multiply canonical formations

coinsides with the law system of the lattice of the lattice of all n-multiply canonical

formations.

4.5 Comments & further research

Let us take attention to some open questions related to lattices of composition for-

mations. Note that some of them are analogues of the corresponding problems in

[107, 113, 114, 101, 100].
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Question 4.5. Does it true that for all nonnegative integers n, the lattice of all n-

multiply composition formations and the lattice of all τ -closed n-multiply composition

formations have the same system of laws?

Question 4.6. Does it true that the lattices c∞ and cτ∞ have the same system of

laws?

Theorem 4.45 gives a motivation to the following two questions.

Question 4.7. Does it true that every law of the lattice of all τ -closed formations cτ0

is fulfilled in the lattice of all τ -closed totally ω-composition formations cτω∞?

Question 4.8. Let m and n be nonnegative integers with m > n. Does it true that

the lattice of all τ -closed m-multiply ω-composition formations is not a sublattice of

the lattice of all τ -closed n-multiply ω-composition formations?

Note that the answer to an analogue of the question above is positive for the

lattices of all τ -closed multiply ω-saturated formations (see [101]). However in [115] it

was shown that the lattice of all saturated formations is a complete sublattice of the

lattice of all composition formations. Safonov proved that the lattice of all τ -closed

totally saturated formations is a complete sublattice of the lattice of totally saturated

formations (see [92]).

In [136] it was established that the lattice of all soluble totally saturated for-

mations is algebraic and distributive. Independently Rei�erscheid solved the prob-

lem of distributivity of the lattice of all soluble totally saturated formations (see



4.5. COMMENTS & FURTHER RESEARCH 92

[82]). Safonov proved that the lattice of all τ -closed totally saturated formations is

G-separated [90], algebraic [87] and modular [84, 85] (moreover this lattice is dis-

tributive [86]). However the following questions are still open now.

Question 4.9. Is it true that the lattice of all τ -closed totally ω-composition formations

is G-separated?

Question 4.10. Is it true that the lattice of all τ -closed totally ω-composition forma-

tions is distributive (or modular at least)?

Conclusion

New series of inductive, separated, algebraic and modular lattices of multiply com-

position formations are described. Laws of lattices of functor-closed multiply ω-

composition formations of �nite groups are studied. The contributions have been

published in the papers [117, 121, 127, 128, 129].



Chapter 5

Lattices ofX-Local Formations of

Finite Groups

By an inclusion ⊆, the set of all X-local formations of �nite groups forms a complete

lattice. Let X′ 6= ∅. Then we write f(X′) to denote the common value of f at the

X′-groups. In the present chapter, the notation F = LFX(f) always means that f

is an X-local satellite of the formation of �nnite groups F.

5.1 Algebraic lattices of X-local formations

Theorem 5.1 (Theorem [123]). The lattice of all X-local formations is algebraic.

Lemma 5.2 (Lemma 4.11 [9], Remark 3.1.7 [12]). Let f and fi be X-local satellites

for all i ∈ I . Then

⋂
i∈I LFX(fi) = LFX(g), where g(x) = ∩i∈Ifi(x) for all

93
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x ∈ (charX) ∪ X′.

We write formXY to denote the intersection of all X-local formations of �nite

groups containing a set of �nite groups Y. When Y = {G}, we have a one-generated

X-local formation: formXG. Following [12], we write K(G) to denote the class all

of simple groups isomorphic to composition factors of a group G; and by eX it is

denoted the class of all �nite groups G such that K(G) ⊆ X. Let Y be a class of

�nite groups. Then we put:

1. Y(p) = form(G/Gcp | G ∈ Y and Zp ∈ K(G)) if p ∈ π(X);

2. Y(X′) = form(G/GeX | G ∈ Y and G 6= GeX) if S ∈ X 6= ∅.

Remark 5.3 (p. 128 [12]). By Lemma 5.2 every X-local formation F possesses the

unique X-local satellite f , called minimal X-local satellite of formation F, such that

f ≤ f for every X-formation satellite f with F = LFX(f).

Lemma 5.4 (Lemma 4.14 [9], Theorem 3.1.11 [12]). Let Y be a class of finite groups.

Then we have F = formX(Y) = LFX(f), where

f(p) = Y(p), if p ∈ π(X); and

f(X′) = Y(X′), if X′ 6= ∅.

De�nition 5.5 ([12]). Let F be an X-local formation of �nite groups with an X-local

satellite f . Then f is said to be integrated if f(x) ⊆ F for any x ∈ π(X)∪X′, and

full if Npf(p) = f(p) for any p ∈ π(X).
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Lemma 5.6 (Lemma 2.2 [9]). Let X be a nonempty class of simple groups. If a for-

mation F has an X-local satellite, then it has an integrated X-local satellite.

For a nonempty class of simple groups L, we write EcL to denote the class of

�nite groups whose chief eL-factors are central. Note that the class EcL is a Fitting

formation. Let G be a �nite group. By GcL is denoted theEcL-radical of G, and

the symbol GcL denotes the EcL-radical of G. Let L = (Zp). In this case we have

EcL = Ecp, GcL = Gcp = Cp(G); see p. 371 in [37] for more details.

Let F be an X-local formation of �nite groups. The following lemma describes

a particular full and integrated X-local satellite of F. It is called canonical X-local

satellite of formation F.

Lemma 5.7 (Lemmas 4.7, 4.10 and 4.13 [9]). Let X 6= ∅ be class of simple groups. Let

F be a formation with an X-local satellite. Then F also possesses the unique integrated

X-local satellite F such that F (X′) = F if X′ 6= ∅ and F (p) = NpF (p) for any

p ∈ π(X). In addition, for each integrated X-local satellite f of F we have f ≤ F ,

and

Npf(p) = F (p) = Npform(G/Cp(G) | G ∈ F, Zp ∈ K(G))

for any p ∈ π(X).

