A DOCTORAL DISSERTATION

Transcription and Chromosomal Location of the Active Retroelements HERV-K and L1Hs in Human Cells

Department of Biology

Graduate School
Cheju National University

Sang Hyun Han

December, 2003

인간 세포에서 Retroelements HERV-K와

L 1 Hs 의 전사와 염색체상의 위치

지도교수 오 문 유

한 상 현

이 논문을 이학 박사학위 논문으로 제출함
2003년 12월

한상현의 이학 박사학윔 논문을 인준함

심사위원장 \qquad
위
원 \qquad

위
원 \qquad

위
원 \qquad

위
원 \qquad

제주대학교 대학원

2003년 12월

Transcription and Chromosomal Location of the Active Retroelements HERV-K and L1Hs in Human Cells

Sang Hyun Han
(Supervised by Professor Moon You Oh)

A Dissertation Submitted in Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY
 Date Approved:

Department of Biology
Graduate School, Cheju National University
December, 2003

Abstract

Transposable elements play an important role in genome function. They can transpose their chromosome locations using transposition and recombination. The resulting repetitive sequences provide numerous opportunities for genetic recombination. Moreover, the changes in the chromosomal locations of transposable elements induce genomic instability, transformation, and differentiation of cells. The human genome contains several retro-transposable elements. The representative retroelements, human endogenous retroviruses (HERVs) and long interspersed nuclear elements (LINEs), are functionally active. HERVs are estimated to constitute at least $0.5-3 \%$ of the human genome; they encode characteristic retroviral proteins, such as gag, pol, and env, and have flanking promoter-like long terminal repeats (LTRs). HERV LTRs and solitary LTRs found in the human genome play an important role in cell biology. LTRs have various elements for regulating the expression of HERVs and neighboring host genes. LINE-1 elements of human (L1Hs) have two open reading frames: one encodes an enzyme for reverse transcription and the other one for RNA-protein complex formation. This study investigated the transcriptions and chromosomal locations of the transcripts of HERV-K and L1Hs in various human cells (two normal lymphocytes, two normal fibroblast, and sixteen cancer cell lines). In addition, this study examined the effects of selected chemical carcinogens on gene expression. RNA transcripts of the retroelements were detected in all cell lines tested, but the relative amounts differed according to cell type. For example, the levels of transcription varied at different developmental stages in fibroblasts as well as in leukemia cells. In addition, the expression patterns of HERV-K genes (HERV-K10 LTR, HERV-K(T47D) LTR, HERV-K(C4) env, and HERV-K10 env), L1Hs p40, and regulatory protein genes (BAX, c-MYC, IL-6, and p53) were

changed after treated with carcinogens. Since cell type-specific activation of HERV-K genes has been reported in various cells, it is thought that HERV-K genes may have functions in proliferation, apoptosis, differentiation, cancer development, and anti-viral protection strategies against exogenous retroviruses. L1Hs transcription was not distinguishable in the cell lines tested as a cell-type independent, but varied in response to carcinogenic and stress factors. Although RNA transcripts of retroelements were detected in the cell lines tested, evidences for a direct association between retroelement expression and human cancers could not find. The results suggest that the altered activity levels of the retroelements contribute to cell transformation, based on changes in the expression of the HERV-K genes and L1Hs p40 in responses to carcinogens. Some carcinogens induced the transposition activity. Genome-scale amplification has shown the altered amplification patterns using transposon-specific ITR and arbitrary random ITR as a amplification primer. After average 5 passages, the distinguishable fragments have seen in an amplification profile. Sequence analysis following a BLAST search and phylogenetic analysis showed that RNA transcripts of the retroelements were transcribed from various locations on most chromosomes. RNA transcripts of HERV-K10 LTR elements were located from the centromere to the telomere in all chromosomes, except chromosomes 21 and Y. HERV-K10 LTRs might be introduced into the human genome several times before and after mammalian speciation. L1Hs element transcripts were found on all but chromosome 21. Active L1Hs elements in at least 140 positions of the haploid human genome were identified by similarity search and putative protein translation of DNA sequences. In addition, the putative active L1Hs elements formed two clusters in the strict consensus tree. Based on chromosomal locations, retroelement transcripts were transcribed from many fragile sites, suggesting their association with chromosome instability, cancer-related breakpoints, and genetic disorder-related loci. After retroelement transcripts were introduced into human genome, they may expand
introns of the genomes and produce many pseudogenes. Consequently, this study suggests that many retroelements are transcribed and transposed in the host genome, and they can respond to various stimuli in the extra- and intracellular environments. In addition, HERV-K and L1Hs retroelements are widely dispersed throughout the human genome, maintaining their retrotransposition potential.

Key words: cancer, carcinogen, chromosomal instability, chromosome, chromosome rearrangement, env, fragile site, gene expression, genetic disorder, genome, genomic instability, HERV-K, HERV-K10 LTR, LTR, LINE-1, L1Hs p40, mutation, recombination, retroelement, retroposon, retrotransposition, retrovirus, transcription, transposable element, transposition, transposon

CONTENTS

ABSTRACT i
CONTENTS iv
LIST OF FIGURES vii
LIST OF TABLES X
INTRODUCTION 1

1. Human Endogenous Retroviruses-K 1
2. Long Interspersed Nuclear Elements-1 6
3. Purposes of This Study 10
MATERIALS AND METHODS 111. Cell Lines and Cell Culture2. Chemicals and Treatment
4. Total DNA Extraction4. Cytogenetic Analysis and Fluorescence in situ Hybridization (FISH)5. Transposition Analysis
5. Extraction of Total RNA
6. cDNA Synthesis and Semi-Quantitative RT-PCR8. Cloning and Sequencing9. Signal Scan of Signal Responsive Sequences of HERV-K LTRs
7. Database Search of the Retroelement Sequences in Human GenomeResources
8. Protein Sequence Analysis

12. Phylogenetic Analysis

RESULTS 23

1. Human endogenous retrovirus-K 23
1) Cell type-specific transcription of the HERV-K genes 23
2) Various signals can effect on the activation of HERV-K 26
3) Carcinogens induced the various effects on gene expression of the HERV-K and regulatory proteins in CCD-25Lu 26
4) Carcinogens induced the transposition activity in CCD-25Lu 29
5) HERV-K10 LTRs transcribed from various locations on chromosomes 37
6) Several locations of the HERV-K10 LTR transcripts were specific for cancer cells 37
7) HERV-K10 LTR elements divided into several clusters 43
2. Human long interspersed nuclear element-1 46
1) L1Hs $\mathbf{p} 40$ elements were transcribed in various human cells 46
2) Carcinogens changed the level of L1Hs p40 transcription in CCD-25Lu 46
3) L1Hs p40 transcribed from various locations on the chromosomes 46
4) Cell line specific L1Hs elements were transcribed from different chromosomal locations 51
5) L1Hs p40 protein sequences may involve in protein interactions in various cellular metabolism 58
6) The sequences of transcripts and proteins of active L1Hs p40 divided into several clusters 58
DISCUSSION 64
1. Transcription and chromosomal locations of HERV-K 64
2. Transcription and chromosomal locations of L1Hs 69
3. Transcription and transposition of retroelements by carcinogens 76
4. Associations between HERV-K and L1Hs elements and genetic disorders 79
LITERATURE CITED 91
APPENDIX I 110
APPENDIX II 115
APPENDIX III 121
APPENDIX IV 125
APPENDIX V 129
ABSTRACT IN KOREAN 132