Let f1 and f2 be some X-local satellites. We write f1 ≤ f2 if f1(x) ⊆ f2(x)

for all x ∈ (charX) ∪ X′. In this case, we have LFX(f1) ⊆ LFX(f2).
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Lemma 5.8 (Corollary 3.1.20 [12]). Let F = LFX(f) = LFX(F ) and H = LFX(h) =

LFX(H) be X-local formations of finite groups. Then every two of the following state-

ments are equivalent:

1. F ⊆ H;

2. F ≤ H;

3. f ≤ h.

Lemma 5.9 (Lemma 2.1 [123]). Let Fj = LFX(fj), where fj is an integrated X-local

satellite of formation Fj , such that fj(X
′) = Fj if X′ 6= ∅; j = 1, 2. If

F = formX(F1 ∪ F2),

then F = LFX(g), where g(p) = form(f1(p) ∪ f2(p)) for each p ∈ π(X), and

g(X′) = form(f1(X′) ∪ f2(X′)) if X′ 6= ∅.

Proof. Let M = LFX(g) and F = LFX(f ). We shall show that the following equal-

ity holds: F = M.

Let f j be the minimal X-local satellite of the formation Fj for j = 1, 2. Ap-

plying Lemmas 5.8 and 5.7 for every p ∈ π(X), we obtain

f j(p) ⊆ fj(p) ⊆ Npf j(p) = Fj(p),

f j(X
′) ⊆ fj(X′) ⊆ Fj(X′) = Fj ,

where Fj is the canonical X-local satellite of Fj .
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Let F = LFX(F ), where F is the canonical X-local satellite of the formation

F. Applying Lemma 5.4, we have for p ∈ π(X) the following inclusion:

f (p) = form((F1 ∪ F2)(p)) =

form(F1(p) ∪ F2(p)) = form(f 1(p) ∪ f 2(p)) ⊆

g(p) ⊆ Npform(f 1(p) ∪ f 2(p)) = Npf (p) = F (p).

Consequently, f (p) ⊆ g(p) ⊆ F (p) if p ∈ π(X), and fj(X
′) = Fj if X′ 6= ∅, j =

1, 2, implies the following inclusion: f (X′) ⊆ g(X′) ⊆ F (X′). Thus, f ≤ g ≤ F .

Finally, F = M.

Lemma 5.10 (Lemma 2.2 [123]). Let {Fi = LFX(fi) | i ∈ I} be a set of X-local

formations of finite groups, where fi is an integrated X-local satellite of Fi. Let F =∨
X(Fi | i ∈ I). Then F = LFX(g), where g(x) = ∨(fi(x) | i ∈ I) for all

x ∈ (charX) ∪ X′.

Proof. Let M = LFX(∨(fi | i ∈ I)) and F = LFX(f). We shall proceed by

induction on i to show that the following equality holds: F = M

Step 1. Let i = 2. Then applying Lemma 5.9, we immediately obtain the

required equality: F1
∨

X F2 = LFX(f1 ∨ f2).

Step 2. Let i > 2, and the assertion is true for i = r − 1 by induction,

i.e., it holds F1
∨

X ...
∨

X Fr−1 = LFX(f1 ∨ ... ∨ fr−1). Using Step 1, we see that
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F = formX((F1
∨

X ...
∨

X Fr−1) ∪ Fr) = LFX(g), where

g(x) = form((f1(x) ∨ ... ∨ fr−1(x)) ∪ fr(x)) =

f1(x) ∨ ... ∨ fr(x) = (f1 ∨ ... ∨ fr)(x)

for all x ∈ (charX) ∪ X′. Thus, g = f1 ∨ ... ∨ fr. This proves the lemma.

Lemma 5.11 (Lemma 3.1 [123]). Each one-generated formation F = formG is a com-

pact element in the lattice of all formations of finite groups.

Proof of Theorem 5.1. Step 1. It will be shown �rst that in the lattice of all X-

local formations of �nite groups any nonempty X-local formation F is the join of

its one-generated X-local subformations Fi = formXGi, where i ∈ I . Let Y =

formX(∪i∈IFi). Let us show that the following equality holds: F = Y. Assume

G ∈ F. Then we see that

G ∈ formXG ⊆
⋃
i∈I

Fi ⊆ formX(
⋃
i∈I

Fi) = Y.

So, F ⊆ Y. It is easy to see that the inverse inclusion is trivial: Fi ⊆ F implies

∪i∈IFi ⊆ F,. Thus, Y ⊆ F, and we obtain the required equality F = Y.

Step 2. We are showing now that every one-generated X-local formation H is

a compact element in the lattice of all X-local formations of �nite groups.

Let

H = formXG ⊆M = formX(
⋃
i∈I

Hi),
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where Hi is an X-local formation, i ∈ I . Let hi be the minimal X-local satellite

of Hi, h be the minimal X-local satellite of H and let m be the minimal X-local

satellite of formation M. Applying Lemma 5.4, we see that

h(p) = form(G/Cp(G) | Zp ∈ K(G)), if p ∈ π(X);

h(X′) = form(G/GeX | G 6= GeX), if X′ 6= ∅.

Lemmas 5.8 and 5.10 imply h ≤ m ≤ ∨(hi | i ∈ I).

By Remark 4.4.4 in [107] the lattice of all formations of �nite groups is alge-

braic. Then using Lemma 5.11 we have i1, . . . , ik, j1, . . . , jl ∈ I such that

G/Cp(G) ∈ form(hi1(p) ∪ · · · ∪ hik
(p)), if p ∈ π(X);

G/GeX ∈ form(hj1(X′) ∪ · · · ∪ hjl
(X′)), if X′ 6= ∅.

Put {r1, . . . , rt} = {i1, . . . , ik} ∪ {j1, . . . , jl}.

Thus, Hr1
∨

X · · ·
∨

XHrt = LFX(hr1 ∨ · · · ∨ hrt). So, we obtain

G/Cp(G) ∈ h(p) ⊆ form(hr1(p) ∪ · · · ∪ hrt(p)),

G/GeX ∈ h(S) ⊆ form(hr1(X′) ∪ · · · ∪ hrt(X
′)).

Consequently, G ∈ formX(Hr1∪· · ·∪Hrt). Thus, H = formXG ⊆ Hr1
∨

X · · ·
∨

XHrt .

Corollary 5.12 (Theorem 4 [114]). The lattice of all composition formations of finite

groups is algebraic.
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5.2 Modular lattices of X-local formations

Lemma 5.13 ([107]). The lattice of all formations of finite groups is modular but not

distributive.

Theorem 5.14 (Theorem 3.1. [126]). The lattice of all X-local formations of finite

groups is modular.

Proof. Let Fi = LFX(fi), where i = 1, 2, 3 and F2 ⊆ F1. We shall show that

F = F1 ∩ (F2
∨

X F3) = F2
∨

X(F1 ∩ F3) = M.

Lemmas 5.6 and 5.7 imply Fi = LFX(Fi) for i = 1, 2, 3, where Fi(X′) = Fi

and

Fi(p) = form(G/Gcp | G ∈ Fi, Zp ∈ K(G))

for all p ∈ π(X).

Denote g = F2 ∨ F3. Then by Lemma 5.10 we have F2
∨

X F3 = LFX(g).

Denote h = F1 ∩ g. Applying Lemma 5.2 we obtain F = LFX(h).

Note that F2 ≤ F1 by Lemma 5.8. Then Lemma 5.13 implies for all p ∈ π(X)

F2(p) ∨ (F1(p) ∩ F3(p)) = F1(p) ∩ (F2(p) ∨ F3(p)),

F2(X′) ∨ (F1(X′) ∩ F3(X′)) = F1(X′) ∩ (F2(X′) ∨ F3(X′)).

Consequently for all x ∈ π(X) ∪ X′ we have the equality

h(x) = F2(x) ∨ (F1(x) ∩ F3(x)).

Note that F1 ∩F3 is integrated. Thus Lemma 5.10 implies M = LFX(h).
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Let F and H be X-local formations of �nite groups such that the inclusion

H ⊆ F holds. We write F/XH to denote the lattice of all X-local formations of

�nite groups M such that H ⊆M ⊆ F.

Corollary 5.15. For any X-local formations M and F of finite groups, the following

lattice isomorphism holds: (M
∨

X F)/XM ' F/X(F ∩M).

Corollary 5.16 (Corollary 4.2.8 [107]). The lattice of all local formations of finite

groups is modular.

Corollary 5.17 (Theorem 4 [114]). The lattice of all composition formations of finite

groups is modular.

Lemma 5.18 (Proposition 3.1.39 [12]). Let F = LFX(f) be an X-local formation

and let c be one of the closure operations sn or n0. If f(x) =cf(x) for all x ∈

(charX) ∪ X′, then F =cF.

Lemma 5.18 immediately implies the following corollary.

Corollary 5.19. Let c be one of the closure operations sn or n0. Then the lattice of

all c-closed X-local formations of finite groups is modular.

Corollary 5.20. The lattice of all X-local Fitting formations of finite groups is mod-

ular.

Lemma 5.21 (Corollary 5 [137]). The lattice of all ω-composition formations of finite

groups is not distributive.
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Lemma 5.22 ([97]). Let X 6= ∅ be a class of simple groups such that ω = π(X) =

charX. Then any X-local formation of finite groups is an ω-composition formation

of finite groups.

Applying Lemmas 5.21 and 5.22 we obtain the following theorem.

Theorem 5.23 (Theorem 4.1. [126]). The lattice of all X-local formations of finite

groups is not distributive.

Conclusion

Let X be a class of simple groups with a completeness property π(X) = charX.

Förster introduced the concept of X-local formation in order to obtain a common

extension of well-known theorems of Baer and Gaschütz–Lubeseder–Schmid. In the

present chapter, it is proved that the lattice of all X-local formations of �nite groups

is algebraic and modular. The results have been published in the papers [123, 126].



Chapter 6

Lattices of Formations of

Multioperator T -groups

6.1 Laws of the lattices of foliated formations of T -groups

De�nition 6.1 ([34]). Any τ -closed M-formation is 0-multiply τΩ1-foliated with an

arbitrary direction ϕ, by de�nition. Let τΩ1F
ϕ
0 be the lattice of all τΩ1-formations.

Given a sequence of the lattices of τ -closed Ω1-foliated M-formations

τΩ1F
ϕ
1 , . . . , τΩ1F

ϕ
n , . . . ,

where τΩ1F
ϕ
1 is the set of all τ -closed Ω1-foliated M-formations possessing a di-

rection ϕ and a τΩ1-satellite. Let n > 0. Then τΩ1F
ϕ
n is the set of all τ -closed n-

multiply Ω1-foliated M-formations, i.e., for each F in τΩ1F
ϕ
n there exists a τΩ1F

ϕ
n−1-

satellite of F.
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Remark 6.2 (Theorem 1 [34]). The set τΩ1F
ϕ
n is a complete lattice in M for any

nonnegative integer n and any direction ϕ.

Let Y 6= ∅ be a set of M-groups. We write τ formY to denote the intersection

of all τ -closed M-formations containing Y. The notion τΩ1Fn(Y, ϕ) means the

intersection of all τΩ1F
ϕ
n -formations containing Y. If Y = {G}, then we write

τΩ1Fn(G,ϕ) to denote a one-generated τΩ1Fn(Y, ϕ)-formation.

Remark 6.3 ([34]). Let L,H ∈ τΩ1F
ϕ
n . Then L

∨τ
Ω1F

ϕ
n
H = τΩ1F

ϕ
n (L ∪ H) is the

least upper bound for {L,H} in τΩ1F
ϕ
n , and L ∩ H is the greatest lower bound

for {L,H} in τΩ1F
ϕ
n .

For every term ξ of the signature {∩,∨τ
Ω1F

ϕ
n
} we write ξ to denote the term

of signature {∩,∨τ
Ω1F

ϕ
n−1
} obtained from ξ by replacing of each symbol ∨τ

Ω1F
ϕ
n

by

the symbol ∨τ
Ω1F

ϕ
n−1

.