LIST OF FIGURES

Figure 1. Classification of retroelements identified in human genome 2
Figure 2. Representative structure of HERV-K 5
Figure 3. Schematic illustration of LINE1 element 9
Figure 4. RT-PCR analysis of the HERV-K genes in human cells 24
Figure 5. Relative levels of the HERV-K gene transcription in human cells 25
Figure 6. Signal scan of the HERV-K10 LTR using the TRANSFAC signal database27
제주대항교 중앙도서괴
Figure 7. Signal scan of the HERV-K(T47D) LTR using the TRANSFAC signal database 28
Figure 8. RT-PCR analysis of the HERV-K gene transcription in CCD-25Lu cells treated with carcinogens 30
Figure 9. Relative levels of the HERV-K gene transcription in CCD-25Lu cells treated with carcinogens 31
Figure 10. RT-PCR analysis of the regulatory protein gene transcription inCCD-25Lu cells treated with carcinogens32Figure 11. Relative levels of the regulatory gene transcription in CCD-25Lu cellstreated with carcinogens33

Figure 12. Transposition analysis on genomic DNAs of CCD-25Lu cells treated withcarcinogens for 7 culture passages34
Figure 13. Transposition analysis on the carcinogen treatments after 5 culture passages 35
Figure 14. Transposition analysis on CCD-25Lu cDNAs treated with carcinogens after 5 culture passages using transposon ITR primer Pogol 36
Figure 15. Neighbor-joining tree based on the sequences of HERV-K10 LTR transcripts in the human cells 45
Figure 16. RT-PCR analysis of the L1Hs $p 40$ transcription in the human cells 47
Figure 17. Relative levels of the $\mathbf{L 1 H s}$ p40 transcription in the human cells 48
Figure 18. RT-PCR analysis of the L1Hs p40 transcription in CCD-25Lu cells treated with carcinogens 49
Figure 19. Relative levels of the L1Hs p40 transcription in CCD-25Lu cells treated with carcinogens 50
Figure 20. Chromosomal distribution of the L1Hs elements detected by FISH analysis 57
Figure 21. Protein motifs of the L1Hs p40 protein 60Figure 22. The strict consensus tree derived from the most parsimonious treesbased on the L1Hs $\mathbf{p 4 0}$ gene sequences62
Figure 23. The strict consensus tree of active L1Hs p40 proteins from human cells63

LIST OF TABLES

Table 1. Normal human cells used in this study 12
Table 2. Human cancer cell lines used in this study 13
Table 3. List of primers used in transposition analysis 16
Table 4. List of primers used in RT-PCR analysis 19
Table 5. Chromosomal locations of the HERV-K10 LTR transcripts from the human cells 38
Table 6. HERV-K10 LTR groups found in the similarity search 41
제주대한교 중앙도서과
Table 7. HERV-K10 LTR groups and identical sequence clones from the cell lines tested 42
Table 8. Cell line-specific transcripts of the HERV-K10 LTR and its chromosomal locations 44
Table 9. Chromosomal locations of the L1Hs p40 transcripts from the human cells 52
Table 10. L1Hs groups found in the similarity search 55
Table 11. L1Hs groups and the number of identical sequence clones from the cell lines tested 56
Table 12. Cell line-specific transcripts of the L1Hs p40 gene and its chromosomal locations 59

Table 13. Chromosomal location of detected retroelement transcripts and fragile sites 67

Table 14. Chromosomal location of detected retroelement transcripts, human cancer breakpoints, and the location of proto-oncogenes 70
Table 15. Chromosomal location of detected retroelement transcripts and the map of human genetic disorders 85

I. INTRODUCTION

The human genome contains a number of repetitive sequences that originated from retroviruses. Recent studies have reported that about one-third of the human genome sequence is derived from different transposable elements (Miki, 1998; Smit, 1999). Of those, endogenous retrotransposable elements have been distributed by retrotransposition during the course of evolution of the genome. The process of retrotransposition is mediated by RNA transcripts, as in human immunodeficiency virus (HIV). This large family of transposable elements can be classified into several groups according to differences in their lengths, structures, and protein encoding genes (Moran et al., 1996; Hohjoh and Singer, 1997; Malik et al., 1999). They contain short- and long interspersed nuclear elements (SINEs and LINEs), such as Alu repeats and L1 retroposon, and human endogenous retroviruses (HERVS) (Fig. 1). Although some retroelements are still active and produce deleterious mutations that cause hereditary diseases, most transposon activity in humans seems to be ceased (reviewed in Smit, 1999; Kazazian, 2000).

1. Human Endogenous Retrovirus-K

In 1973, it was discovered that primate placentas produce retrovirus-like particles. These particles not only resemble retroviruses morphologically, but also possess an enzyme activity that is indistinguishable from that of retroviral RNA-dependent DNA polymerase (reverse transcriptase) (Kalter et al. 1973; Strickland et al., 1973; Medstrand and Blomberg, 1993).

Vertebrate genomes contain many endogenous retroviral sequences that resulted, in all

Figure 1. Classification of retroelements in human genome.
likelihood, from the integration of exogenous retroviruses into the germ line of a predecessor species. Such the events of inter-genomic integration are thought to be occurred frequently during evolution, and various families of endogenous retroviruses (ERVs) can be found in vertebrate genomes (Wilkinson et al., 1994; Benit et al., 1999). The expression of stably integrated proviral sequences and subsequent retrotranspositions lead to an increase in the copy number of proviral sequences in the host. Probably, HERV-K-like elements may enter into the primate genome about 33-40 million years ago. There are estimated to be ca. 25,000 copies of HERV-K long terminal repeats (LTRs) in the human genome (Leib-Mösch et al., 1993). These integrated proviral sequences have subsequently inherited to a stable Mendelian fashion in subsequent generations and transmitted to newly arising species, and then propagated due to retrotransposition events.

The retroviral genome consists of two, usually identical, ssRNA molecules ranging about $7-10 \mathrm{~kb}$, with $5^{\prime}-\mathrm{CAP}$ and 3^{\prime}-poly(A) tail. The order of the genes encoding structural proteins is invariably gag, pol, and env. Gag stands for group-specific antigen in the virion core, encoding four separate proteins; matrix protein (Pepinsky and Vogt, 1984), capsid protein (Dickson et al., 1982), nucleocapsid protein, and protease (Coffin et al., 1997). Pol encodes three enzymes: reverse transcriptase for synthesis of viral complementary DNA (Varmus, 1987, 1988; Coffin et al., 1997), RNase H, and integrase. Env encodes two envelope proteins: surface and transmembrane proteins (Dickson et al., 1982). The viral genome is bounded by LTRs. There is no apparent DNA sequence specificity for host integration sites although some preference has been noted (Wilson and Young, 1975).