Lemma 6.4 (Lemma 3.1 [120]). Let ξ(x1, . . . , xm) be a term of signature {∩,∨τ
Ω1F

ϕ
n
}

and let fi be the minimal τΩ1F
ϕ
n−1-satellite of a M-formation Fi (i = 1, . . . ,m).

Then for any positive integer n it holds

ξ(F1, . . . ,Fm) = Ω1F (ξ(f1, . . . , fm), ϕ).

Proof. Let r be a number of occurrences of the symbols of {∩,∨τ
Ω1F

ϕ
n
} in ξ. We

proceed the proof by induction on r.

If r = 1, then the assertion follows by Lemma 5 in [34], and Lemma 8 in
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[131]. Let ξ has r > 1 occurrences of the symbols {∩,∨τ
Ω1F

ϕ
n
}. We put

ξ(x1, . . . , xm) = ξ1(xi1 , . . . , xia)4ξ2(xj1 , . . . , xjb),

where 4 ∈ {∩,∨τ
Ω1F

ϕ
n
} and {xi1 , . . . , xia}∪{xj1 , . . . , xjb} = {x1, . . . , xm}. Sup-

pose that the assertion holds for ξ1 and ξ2. Thus,

ξ1(Fi1 , . . . ,Fia) = Ω1F (ξ(fi1 , . . . , fia), ϕ)

and

ξ1(Fj1 , . . . ,Fjb) = Ω1F (ξ(fj1 , . . . , fjb), ϕ).

For every A ∈ Ω1 ∪ {Ω′1}, we have

ξ(fi1 , . . . , fia)(A) ⊆ ξ1(Fi1 , . . . ,Fia)

and

ξ(fj1 , . . . , fjb)(A) ⊆ ξ1(Fj1 , . . . ,Fjb).

Hence,

ξ(F1, . . . ,Fm) = ξ1(Fi1 , . . . ,Fia)4ξ1(Fj1 , . . . ,Fjb) =

Ω1F (ξ(fi1 , . . . , fia)4̄ξ(fj1 , . . . , fjb), ϕ) = Ω1F (ξ(f1, . . . , fm), ϕ),

where 4̄ = ∩ if 4 = ∩, and 4̄ = ∨τ
Ω1F

ϕ
n−1

if 4 = ∨τ
Ω1F

ϕ
n

.

Theorem 6.5 (Theorem 1.1 [120]). Let M be the class of all T -groups satisfying the

minimality and maximality conditions for multioperator T -subgroups, and let n > 0.

Then every law of the lattice of all τ -closed M-formations (denoted by τΩ1F
ϕ
0 ) is
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fulfilled in the lattice τΩ1F
ϕ
n (of all τ -closed n-multiply Ω1-foliated M-formations

with direction ϕ, such that ϕ0 6 ϕ).

Proof. We �x a law

ξ1(xi1 , . . . , xia) = ξ2(xj1 , . . . , xjb) (6.1)

of signature {∩,∨τ
Ω1F

ϕ
n
}. Let

ξ1(xi1 , . . . , xia) = ξ2(xj1 , . . . , xjb) (6.2)

be the same law of signature {∩,∨τ
Ω1F

ϕ
n−1
}. Suppose that law (6.2) is true in the

lattice τΩ1F
ϕ
n−1. Let Fi1 , . . . ,Fia and Fj1 , . . . ,Fjb be arbitrary n-multiply τΩ1-

foliated M-formations with direction ϕ, such that ϕ0 6 ϕ. We shall show that

ξ1(Fi1 , . . . ,Fia) = ξ2(Fj1 , . . . ,Fjb).

Let fic be the minimal τΩ1F
ϕ
n−1-satellite of the formation Fic (where c = 1, . . . , a)

and let fjd be the minimal τΩ1F
ϕ
n−1-satellite of Fjd (where d = 1, . . . , b). By

Lemma 6.4, ξ1(Fi1 , . . . ,Fia) = Ω1F (h1, ϕ) and ξ2(Fj1 , . . . ,Fjb) = Ω1F (h2, ϕ),

where h1 = ξ1(fi1 , . . . , fia) and h2 = ξ2(fj1 , . . . , fjb). By Lemma 4 from [34] for

every A ∈ Ω1 ∪ {Ω′1}, the formations fi1(A), . . . , fia(A) and fj1(A), . . . , fjb(A)

belong to the lattice τΩ1F
ϕ
n−1. Then by induction, we conclude that

h1(A) = ξ1(fi1(A), . . . , fia(A)) = ξ2(fj1(A), . . . , fjb(A)) = h2(A).

Hence, ξ1(Fi1 , . . . ,Fia) = ξ2(Fj1 , . . . ,Fjb). Thus, law (6.1) is true in the lattice

τΩ1F
ϕ
n .
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Corollary 6.6. Every law of the lattice of all τ -closed M-formations is fulfilled in

the lattice of all τ -closed n-multiply Ω1-free M-formations τΩ1F
ϕ0
n .

De�nition 6.7 ([34]). A formation F = Ω1F (f, ϕ) is called Ω1-bicanonical (and

Ω1-composition, respectively) if ϕ(A) = CA′ for any nonabelian T -group A ∈ I1

and ϕ(A) = CA′CA (ϕ(A) = ScA) for any abelian A ∈ I1. We write ϕ2 and ϕ3,

respectively, to denote the directions of the mentioned formations.

Corollary 6.8. Every law of the lattice of all τ -closed M-formations is fulfilled in

the lattice of all τ -closed n-multiply Ω1-bicanonical M-formations τΩ1F
ϕ2
n .

For the trivial subgroup C-functor τ , we obtain the following corollary.

Corollary 6.9. Every law of the lattice of all formations is fulfilled in the lattice

ΩFϕn of all n-multiply Ω-foliated formations with direction ϕ, such that ϕ0 6 ϕ.

Corollary 6.10. Every law of the lattice of all formations of finite multirings is ful-

filled in the lattice of all n-multiply local formations of finite multirings.

Corollary 6.11 (Theorem 2 [34]). Let M be the class of all multioperator T -groups

satisfying the minimality and maximality conditions for multioperator T -subgroups.

Then the lattice τΩ1F
ϕ
n (of all τ -closed n-multiply Ω1-foliated M-formations) is mod-

ular for any nonnegative integer n and any direction ϕ, such that ϕ0 6 ϕ.
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Proof. By [131, Theorem 4.5) for n = 0], the lattice Ω1F
ϕ
0 is modular. By Lemma 7

from [34] for any F, H ∈ τΩ1F
ϕ
0 , we have

F ∨τΩ1F
ϕ
0
H = τΩ1F

ϕ
0 (F ∪ H) = Ω1F

ϕ
0 (F ∪ H).

Thus, the lattice τΩ1F
ϕ
0 is modular. Then applying Theorem 6.5, we conclude that

the lattice τΩ1F
ϕ
n is modular for any direction ϕ, ϕ0 6 ϕ.

Let F and H be a τΩ1F
ϕ
n -formations such that H ⊆ F. We write F/τ

Ω1F
ϕ
n
H

to denote the lattice of all τΩ1F
ϕ
n -formations Y such that H ⊆ Y ⊆ F. As an im-

mediate corollary from the lattice property of being modular, we have the corollary.

Corollary 6.12 (Lemma 3.4 [122]). For any two τ -closed n-multiply Ω1-foliated M-

formations H and F (with direction ϕ, such that ϕ0 6 ϕ) the lattices

(H ∨τΩ1F
ϕ
n
F)/τΩ1F

ϕ
n
H and F/τΩ1F

ϕ
n

(F ∩ H)

are isomorphic.

6.2 Frattini subformations of foliated formations of

T -groups

Let F and H be τ -closed n-multiply Ω1-foliated M-formations with direction ϕ such

that ϕ0 6 ϕ, and H ⊆ F. We write F/τ
Ω1F

ϕ
n
H to denote the lattice of all τ -closed

n-multiply Ω1-foliated M-formations of multioperator T -groups (with direction ϕ

such that ϕ0 6 ϕ) such that H ⊆ Y ⊆ F.
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De�nition 6.13. If Y ⊂ F and the lattice F/τ
Ω1F

ϕ
n
Y consists of only two elements

then Y is called a maximal τ -closed n-multiply Ω1-foliated M-formation (with di-

rection ϕ such that ϕ0 6 ϕ) of F. Denote the intersection of all such subforma-

tions of F by Φτ
Ω1F

ϕ
n

(F), and call it the Frattini subformation of F (we assume that

Φτ
Ω1F

ϕ
n

(F) = F if there are no such subformations).

We write f ≤ h, if f(A) ⊆ h(A) whenever for all A ∈ Ω1 ∪ {Ω′1}.

Lemma 6.14 (Lemma 3.1 [122]). Let {Fi | i ∈ I} be a chain of τΩ1F
ϕ
n -formations of

multioperator T -groups, where n ≥ 1, and let {fi | i ∈ I} be a chain of τΩ1F
ϕ
n−1-

satellites such that Fi = Ω1F (fi, ϕ) and fi ≤ fj i� Fi ⊆ Fj for all i, j ∈ I .

Then

F =
⋃
i∈I

Fi = Ω1F (f, ϕ),

where f(A) =
⋃
i∈I fi(A) for any A ∈ Ω1 ∪ {Ω′1}.

Lemma 6.15 (Kuratowski–Zorn). Let a partially ordered set Λ has the property that

each chain in Λ has an upper bound in Λ. Then the set Λ contains at least one

maximal element.

De�nition 6.16 ([122]). An M-group G is said to be a τΩ1F
ϕ
n -nongenerator of the

formation F

if F = τΩ1Fn(Y ∪ {G}, ϕ) always implies that F = τΩ1Fn(Y, ϕ),

where Y 6= ∅ is a set of M-groups.
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Lemma 6.17 (Lemma 3.3 [122]). Let G be an M-group and Y 6= ∅ be a set of

M-groups. Then the formation

F = τΩ1Fn(Y ∪ {G}, ϕ)

contains a maximal τ -closed n-multiply Ω1-foliated M-subformation (with direction

ϕ such that ϕ0 6 ϕ) containing τΩ1Fn(Y, ϕ) 6= F for any nonnegative integer n.

Proof. Let Λ be a partially ordered set of all τ -closed n-multiply Ω1-foliated M-

subformations (with direction ϕ such that ϕ0 6 ϕ) of F that contains

τΩ1Fn(Y, ϕ)

but does not contain G, and let {Fi | i ∈ I} be a chain from Λ.

Put H =
⋃
i∈I Fi. Lemma 6.14 implies that H is a τ -closed n-multiply Ω1-

foliated M-formation with direction ϕ such that ϕ0 6 ϕ.

We see that τΩ1Fn(Y, ϕ) ⊆ H and G /∈ H. Applying Lemma 6.15, we observe

that every Y in Λ is contained in some maximal element from Λ. We shall show that

any such formation Y is a maximal τ -closed n-multiply Ω1-foliated M-subformation

(with direction ϕ such that ϕ0 6 ϕ) of F.

Suppose that L is a τ -closed n-multiply Ω1-foliated M-formation (with direc-

tion ϕ such that ϕ0 6 ϕ) with Y ⊂ L ⊂ F. We obtain G /∈ L since

Y ⊆ τΩ1Fn(Y, ϕ) ⊆ Y ⊂ L.

Thus, L ∈ Λ. We have a contradiction.
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Theorem 6.18 (Theorem 4.1 [122]). Let F be a nonempty τΩ1F
ϕ
n -formation such

that F 6= (1), where n is a positive integer. Then Φτ
Ω1F

ϕ
n

(F) consists of all τΩ1F
ϕ
n -

nongenerators of F.

Proof. Let G be a τΩ1F
ϕ
n -nongenerator, and L be a maximal τΩ1F

ϕ
n -subformation

of F. Assume that G /∈ L. Then we have

τΩ1Fn(L ∪ {G}, ϕ) = F = τΩ1Fn(L, ϕ) = L,

which is a contradiction. Thus G ∈ L.