Two major characteristics of LTRs make their important features in the genome: they contain regulatory elements and are probably inserted into transcriptionally active regions. Some HERV LTRs recruited during evolution as regulatory elements for gene
control, as they provide sequences for the initiation of transcription, for instance, promoters, enhancers, hormone-responsive elements, transcription-factor binding sites, and polyadenylation signals. Consequently, they can induce significant changes in the expression of neighboring cellular genes (Ting et al., 1992; Feuchter-Murthy et al., 1993; Knössl et al., 1999; Domansky et al., 2000; Schön et al., 2001). Reports suggest that LTRs frequently modulate the expression of nearby genes directly through transcription regulatory signals or regulation of translation (Kapitonov and Jurka, 1999; Kowalski et al., 1999; Mager et al., 1999; Sverdlov, 1998). Note that in the reported examples of LTR involvement in gene regulation, these elements are always incorporated in the 5'-proximal regions of genes. The first clones of HERV sequences were obtained by screening a genomic library with an African green monkey ERV probe (Martin et al., 1981). Since then, a number of HERV elements have been reported, and they are estimated to constitute at least $0.6-3 \%$ of the human genome (Wilkinson et al., 1994; Mayer et al., 1998; Zsiros et al., 1998).

The majority of these elements appear to be either rearranged or mutated such that they are in capable of producing proteins. Almost all HERV sequences are too unstable to encode functional proteins. It has been suggested that the HERV-K family is an important exception to this generality because it contains open reading frames (ORFs) and may be involved in tumor development. Full-length ORFs for gag, prt, pol, and env have been isolated from the human genome (Wilkinson et al., 1994; Löwer et al., 1996; Kitamura et al., 1996; Mayer et al., 1997).

The HERV-K family of human endogenous retroviral sequences was originally cloned from Syrian hamster intracisternal A type particles (Ono et al., 1986). RNA-transcripts of HERV-K have been detected in distinct cell lines and tissues (Brodsky et al., 1993; Medstrand and Blomberg, 1993; Vinogradova et al., 2001), and HERV-K particles have been identified in the placenta and supernatants of teratocarcinoma cell lines (Boller et

Figure 2. A representative structure of HERV-K and the functions of each gene.
al., 1993; Löwer et al., 1993). Transcripts containing HERV-K pol and env ORFs have been detected in human teratocarcinoma cell lines, and enzymatically active gag and pol gene products have been expressed in vitro (Löwer et al., 1993; Kitamura et al., 1996; Tönjes et al., 1997; Berkhout et al., 1999). Recent reports have suggested the possible involvements of HERV-K sequences in the initiation or progression of germ cell tumors, and Gag protein and gag-encoded retrovirus-like particles are present in tumor cells and derived cell lines, respectively (Sauter et al., 1995; Sauter et al., 1996). Possible roles of HERV-K elements in human diseases have been considered in insulin dependent diabetes mellitus (Conard et al., 1997), seminoma (Sauter et al., 1995), and HERV-K-T47D mammary carcinoma (Seifarth et al., 1998). According to reports of HERV-K elements in several cancer cells, HERV-K LTRs and HERV-W env sequences have been found in RNA transcripts (Zsiros et al., 1998; Kim et al., 2001; Yi et al., 2001). This suggests that HERV-K elements are active in cancer cells and may be involved in carcinogenesis. In addition, HERV-K Gag and Env antibodies have been detected in germ cell tumors and trophoblastic tumors (Müeller-Lantzsch et al., 1993; reviewed in Mayer et al., 1997; Herbst et al., 1999).

2. Long Interspersed Nuclear Elements-1

The LINE- 1 element is a retroposon that is found in all mammalian genomes, and belongs to the class of retroposons lacking LTRs. LINE-1 elements account for about 15% of the human genome and have achieved this abundance by retrotransposition (Fanning and Singer, 1987; Hutchison et al., 1989; Singer et al., 1993). Active human L1 sequences (L1Hs) can cause mutations, diseases, genetic variations, and
polymorphisms, and even their remainders can be involved in genetic recombination and chromosomal rearrangements (Gilbert et al., 2002; Kazazian and Goodier, 2002; Sankoff et al., 2002; Chi et al., 2003). At least 3-4\% of L1Hs are full-length, while the others are truncated to varying degrees (Hwu et al., 1986; Smit, 1999).

Full-length L1Hs are about 6 kbp in length and contain two nonoverlapping open reading frames (ORFs), a 5^{\prime} untranslated region (UTR) and 3' poly(A) tail (Fig. 3). ORF1 encodes an RNA-binding protein p40, which forms an RNA-protein (RNP) complex, and has been observed in breast cancer, teratocarcinoma, normal breast tissue, germ cell tumors lines, and in several kinds of tumor cells (Bratthauer and Fanning, 1992; 1993; Bratthauer et al., 1994; Asch et al., 1996). L1Hs p40 has no significant sequence homology to gag and gag-like proteins observed in endogenous retroviruses (Hohjoh and Singer, 1997). ORF2 encodes a 149-kDa protein, which has endonuclease and reverse transcriptase activities. Examination of the contribution of various protein regions to the RT activity has demonstrated that deletions and mutations in the ORF2 protein domains eliminate or significantly decrease the RT activity (Dombroski et al., 1994; Feng et al., 1996). Furthermore, mutation and deletion analyses of the L1Hs element have shown that both the p 40 and the EN and RT regions of the ORF2 protein are required for efficient retrotransposition in cultured cells (Feng et al., 1996; Dhellin et al., 1997; Clements and Singer, 1998).

L1Hs elements are found in all chromosomes including sex chromosomes X and Y . Many L1Hs copies have accumulated in AT-rich regions of human genome (Smit, 1999; Pavlicek et al., 2002). Active L1Hs elements have the capacity to cause mutations, diseases, genetic variations, and polymorphisms, which their inactive copies appear to be involved in chromosome recombination and rearrangement during cell division (Brouha et al., 2002). There are about $100,000 \mathrm{~L} 1 \mathrm{Hs}$ elements in the human genome, but only about 30-60 of the full-length L1Hs are capable of autonomous retrotransposition, and
capable of synthesizing new copies at different positions on chromosomes containing the L1Hs integrating target sequence. The transcript is reverse transcribed and integrated into a new genomic location by a process termed 'target-primed reverse transcription' (Luan et al., 1993). On integration, the L1Hs element typically is flanked by target-site duplications of $6-20 \mathrm{bp}$; the integration site has a weak consensus sequence ($\left.5^{\prime}-\mathrm{Py}-\mathrm{Py} / \mathrm{AAAA}-3^{\prime}\right)$ (Cost and Boeke 1998). In addition, L1Hs elements insert at random locations in the genome (Hutchison et al., 1989; Ovchinnikov et al. 2001). The haploid human genome has approximately above 7×10^{5} putative target sites for L1Hs target sequences.