Let Y be a nonempty set of M-groups contained in F and Φτ
Ω1F

ϕ
n

(F). Assume

that

τΩ1Fn(Y ∪ {G}, ϕ) = F 6= τΩ1Fn(Y, ϕ).

By Lemma 6.17, F contains a maximal τΩ1F
ϕ
n -subformation Y such that

τΩ1Fn(Y, ϕ) ⊆ Y.

Thus, since G ∈ Φτ
Ω1F

ϕ
n

(F), we have Y = F. This contradicts the choices of Y.

Consequently, F = τΩ1Fn(Y, ϕ).

Theorem 6.19 (Theorem 4.2 [122]). Let F1, F2 be nonempty τΩ1F
ϕ
n -formations for

a nonnegative integer n. If F1 ⊆ F2 6= (1) then

Φτ
Ω1F

ϕ
n

(F1) ⊆ Φτ
Ω1F

ϕ
n

(F2).

Proof. Suppose that Φτ
Ω1F

ϕ
n

(F1) 6⊆ Φτ
Ω1F

ϕ
n

(F2). Let Y be a maximal τΩ1F
ϕ
n -subfor-

mation of F2 such that Φτ
Ω1F

ϕ
n

(F1) 6⊆ Y. Thus F1 6⊆ Y.
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By Lemma 6.12, F2/
τ
Ω1F

ϕ
n
Y = (Y

∨τ
Ω1F

ϕ
n
F1)/τ

Ω1F
ϕ
n
Y ' F1/

τ
Ω1F

ϕ
n

(F1 ∩Y).

The lattice F2/
τ
Ω1F

ϕ
n
Y consists of only two elements. Then F1 ∩ Y is the

maximal τΩ1F
ϕ
n -subformation of F1. Hence Φτ

Ω1F
ϕ
n

(F1) ⊆ Y. We obtain a contra-

diction. Consequently, Φτ
Ω1F

ϕ
n

(F1) ⊆ Φτ
Ω1F

ϕ
n

(F2), as asserted.

Corollary 6.20 ([122]). Let F 6= (1) be a nonempty τ -closed n-multiply Ω1-free M-

formation, and n be a positive integer. Then the following holds:

(1) Φτ
Ω1F

ϕ0
n

(F) consists of all τΩ1F
ϕ0
n -nongenerators of F.

(2) Let Y be a τ -closed n-multiply Ω1-free M-formation such that Y ⊆ F.

Then Φτ
Ω1F

ϕ0
n

(Y) ⊆ Φτ
Ω1F

ϕ0
n

(F).

Corollary 6.21 ([122]). Let F 6= (1) be a nonempty τ -closed n-multiply Ω1-bicanoni-

cal M-formation, and n be a positive integer. Then the following holds:

(1) Φτ
Ω1F

ϕ2
n

(F) consists of all τΩ1F
ϕ2
n -nongenerators of F.

(2) Let Y be a τ -closed n-multiply Ω1-bicanonical M-formation such that Y ⊆

F. Then Φτ
Ω1F

ϕ2
n

(Y) ⊆ Φτ
Ω1F

ϕ2
n

(F).

Corollary 6.22 (Theorems 3.1 and 3.2 [119]). Let F 6= (1) be a nonempty τ -closed n-

multiply ω-composition formation of finite groups, where n is a positive integer. Then

the following holds:

(1) Φτ
ωn

(F) consists of all cτωn
-nongenerators of F.

(2) Let Y be a τ -closed n-multiply ω-composition formation of finite groups such

that Y ⊆ F. Then Φτ
ωn

(Y) ⊆ Φτ
ωn

(F).
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Corollary 6.23 ([114]). Let F 6= (1) be a nonempty n-multiply L-composition forma-

tion of finite groups, where n is a positive integer. Then the following holds:

(1) ΦL
n(F) consists of all cLn-nongenerators of F.

(2) Let Y be a τ -closed n-multiply ω-composition formation of finite groups such

that Y ⊆ F. Then ΦL
n(Y) ⊆ ΦL

n(F).

Conclusion

Let M be the class of all multioperator T -groups satisfying the minimality and max-

imality conditions for T -subgroups, and let n be a positive integer. In the present

chapter, it is proved that every law of the lattice of all τ -closed M-formations is ful-

�lled in the lattice of all τ -closed n-multiply Ω1-foliated M-formations with direction

ϕ, such that ϕ0 6 ϕ. Let F and H be τ -closed n-multiply Ω1-foliated M-formations

with direction ϕ such that ϕ0 6 ϕ, and H ⊆ F. If X ⊂ F and the lattice F/τ
Ω1F

ϕ
n
X

consists of only two elements then X is called a maximal τ -closed n-multiply Ω1-

foliated M-formation of F. Some properties of the intersection of these formations

are studied. The results have been published in the papers [120, 122].



Chapter 7

Possible Future Directions

A monoid is an algebraic structure with a single associative binary operation and an

identity element. A group can be de�ned as a monoid such that each element of

this monoid possesses an inverse element.

Languages are subsets of a certain type of monoid, the free monoid over an

alphabet. Regular languages are precisely the behaviors of �nite automata. A language

is regular if its syntactic monoid is a �nite monoid, and a regular language is a group

language if its syntactic monoid is a �nite group.

A variety of �nite monoids is a class of �nite monoids closed under taking

submonoids, quotients and �nite direct products. Formations of �nite monoids ex-

tend the notion of a variety of �nite monoids, and the weaker closure conditions

for formations lead to more possibilities than for varieties, and more general classes

can be studied; see [13].

114
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The Eilenberg theorem establishes that there exists a bijection between the set

of all varieties of regular languages and the set of all varieties of �nite monoids

[38]. An analogous result holds for formations [13], i.e, there is a one-to-one corre-

spondence between formations of �nite monoids and formations of languages. This

fact rises up the motivation to study formations in tasks of abstract machines and

automata, which commonly appear in the theory of computation, compiler construc-

tion, arti�cial intelligence, parsing, formal veri�cation and other aspects of theoretical

computer science.