Recently, new retrotranspositions of active human elements have been identified through systematic screening of disease genes (Kazazian et al., 1988; Morse et al., 1988; Miki et al., 1992; Narita et al., 1993; Miki, 1998). These developments have identified new insertions or deletions. For example, insertion in β-globin gene in mother and her daughter showing typical β-thalassemia trait (Kimberland et al., 1999), factor VIII and IX genes in the patients with hemophilia A, B (Kazazian et al., 1988; Youssoufian et al., 1988; Woods-Samuels et al., 1989), in the APC gene in a colon cancer patient (Miki et al., 1992), in the retinitis pigmentosa-2 (RP2) gene of a X-linked retinitis pigmentosa and his carrier mother (Kimberland et al., 1999), and in the dystrophin gene of a muscular dystrophy (MD) patient (Holmes et al., 1994); deletions in the $P A X$ gene in aniridia patients (Drechsler and Royer-Pokora, 1996) and in the dystrophin gene in severe muscular dystrophy patients (Sugimoto et al., 2001) have also been identified. The major sequences of L 1 Hs are integrated in human retinoblastoma $(R b)$, interleukine 2 (IL-2), factor VIII genes. Since $R b$ and factor VIII have a high frequency of chromosomal deletions in various cancers and haemophilia A, the universal integration of long, and homologous L1Hs segments in these genes and all chromosomes may promote abnormal DNA rearrangement (Kuo et al., 1998). L1Hs insertions into human

Figure 3. Schematic illustration of LINE1 element.
genes have also been described in cultured mammalian cells transfected with full-length elements, and large deletions due to L1Hs can occur via various pathways in vitro and in vivo (Moran et al., 1996; Kimberland et al., 1999; Gilbert et al., 2002).

3. Purposes of This Study

While it has been suggested that retroelement activity is involved in genome instability, as repetitive elements are abundant and widespread in the human genome, it is very difficult to elucidate a direct relationship between their activities and cancer development and genome instability. To understand the association between the activity of the autonomous retroelements (HERV-K and L1Hs) and human cancers, this study was performed.

At first, to investigate the difference of gene expression, transcription patterns of HERV-K and L1Hs retroelements were examined in normal fibroblast cells and cancer cells. In addition, to screen the effects on genomic instability, gene expression of these retroelements, and genome scale transposition activities were analyzed in normal fibroblast cells by carcinogen exposure. To determine the active retroelement sequences transcribing and transposing and its chromosomal locations in normal and cancer cells, DNA sequencing of transcripts from various human cells and following analyses on the chromosomal locations were performed. The associations between the activation of these retroelements and genetic disorders including cancers and diseases were investigated. Finally, evolutionary implications were tested by phylogenetic analysis.

П. MATERIALS AND METHODS

1. Cell Lines and Cell Culture

Whole blood samples were collected from peripheral vessel in two healthy individuals. Two normal fibroblasts (Table 1) and sixteen cancer cell lines (Table 2) were used in this study. Cell lines were obtained from Korean Cell Line Bank (KCLB) and American Tissue and Cell Culture Co. (ATCC). Each cell was cultured in Dulbecco's modified Eagle's medium (Gibco-BRL, USA) or RPMI1640 medium, supplemented with 10% fetal bovine serum (FBS) and $1 \times$ antimycotic-antibiotics, under constant $37^{\circ} \mathrm{C}$ and 5% CO_{2} condition, as previously described.학교 중앙도서관

2. Chemicals and Treatment

The normal fibroblast cell line CCD-25Lu was treated with benzidine (BZ), dimethylaminoazobenzene (DMBA), dimethyl sulfoxide (Me2SO), ethanol (EtOH), ethidium bromide (EtBr), N-methyl- N^{\prime}-nitro- N-nitrosoguanidine (MNNG), and 12-O-tetradecanoyl phorbol-13-acetate (TPA). The chemicals were dissolved in the appropriate solvent and diluted at least 100 fold with phosphate-buffered saline (PBS). The dosage of each chemical that corresponded to the maximum resistance concentration was determined by a DNA fragmentation assay and a microscopic observation.

Table 1. Normal human cells used in this study.

Cell line	Symbol	Age	Gender	Status	Origin
KYJ*	YJ	22	female	normal, lymphocyte	blood
KBG*	BG	30	male	normal, lymphocyte	blood
CCD-25Lu	CC	7	male	normal, fibroblast	lung
HEL-299	H	embryon	male	normal, fibroblast	lung

* whole blood from volunteer without clinical symptoms.

Table 2. Human cancer cell lines used in this study.

Cell line	Symbol	Status	Origin
CEM-CM3	CE	acute lymphoblastic leukemia	T lymphoblast
HL-60	HL	leukemia, acute promyelocytic	blood
Jurkat	JU	acute T cell leukemia	T lymphocyte
Molt-4	MO	acute lymphoblastic leukemia	T lymphoblast
U-937	U9	histocytic lymphoma	monocyte
A-431	A3	carcinoma	skin
A-498	A4	carcinoma	kidney
A-549	A5	carcinoma	lung
HCT-15	HC	adenocarcinoma	colon
Hep-G2	HG	hepatoblastoma	liver
MCF-7	MC	adenocarcinoma; pleural effusion	breast, mammary gland
$\begin{gathered} \text { MIA } \\ \text { PaCa-2 } \end{gathered}$	MP	carcinoma	pancreas
SNU-16	SU	adenocarcinoma	stomach; ascites
SNU-C5	SC	adenocarcinoma	colon; colorectal
SK-N-SH	SN	neuroblastoma, metastasis to bone marrow	brain
SK-OV-3	SO	adenocarcinoma, malignant ascites	ovary

3. Total DNA Extraction

Total DNA was extracted from cultured cells and whole blood with slightly modified sucrose-proteinase K method. Before application, the whole blood cells were treated red cell lysis buffer (RCLB) to remove the erythrocytes. Leukocytes from whole blood and cultured cells were washed with PBS. All samples were lysed with 5 ml of pre-warmed sucrose-proteinase K lysis buffer (27% sucrose, $1 \times$ SSC, 1% SDS, 1 mM EDTA, and $100 \mu \mathrm{~g} / \mathrm{ml}$ proteinase K), separated twice with phenol/chloroform/iso-amylalcohol, centrifuged at $3,000 \mathrm{rpm}$ for 10 min , precipitated in iso-propanol, and washed with ethanol, according to the procedure described by Birren et al. (1997). The DNA concentration ranged from $50 \mathrm{ng} / \mu l$ depending on the sample, each DNA was used as a template for PCR amplification, DNA fragmentation assay, and transposition analysis.

4. Cytogenetic Analysis and Fluorescence in situ Hybridization (FISH)

FISH analysis was performed with metaphase chromosomes of peripheral leukocytes, KYJ. The leukocytes were isolated with a gradient centrifugation method using HistoPaque 1770 (Sigma, USA). The cells were cultured in McCoy' 5A medium containing 15% FBS, streptomycin-penicillin, and a mitogen phytohemagglutinin (Sigma, USA). On 3 day, a mitotic blocker, colcemid was treated to prepare the metaphase chromosomes. Harvesting and preparation of slides were performed according to standard cytogenetic procedures. Harvested cells were treated with hypotonic solution $(0.075 \mathrm{M} \mathrm{KCl})$ for 20 min at $37^{\circ} \mathrm{C}$, and fixed at $-20^{\circ} \mathrm{C}$ in Carnoy's
fixative. For FISH and G-Banding analyses, cells were dropped on microscope slides and air dried. Slide preparations were allowed to age at room temperature for 1 day or 2 days before the analyses. Slides were stained with Giemsa. Image acquisition and analysis were performed by the cytogenetic analysis software Karyo-G Band ver. 5.0 (Imstar, France). A L1Hs p40 probe was used for FISH analysis of KYJ metaphase. Probes were labelled with purified PCR product using Dig-Labelling and Detection Kit (Roche, Germany). Each labelled probe was precipitated with Salmon sperm DNA and resuspended in hybridization mixture (50% formamide, 10% dextran sulfate, $2 \times \mathrm{SSC}$, pH 7.0). The metaphase preparations were pre-treated with RNase A and pepsin. Slides were denatured in 70% formamide, $2 \times \mathrm{SSC}$ for 5 min at $70^{\circ} \mathrm{C}$. After probe denaturation at $75^{\circ} \mathrm{C}$ for 5 min , pre-annealing was performed at $45^{\circ} \mathrm{C}$ for 30 min , The pre-annealed hybridization mixture was added to the denatured slides and allowed to hybridize for 16 hr. Post-hybridization washing were performed for $3 \times 5 \mathrm{~min}$ with 50% formamide/ $2 \times$ SSC at $45^{\circ} \mathrm{C}$, and for $3 \times 5 \mathrm{~min}$ with 50% formamide $/ 0.1 \times \mathrm{SSC}$ at $60^{\circ} \mathrm{C}$, both with agitation. After blocking with 5% bovine serum albumin in $2 \times \mathrm{SSC} / 0.1 \%$ Tween-20, the Digoxigenin-labelled probes were detected using anti-digoxigenin Fab fragment conjugated with Rhodamine (Roche, Germany). The air dried slides were counter-stained with DAPI (Sigma, USA) and mounted with antifade (2% DABCO in glycerol). Image acquisition and analysis were performed with the software mFISH ver. 5.0 (Imstar, France).