7.1 Formations of formal languages

A formation F of groups is local (or saturated) if G/Φ(G) ∈ F always implies G ∈

F. A local satellite of F is a function with domain P whose images are formations

of �nite groups. If the values of this function are themselves local formations, then

this circumstance leads to the de�nition of multiply local formation.

Ballester-Bolinches, Pin, and Soler-Escrivà [14] developed a general method to

describe the languages corresponding to local formations. In present work, it is show

that the mentioned result is applicable to the languages corresponding to n-multiply

local and totally local formations, which �nd deep applications in the study of �nite

groups.

Thus we are equipped now with a powerful tool to translate efficiently any result

of the theory of multiply local formations of finite groups to formal languages!
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A formation of groups F is said to be solvably saturated if it contains each

group G with G/Φ(N) ∈ F for some solvable normal subgroup N of G. Any

saturated formation is solvably saturated, but not all the properties of saturated for-

mations can be translated directly for solvably saturated formations.

Problem 7.1. Describe the languages corresponding to solvably saturated formations of

finite groups.

The motivation to study σ-local formations rises from the result of Chi, Sa-

fonov and Skiba [29] which deals with so-called Σt-closed formations. In the present

work it is shown that every law of the lattice of all formations is ful�lled in the lat-

tice of all n-multiply σ-local formations of �nite groups. This implies immediately

that the lattice of all n-multiply σ-local formations of �nite groups is modular but

not distributive for any nonnegative integer n.

Problem 7.2. Describe the languages corresponding to n-multiply σ-local and totally

σ-local formations.

Baer-local formations form a broader than local formations family of classes.

By Baer’s theorem, those formations are precisely solvably saturated formations; see

p. 373 in [37]. Baer-σ-local formations, introduced recently in [91], generalize σ-local

and Baer-local formations at the same time.

Let G be a group, and F be a formation of groups. The symbol Rσ(G) de-

notes the product of all normal σ-solvable subgroups of G, and F{gσi}(G) de-
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notes the product of all normal generalized {σi}-nilpotent subgroups of G. Set

σ+(F) = ∪G∈Fσ+(G), where

σ+(G) = {σi | G has a chief factor H/K such that σ(H/K) = σi},

De�nition 7.1 ([91]). Following Skiba, we call any function f of the form

f : σ ∪ {∅} → {formations of groups},

where f(∅) 6= ∅, a generalized formation σ-function, and put

BLFσ(f) = (G | G/Rσ(G) ∈ f(∅) and F{gσi}(G) ∈ f(σi) for all σi ∈ σ+(G)).

If F = BLFσ(f) for some generalized formation σ-function f , then F is called

Baer-σ-local, and f is a generalized σ-local definition of F. The symbol Supp(f)

denotes the support of f , i.e., the set of all σi such that f(σi) 6= ∅.

Problem 7.3. Describe the languages corresponding to Baer-σ-local formations of finite

groups.

7.2 Classes of fuzzy languages

In 1934, at the eight Congress of Scandinavian Mathematics, Marty [72] introduces

a concept of algebraic hyperstructure, which naturally generalizes classical algebraic

structures such as groups and rings. As mentioned in [33], the �rst example of hy-

pergroups, which motivates the introduction of this structure, is the quotioent of a
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�nite group by arbitrary (not necessarily normal) subgroup, i.e., if the subgroup is

not normal, then the quotient is not a group, but it is always a hypergroup with

respect to a certain hyperoperation. Keeping in mind this idea, we can introduce a

concept of hyperformation, assuming that subgroups in De�nition 2.8 are not nec-

essarily normal.

De�nition 7.2. A hyperformation is a class of hypergroups F satisfying the following

two conditions:

(1) if H ∈ F, then H/N ∈ F, and

(2) if H/N1, H/N2 ∈ F, then H/N1 ∩N2 ∈ F,

for any subhypergroups N , N1, N2 of H .

It will be interesting to study the relation between classical formations and hy-

performations. Fuzzy sets, introduced by Zadeh [141] and Klaua [65], became applied

in �elds such as pattern recognition, machine learning and data mining [22, 60].

Examples of hypergroups associated with models of biological inheritance were con-

sidered recently in [3], and connections between hypergroups and fuzzy sets were

discussed in Chapter 5 of the book [33].

In [83, 73], the concept of a fuzzy set was applied to generalize the basic con-

cepts of group theory. The most fundamental result in the theory of classes of �nite

groups states that any formation is saturated i� it is local [37, Gaschütz–Lubeseder–

Schmid].
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Problem 7.4. To obtain a generalization of Gaschütz–Lubeseder–Schmid theorem in

terms of fuzzy group theory.

Wee [139] introduced the fuzzy automaton as a model of learning systems. This

model is the natural fuzzi�cation of the classical �nite automaton: a fuzzy automaton

is a tuple A = (A,X, µ), where A is a �nite set of states, X is a �nite set of input

symbols and µ is a fuzzy subset of A×X×A representing the transition mapping,

which can be represented as a collection of matrices with entries from [0, 1]. Let

X∗ be a free monoid, then a fuzzy language over an alphabet X is a fuzzy subset

of X∗. A fuzzy language is regular if it is recognizable by a fuzzy automaton. Some

applications of fuzzy languages are discussed in [23, 24, 61, 79].

Petković [77] proved a counterpart of Eilenberg’s theorem for varieties of fuzzy

languages. That motivates us to study formations of fuzzy languages. For instance,

the following two problems are of great interest.

Problem 7.5. Prove a counterpart of Eilenberg’s theorem for formations of fuzzy lan-

guages.

Problem 7.6. Describe the fuzzy languages corresponding to σ-local (n-multiply σ-

local, totally σ-local) formations.
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7.3 Applications in computer programming and data

science

In computer programming, various abstract data types can be considered as monoids.

Some applications for functional programming are discussed in the book [31]. Be-

cause the operation takes two values of a given type and returns a new value of

the same type, it can be chained inde�nitely. The associativity of monoid operations

ensures that the operation can be parallelized.

Out of the sixteen possible binary Boolean operators, each of the four that

has a two sided identity is also commutative and associative, that makes the set

{False, True} a commutative monoid.