5. Transposition Analysis

Transposition activity had been screened on each treatment of cell cultures.

Table 3. List of primers used in transposition analysis.

Name	Gene	Sequence ($5^{\prime} \rightarrow 3{ }^{\prime}$)	Reference
HsMar	Hsmarl	TATTAGGTTGGTGCAAAAGT	Demattei et al. (2000)
Mos1	Mos1	AGCTCGTTTA	Augé-Gouillou et al. (2001)
Pogo 1	Pogol	CAGGCATACCTC	Hugh (1996)
HSH103	AP*	GTGACGCCGC	Thㅘㅇ study
HSH147	AP*	GTGCGTCCTC	This study

* is arbitrary primer designed in this study.

Carcinogen treatment had maintained continuously for five culture passages, and total DNA and cellular RNA were extracted as described above.

To amplify the transposition-related region in the genome, two kinds of primers were designed; one is specific primers in flanking region of inverted terminal repeats (ITRs) from three transposons (Mosl, Pogol and human Hsmarl-like element), and the other is random primers in arbitrary ITR sequences. Nucleotide sequences of the ITR primers were listed in Table 3. Amplification procedures were performed by the method of Misra et al. (2001). PCR products were separated on 8% non-denaturing polyacrylamide gels under 100 V constant condition for 4 hr . The bands were stained by EtBr , and then visualized with UV-illumination.

6. Extraction of Total RNA
 세주대학교 중앙도서관
 JEJU NATIONAL UNIVERSITY LIBRARY

Total RNA was extracted from cells and whole blood samples using High Pure RNA Isolation Kit (Roche, Germany) according to manufacturer's guide. Whole blood was treated with Red Cell Lysis Buffer to remove the erythrocyte prior to RNA extraction. The harvested cells from non-treated each culture of cell lines directly applied. RNA extraction from each treatment on fibroblast CCD-25Lu was performed on day 3 after treatment. Extracted RNA was dissolved in DEPC-water, and cellular DNA was removed by digestion with RNase-free DNase I (Roche, Germany).

To calculate the amount of RNA, the absorbance was measured at 260 nm and 280 nm wavelength. The RNA samples with $\mathrm{A}_{260} / \mathrm{A}_{280}$ ratio over 1.8 were used for cDNA synthesis.

7. cDNA Synthesis and Semi-Quantitative RT-PCR

The first strand cDNA synthesized with $1 \mu \mathrm{~g}$ DNase I-digested RNA was reverse-transcribed with the oligo(dT) $)_{15}$ primer using ImpromII cDNA Synthesis Kit (Promega, USA) according to manufacturer's protocol. After cDNA synthesis, reaction mixture was diluted to final volume of $100 \mu l$ by addition of $80 \mu \ell$ DEPC-water, and the amount of synthesized cDNA was measured with absorbance test. Oligonucleotide primers used in RT-PCR amplification were listed in Table 4.

To amplify the transcripts, 100 ng of cDNA was used as a PCR template to amplify each gene, except for 500 ng of cDNA, HERV-K(T47D) LTR and HERV-K(C4) env. Amplification was performed with Taq DNA polymerase (Promega, USA) and appropriate primer pairs. The PCR mixture contained sterile distilled water, $2.5 \mu \ell 10 \times$ PCR buffer (10 mM Tris- $\mathrm{HCl}, \mathrm{pH} 9.0,2 \mathrm{mM} \mathrm{MgCl} 2,50 \mathrm{mM} \mathrm{KCl}$, and 0.1% Triton X-100), $10 \mathrm{mM} \mathrm{dNTP}, 2$ units of Taq DNA polymerase, 20 nM primers, and cDNA. The PCR was performed with a GeneAmp PCR system 9600 (Perkin-Elmer Cetus, USA). The amplification was performed for 30 cycles with denaturation (45 sec at $94{ }^{\circ} \mathrm{C}$), annealing (45 sec at proper temperature according to each primer pair), and extension (1 \min at $72{ }^{\circ} \mathrm{C}$). The PCR products were electrophoresed on 1.5% agarose gels.

The bands observed on a gel were quantified using Quantity-One image analysis software (Bio-Rad, USA). To examine the relative levels of each gene transcription, the intensity values of observed bands were normalized to those of the human β-actin gene. For cloning and DNA sequencing, RT-PCR product was purified with QIAquick PCR Purification Kit (Qiagen, USA) according to manufacturer's manual.

Table 4. List of primers used in RT-PCR analysis.

Name	Gene	Sequence ($5^{\prime} \rightarrow 3$)	Source of primer	Reference
KSH45	HERV-K10 LTR	GTATTGTCCAAGGTTTCTCCC	M14123	Kim et al. (2001)
KDS14		GTGCTGTGCTTTTGGATATGC		
K1505	HERV-K(T47D)LTR	TCCCCTTGGAATACTCCTGTtTT	U39936	Patience et al. (1996)
K1506		CATTCCTTGTGGTAAAACTTTCCA		
KenvS	HERV-K10 env	GTAGAAGTACCTACTGTCAG	AF490464	Sugimoto et al. (2001)
KenvA		CTCACCAGCAGAATACGGTG		
KC4S	HERV-K(C4) env	ATGTACATCTCTGATCACACTATGG	U07586	Schneider et al. (2001)
KC4AS		TAATTTGGAGTGTTTAGGGCCTA		
Lp40S	L1Hs p40	AGGCCAACGTTCAGATTCAG	U93564	This study
Lp40A		GCTGGTACCGGTTGTTCC		
BAS	β-actin	ATGGGTCAGAAGGATTCCTATG	NM_001101	Gunning et al.(1983)
BAAS		CAGCTCGTAGCTCTTCTCCA		
BAXS	$B A X$	ACCAAGAAGCTGAGCGAGTGT		
BAXA		ACAAAGATGGTCACGGTCTGCC		
IL6S	IL-6	AATTCGGTACATCCTCGACG		
IL6AS		GCGCAGAATGAGATGAGTTG		
MYCS	c-Myc	TCTGGATCACCTTCTGCTGG		
MYCA		GCTCCTCTGCTTGGACGGAC		This study
TP53S	p53	GTGGAAGGAAATTTGCGTGT		
TP53A		TCTGAGTCAGGCCCTTCTGT		