Every group is a monoid. Every abelian group is a commutative monoid.

The elements of any unital ring, with addition or multiplication as the oper-

ation, form a monoid. Any complete lattice can be endowed with a meet-and-join

monoid structure. The same holds for complete lattices of formations. Boolean al-

gebras have these monoid structures as well.

Formations are a useful tool to study �nite rings [32], which �nd applications

in coding theory [20, 102]. In the present work it is shown that the lattice of all

formations of �nite rings is algebraic and modular.

Problem 7.7. Describe algebraic and modular lattices of local formations of rings.
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In 2013, Twitter open-sourced Algebird [1], a library which provides abstractions

for abstract algebra in the Scala programming language to work with semigroups,

monoids, groups and rings. Algebird was designed on Twitter with a target to simplify

building aggregation systems like Apache Spark, Scalding, Apache Storm, etc. Many

of the data structures included in Algebird have a monoid implementations, making

them ideal to use as values in Summingbird aggregations. (Summingbird is a library

that lets us write MapReduce programs that look like native Scala or Java collection

transformations.) Algebird is extremely helpful in the problems of Large-Scale Data

Analytics, some real world examples of Algebird at Twitter-scale are discussed in [74].

Thus formations of monoids, groups and rings can be applicable as a tool for Data

Mining, social media research and knowledge discovery.

Task 7.1. To develop an Algebird based Scala library applying advances of formation

theory for Big Data Analytics.

Finally, we note that Pin and Soler-Escrivà [78] described the two classes of

languages recognized by the groups D4 and Q8, and they proved that the forma-

tions of languages generated by these two classes are the same, and in the most

recent paper [25], the authors describe two sublattices of the lattice of all forma-

tions of monoids, and give, for each of them, an isomorphism with a known lattice

of varieties of monoids, and study formations containing Cli�ord monoids.

−F−
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monoids, J. Pure Appl. Algebra (2020) 106401. DOI: 10.1016/j.jpaa.2020.106401.

[26] C. Calvo, On partially saturated formations of �nite groups, Tesis doctoral, Universitat
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[65] D. Klaua, Über einen Ansatz zur mehrwertigen Mengenlehre, Monatsb. Deutsch. Akad.

Wiss. Berlin 7 (1965) 859–876 (in German).

[66] A. Kostrikin, Around Burnside, Ergeb. Math. Grenzgeb. 3(20) Springer, Berlin (1990).

[67] V. A. Kovaleva, A criterion for a �nite group to be σ-soluble Communications in

Algebra 46 (12) (2018) 5410–5415.

[68] O.-U. Kramer, Endliche Gruppen mit Untergruppen mit paarweise teilerfremden In-

dizes, Math. Z. 139 (1974) 63–68.

128



[69] Kurosh A.G., Lectures on General Algebra Fizmatgiz, Moscow (1962) (in Russian).

[70] W. Liu, Fuzzy invariant subgroups and fuzzy ideals, Fuzzy Sets and Systems 8 (1982)

133–139.

[71] Y. M. Mao, C. C. Cao and W. B. Guo, On σ-conditionally permutable subgroups of

�nite groups, Communications in Algebra 47(10) (2019) 4271–4282.

[72] F. Marty, Sur une generalization de la notion de groupe, 8th Congress Math. Scande-

naves, Stockholm (1934) 45–49.

[73] J.N. Moderson, K.R. Bhutani and A. Rosenfeld, Fuzzy Group Theory, Studies in

Fuzziness and Soft Computing 182 Springer-Verlag Berlin Heidelberg (2005) XIV, 300.

[74] M. G. Noll, Of Algebirds, Monoids, Monads, and other Bestiary for Large-Scale

Data Analytics. https://www.michael-noll.com/blog/2013/12/02/twitter-algebird-monoid-

monad-for-large-scala-data-analytics/ (Last accessed 1 May 2020)

[75] H. Neumann, Varieties of Groups. Reprint of the hardback edition 1967. Ergebnisse

der Mathematik und ihrer Grenzgebiete 37 Springer, Berlin (2012).

[76] A. Yu. Olshanskii, Geometry of de�ning relations in groups (in Russian), Nauka,

Moscow (1991); translated in: Mathematics and its Applications (Soviet Series) 70 Dor-

drecht, Kluwer Academic Publishers Group (1991).
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국문초록

Aleksandr Tsarev

제주대학교 대학원 수학과

(지도교수 : 송석준)

대수적 구조의 형성의 격자들

본 논문에서는 대수 구조의 형성에 대한 다양한 격자를 조사 연구하였다. 유한군들의

클래스가 형성(formation)이라는 정의는 클래스의 한 원소인 군 G에 대하여 그의 상군

G/N을 포함하고, 만약 G/N1과 G/N2가 클래스에 속한다면 G/N1 ∩N2도 포함하는

조건을 만족하는 클래스이다. 본 논문에서의 주요결과는 다음과 같다.

다양한 국소 형성들에 대응하는 언어들을 설명하였다. σ는 모든 소수의 집합의

분할이라 하자. 모든 형성에 대한 격자의 모든 법칙은 모든 다양한 σ-국소형성들에

대한 격자 안에서 만족된다는 것을 증명하였다.

모든 함자 닫힌 합성 형성의 격자는 대수 격자라는 것과 모든 함자 닫힌 형성에

대한 격자의 모든 법체계가 모든 함자 닫힌 곱셈 부분 합성 형성들의 격자와 법체계가

일치한다는 것을 보였다. 또한, 모든 X-국소형성의 격자는 대수적이고 모듈러 격자라

는 것을 증명하였다.

M을 T -부분군의 최소성과 최대성 조건들을 만족하는 모든 복합연산자 T -군의

클래스라 하자. 그러면, 모든 함자 닫힌 M-형성에 대한 격자의 모든 법칙은 모든 함자

닫힌 곱셈 부분 엽층 형성들에 대한 격자 안에서 만족된다는 것을 증명하였다.

중심어: 모노이드, 언어, 군, 환, 중복연산자 T -군, 퍼지집합, 격자, 형성, 포화형성,

국소형성, 합성형성
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