8. Cloning and Sequencing

To determine the nucleotide sequences of transcripts of retroelements, DNA sequencing was performed. The purified PCR product and RT-PCR product were ligated into a pCR 2.1-TOPO vector and cloned using $\mathrm{TOPO}^{\mathrm{TM}} \mathrm{TA}$ Cloning kit (Invitrogen, USA). Ligation mixture contained $2 \mu l$ sterile distilled water, $2 \mu l$ insert DNA, $1 \mu \ell$ TOPO vector, and $1 \mu \ell$ salt solution ($1.2 \mathrm{M} \mathrm{NaCl}, 0.06 \mathrm{M} \mathrm{MgCl}_{2}$). Ligation mixture was incubated at room temperature for 15 min . The conditions for transformation and cloning were followed by the manufacturer's manual slightly modified. Plasmid was isolated with Wizard DNA MiniPrep (Promega, USA) and confirmed the insertion of DNA by restriction enzyme digestion or nested PCR. Sequencing reaction was performed in ALFexpress DNA Sequencing System (Pharmacia Biotech, Sweden) with Cy5-labelled vector inner primers (M13-40 and M13 reverse) and Cy5-AutoCycle Sequencing Kit (Pharmacia Biotech, Sweden). The nucleotide sequences of HERV-K10 LTR and L1Hs p40 obtained by DNA sequencing were compared with previously reported sequences using the BLAST search program in GenBank.

9. SignalScan of the Signal Responsive Sequences of HERV-K LTRs

Analysis of putative signals was screened by SignalScan ver. 4.1 (Prestridge, 1991) with Mammal and Virus option using TRANSFAC database (Wingender, 1994). Signal analysis of LTRs of HERV-K10 and HERV-K(T47D) was performed using the sequence from M14123 (Ono et al., 1986) and from U39936 (Patience et al.,
1996) previously reported in GenBank, respectively.

10. Database Search of the Retroelement Sequences in Human Genome Resources

To analyze the associations between chromosome locations of transcriptionally active retroelements and the human genetic disorders, LOCUSLINK was used to determine the chromosomal map locations in Human Genome Resources. Chromosomal fragile sites previously reported were also screened using LOCUSLINK. OMIM (Online Mendelian Inheritance in Man) was used to search the locus-related genetic disorders and cancers.

11. Protein Sequence Analysis of L1Hs p40

The standard active L1Hs p40 protein sequences retrieved from U93573 (Sassaman et al., 1997) were analyzed using PROSITE database (Bairoch et al., 1997) in Network Protein Sequence (http://npsa-pbil.ibcp.fr). To scan a sequence for sites/signatures PROSCAN carried out against PROSITE database, and a helix-turn-helix motif did HTH (Dodd and Egan, 1990). Phylogenetic analysis on putative protein sequences obtained from the result of translation of L 1 Hs p40 nucleotide sequences were carried out using CLUSTAL W (Thompson et al., 1994) for multiple alignment and PHYLIP package (Felsenstein, 1993) for phylogenetic relationship. Protein distance was calculated with the program PROTDIST.

12. Phylogenetic Analysis of Retroelement Transcripts

DNA sequences were multiple aligned using CLUSTAL W (Thompson et al., 1994), and were analyzed using PHYLIP program packages (Felsenstein, 1993). The sequence boundaries of each gene were determined by comparison with those previously reported (Table 3). The multiple alignment of obtained sequences and those previously reported was performed using CLUSTAL W program with the default settings, and then alignment was adjusted manually in order to align several regions of conserved sequences. Genetic distances among sequences were calculated using DNADIST program with the option of two-parameter method (Kimura, 1980) in PHYLIP. A bootstrap analysis was done using 1,000 replicating data sets generated with the SEQBOOT program. Then, CONSENSE program was used to construct a strict consensus tree.

III. RESULTS

Until now, expression of retroelements has been observed in several normal tissues and cancers. To examine the associations between the expression of functionally active retroelements and human cancers, this study has been analyzed the transcription patterns, the effects of carcinogen treatment on gene expression and transposition activity, transcript sequences, and the chromosomal locations of active retroelements HERV-K and L1Hs in human cells.

1. Human endogenous retrovirus-K

1) Cell type-specific transcription of the HERV-K genes

In normal fibroblasts, the pattern of HERV-K transcription was examined using RT-PCR analysis. Different transcription levels were observed (Fig. 4). After standardization to human β-actin mRNA, the relative levels of HERV-K env genes and HERV-K LTRs transcription were different between CCD-25Lu and HEL-299 cells. The relative transcription of K10 LTR, K10 env, and T47D LTR was higher in CCD-25Lu cells than in HEL-299 cells, while that of C4 env expression was lower. Lung carcinoma A-549 showed high expression in HERV-K LTRs and C4 env, but not of K10 env, compared to normal lung fibroblasts (CCD-25Lu and HEL-299 cells). In the leukemia cell lines, T lymphoblast cells (Molt-4 and CEM-CM3) expressed relatively higher levels of HERV-K genes than did HL-60, U-937, or Jurkat. The transcription of K10 env gene was relatively higher in several cancer cells and fibroblasts. The C 4 env gene was also

- xxiii -

Figure 4. RT-PCR analysis of the HERV-K genes in human cells. 100 ng of cDNA was used as a PCR template for amplifying the K10 LTR and K10 env, and 500 ng of cDNA for T47D LTR and C4 env, respectively. M is the DNA size marker, GenRuler DNA ladder.
transcribed in a variety of cells except for $\mathrm{SNU}-16$, but the relative transcription levels were different remarkably (Fig. 5). In the analysis, no differences in the relative transcription levels of normal fibroblasts and cancer cells was detected. While the relative transcription of each gene differed in the cell line tested. In particular, the transcription of HERV-K10 env, HERV-K(C4) env, and HERV-K(T47D) LTR showed cell-type specificity, as described previously (Majors, 1990; Ting et al., 1992; Kjellman et al., 1999; Sugimoto et al., 2001; Andersson et al., 2002).

2) Various signals can effect on the activation of HERV-K

A conserved region was identified by BLAST search and multiple alignment of HERV-K LTRs. As reported, putative signal responsive elements on LTR include promoter, enhancer, and hormone responsive elements (Baust et al., 2001; Schön et al., 2001). A computer analysis of HERV-K10 LTR sequences was performed using the TRANSFAC database (Wingender, 1994). Figure 6 shows putative signal response sites in HERV-K10 LTR. The viral TATA box and enhancers were found, and the TATA box is the potential region for binding of various transcription factors (TMF, UBP-1, TFIID, TFIIF, TRF, TBP, and NF-E2). In addition, various transcription factor response elements (AP-1, CAC binding protein, GATA-1, Sp1 and TGT3; hormone response elements, GR for glucocorticoid and window 4 and 10 for the human epidermal growth factor) and the oncoprotein c-MYC binding element were also detected.

HERV-K(T47D) LTR has the signal responsive elements, for example, binding sequences for transcription factors (AP-1, AP-2, NF-1, NF-2, NF-E, TFIID, TBP, Sp1, and Pit-1), oncoproteins (v-JUN and c-MYC), and hormone (GR) (Fig. 7).

3) Carcinogens induced the various effects on gene expression of the HERV-K and regulatory proteins in CCD-25Lu

Figure 5. Relative levels of the HERV-K gene transcription in human cells. 100 ng of cDNA was used as a template for amplifying the K10 LTR and K10 env, and 500 ng for T47D LTR and C4 env. RT-PCR bands were standardized by comparing the ratio of each HERV-K gene to that of the human β-actin with Quantity One software (Bio-Rad).

Figure 6. Signal scan of the HERV-K10 LTR using the TRANSFAC signal database with human and virus option.

Figure 7. Signal scan of the HERV-K(T47D) LTR using the TRANSFAC signal database with human and virus option.

To screen the effects on transcription of HERV-K by carcinogens, CCD-25Lu cells were treated with various chemical carcinogens. The carcinogen treatments had various effects on CCD-25Lu cells. The cytotoxic effects by DNA fragmentation assays also were different. High concentration of MNNG and EtBr induced cell death. Degraded DNA fragments produced in cellular processes of the activated apoptotic pathway were observed in fibroblasts treated with carcinogens, which the pattern of DNA degradation varied according to the carcinogen. Using RT-PCR, the result showed that carcinogens alter the expression of HERV-K genes (Fig. 8) and regulatory protein genes. Cellular mRNA contained more RNA transcripts of HERV-K genes in all treatments, except HERV-K10 LTR in EtOH, EtBr, and MNNG treatment (Fig. 9). Of the regulatory genes, $B A X$ mRNA was increased by all the carcinogens, $c-M Y C$ mRNA reduced by EtBr , and IL-6 was decreased by MNNG (Fig. 10). The expression of $p 53$ was reduced by DMBA, $\mathrm{EtOH}, \mathrm{EtBr}, \mathrm{MNNG}$ and TPA in CCD-25Lu fibroblasts (Fig. 11).

4) Carcinogens induced the transposition activity in CCD-25Lu

Screening of transposition events has been examined using random amplification of the genomic DNAs and cDNAs, which extracted from the CCD-25Lu fibroblasts exposed to each carcinogen for 7 passages. After average 5 passages, an distinguishable amplification patterns have been shown (Fig. 12 and 13). Amplification with the arbitrary and transposon specific ITR primers showed that altered patterns were dependent on culture passages. In addition, RT-PCR analysis on cDNA using the same primers has also been shown the differential fragments on gels at 5 passages of carcinogen treatments. Transcription patterns had also been altered by carcinogen treatment in CCD-25Lu fibroblasts. Comparing to saline treated control, carcinogen specific bands were found in the treatments, and relative levels of each amplified band has also been remarkably different (Fig. 14).

- xxix -

Figure 8. RT-PCR analysis of the HERV-K gene transcription in CCD-25Lu cells treated with carcinogens. 100 ng of cDNA was used as a RT-PCR template for amplifying the K10 LTR and K10 env, and 500 ng of cDNA for T47D LTR and C4 env, respectively. M is the DNA size marker, GenRuler DNA ladder.

Figure 9. Relative levels of the HERV-K gene transcription in CCD-25Lu cells treated with carcinogens. 100 ng of cDNA was used as a template for amplifying the K10 LTR and K10 env, and 500 ng for T47D LTR and C4 env. Standardization for the transcription level of each gene was performed as described in Fig. 5.

- xxxi -

Figure 10. RT-PCR analysis of the regulatory protein gene transcription in CCD-25Lu cells treated with carcinogens. 100 ng of cDNA was used as a RT-PCR template for amplifying each gene. M is the DNA size marker, GenRuler DNA ladder.

Figure 11. Relative levels of the regulatory gene transcription in CCD-25Lu cells treated with carcinogens. 100 ng of cDNA was used as a RT-PCR template for amplifying each gene. Standardization for the transcription level of each gene was performed as described in Fig. 5.

Figure 12. Transposition analysis on genomic DNAs of CCD-25Lu cells treated with carcinogens for 7 culture passages. Amplification was performed using arbitrary random priming ITR, HSH103. The number on the top of each lane indicates the culture passage. M is the DNA size marker, 1 kb ladder plus.

Figure 13. Transposition analysis on the carcinogen treatments after 5 culture passages. A, Amplification patterns on CCD-25Lu cells using HSH103; B, those on HL-60 cells using HSH103; C, those on SK-N-SH cells with Hsmar1. M is DNA size marker, 1kb ladder plus.

Figure 14. Transposition analysis on CCD-25Lu cDNAs treated with carcinogens after 5 culture passages using transposon specific ITR primer Pogol. 100 ng of cDNA was used as a template for amplifying. M is DNA size marker, 100 bp ladder plus.

5) HERV-K10 LTRs transcribed from various locations on chromosomes

To investigate active HERV-K10 LTR, the RT-PCR products from the cell lines were sequenced. The characteristics and chromosomal locations of HERV-K10 LTR elements transcribed from human cells are shown in Table 5. The BLAST result confirmed that the HERV-K10 LTR sequences from various human chromosomes were identical. 'K10 LTR groups' have been defined as identical sequences, appearing at more than two loci on different chromosomes or accession numbers. For example, HERV-K10 LTR group 1 occurs in twenty-four identical sequences at fourteen different locations on nine chromosomes (Table 6 and Table 7). The sixty clones sequenced from normal cells were made up of sixteen elements. RNA intermediates of HERV-K10 LTR should be transcribed from as least sixteen positions in the haploid human genome. They had lengths of 297 or 298 bp , and the sequence similarity ranged from 97-100\%. From cancer cells, a hundred and fifty clones were sequenced. Their lengths were more vary than those of elements from normal cells, i. e., from 287 to 306 bp , and the sequence similarity ranged from $95-100 \%$. Several HERV-K10 LTR elements were identical to those previously reported by Yi et al. (2001).

6) Several locations of HERV-K10 LTR transcripts were specific for cancer cells

The putative chromosomal locations were investigated using a BLAST search of the Human Genome database in GenBank. Forty-four elements were thought to be derived from single location on one chromosome, while the others had multiple origins. The HERV-K10 LTR was found from the centromere to the telomere. Four HERV-K10 LTRs (2F7-1, MC-5, MP-4, and SC-1) might be transcribed from the telomere regions of the four chromosomes (chromosome 4, 8, 9, and 15). Cell-type specific HERV-K10 LTR elements were found, and they were transcribed from different loci of chromosomes. For example, nine clones of HERV-K10 LTRs transcribed from 1q21 were observed in six

Table 5. Chromosomal locations of the HERV-K10 LTR transcripts from the human cells

Cell line	Clone	Length	$\begin{gathered} \text { Similarity } \\ (\%) \\ \hline \end{gathered}$	The most similar sequence
KYJ	YJ-1	297	99	K10 LTR group 4; AC023162.41(3q21), AL449213.4(3q21)
	YJ-2	297	99	AC114933.2(5p14)
	YJ-3	297	99	K10 LTR group 1 ; AB023523.1(ND*), AB059364.1(ND), AF276875(ND) AL139421.12(1p22) AC006039.3(7p15) AC100821.2(8q11) AL354855.26(9q34) AK075315.1(11q13), NM 173578.1(11q13), AP003385.2(11q13), AP000812.4(11q13), AP0000776.5(11q22), AC023281.13(12p11), AC048344.44(12p11) AC025420.26(12q13) AC107977.13(15q25), AC129907.3(15q25), AC109513.14(15q25), AC140725.3(15q25) AC012175.7(16p13), AC002400.1(16p12), AC008870.8(16q12), AC009132.9(16q23) AL031654(20q12)
	YJ-4	298	99	Group 3
	YJ-5	297	99	Group 3
KBG	BG-1	297	100	AL049570.11(1p35)
	BG-2	297	98	BC036118.1(8q24)
	BG-3	297	Tel 97	AP005203.3(18p11) -
	BG-4	297	ㅅ98- 네	Group 1 万 드샌
	BG-5	297	100	AL392107.17(10q24) IBRARY
	BG-6	297	98	Group 2
CCD-25Lu	CC-1	297	99	Group 3
	CC-2	297	99	K10 LTR group 2; AL049570.11(1p35), AL512637.18(1q44) AC084198(3q12) AF235103.5(8q25), BC036118.1(8q25) AL135901.23(13q14) AC026803.7(19q13)
	CC-3	297	98	K10 LTR group 3 ; AB023542.1(ND), AB023539.1(ND) AC016839.12(18q11), X54171.1(18q11)
	CC-4	297	99	AL135901.23(13q14)
	CC-5	298	99	AC025674.10(8q11)
	CC-6	297	99	AL135901.23(13q14)
2F-7	2F7-1**	291	100	Z95704.1(4p16)
A-431	A3-1**	297	99	AC019155.4(7q32)
	A3-2**	297	98	AL356019.5(14q11)
	A3-3**	297	99	AC105049.4(8q24)
A-498	A4-1	297	99	K10 LTR group 6 ; AC079753.7(2q14), BN000002.1(2q14)
	A4-2	298	100	AC 025674.10 (8q11)
	A4-3	297	98	Group 6
A-549	A5-1	297	100	AL392107.17(10q24)
	A5-2	297	99	AL592284.10(1q21)
	A5-3	294	98	AC020924.8(5q12)
	A5-4	297	99	AC105049.4(8q24)

Table 5 (Continued)

Cell line	Clone	Length	Similarity (\%)	The most similar sequence
HCT-15	HC-1	297	97	AC008784.7(5q11)
	HC-2	297	99	K10 LTR group 7; AC104150.6(3q26), AC104640.3(3q26) AC080023.6(11p15), AP003716.4(11q12)
	HC-3	294	95	K10 LTR group 8; AF017229.1(ND), Y17833.1(ND) AC112702.3(19q12), AC010508.8(19q12)
	HC-4	294	96	Group 8
	HC-5	297		AL356019.5(14q11)
Hep-G2	HG-1	297	99	AL392107.17(10q24),
	HG-2	298	99	K10 LTR group 9; BC041646.1(ND), BC011367.1(ND), AF164610.1(ND), K090528.1(ND) AL353807.18(1q22) AC021133.5(6p12), AL121969.12(6p12)
	HG-3	297	99	K10 LTR group 10; BC001407.1(ND)* AL713888.10(10q21)
	HG-4**	297	99	K10 LTR group 11; AF394944.1(Xq26), AL034407.1(Xq26)
	HG-5**	287	100	AC004979(4q31)
HL-60	HL-1	294	100	AL671879.2(6p21)
	HL-2	306	99	AC011447.7(19p13)
	HL-3	299	X 95 - L	$\overline{\mathrm{AC}} 053544.5(4 \mathrm{q} 13)$ 区 거난
	HL-4	298	99	AL592284.10(1q21) LIBRARY
	HL-5	298	100	AC007283.3(2q33)
Jurkat	JU-1	293	99	AL590543.8(6q25)
	JU-2	297	98	AC109327.10(17q25)
	JU-3	290	97	K10 LTR group 12; BX546487.5(ND) AC128674.3(1q21) AC127384.4(1q21), AL954711.3(1q21)
	JU-4	298	97	AL049742.8(1q21)
	JU-5	297	98	K10 LTR group 13; AC109322.16(8q24), AC105049.4(8q24) AL445931.29(9q34), AC002103(9q34), AC000387.1(9q34) AC000401.1(9q34), AL591386.18(9q34)
	JU-6**	298	99	AL592284.10(1q21)
	JU-7**	297	99	AL391244.11(1p36)
MCF-7	MC-1**	297	100	AL139404.9(10q11)
	MC-2**	297	100	AC087533.7(8p11)
	MC-3**	297	98	Group 7
	MC-4**	297	98	AC000387(9q34)
	MC-5**	297	100	K10 LTR group 14; AC000387(9q34), AL591386.18(9q34)
MIA-PaCa-2	MP-1**	287	100	AC004979(4q31)
	MP-2**	298	100	AC007283.3(2q33)
	MP-3	298	97	AL592284.10(1q21)
	MP-4	297	99	AC140725.3(15q26)
	MP-5	298	98	AL592284.10(1q21)
	MP-6	288	98	AC011322.29(3q29)
	MP-7	297	99	AL391244.11(1p36)

Table 5 (Continued)

Cell line	Clone Length	Similarity $(\%)$	The most similar sequence	
SNU-C5	SC-1	297	98	Group 2
	SC-2	296	99	AC003976(17q21)
SNU-16	SU-1	297	99	AC019155.4(7q32)
	SU-2	295	100	K10 LTR group 5
				AP000346.1(22q11), AP000345.1(22q11)
	SU-3	296	98	Group 6
	SU-4	294	95	AC104301.2(17q21)
	SU-5	298	98	AL592284.10(1q21)
	U9-1	297	99	AL513550.9(6q16)
	U9-2	298	98	AL049742.8(1q21)
	U9-3**	297	100	Group 1]
	U9-4**	297	99	Group 1
	U9-5**	297	99	AC072054.10(7p22)
	U9-6	298	99	AL391244.11(1p36)

[^0]Table 6. HERV-K10 LTR groups found in the similarity search

Group	No. of identical sequence	No. of location*	No. of chromosome**
K10-1	24	14	10
K10-2	7	6	5
K10-3	4	1	1
K10-4	2	1	1
K10-5	2	1	1
K10-6	2	1	1
K10-7	4	3	2
K10-8	4	1	1
K10-9	7 제주대학교 중앙 2		
K10-10 서관	2		
K10-11	2	1	1
K10-12	2	1	1
K10-13	4	2	1
K10-14	6	1	2

* is determined by BLAST search in GenBank database.
** is determined by LOCUS search in Human Genome Resources in GenBank.

Table 7. HERV-K10 LTR groups and identical sequence clones from the cell lines tested

Cell line	No. of clones tested	No. of K10 LTR group*														No. of clones found in K10 LTR groups
		1	2	3	4	5	6	7	8	9	10	11	12	13	14	
YJ	20	7	4	1	-	-	2	1	-	-	-	-	-	1	-	16
BG	20	8	3	1	1	-	1	1	-	-	-	-	-	1	-	16
CCD-25Lu	20	6	2	1	-	-	-	2	-	2	-	-	-	1	-	14
A-498	15	6	2	-	-	-	1	-	1	1	-	1	-	-	-	12
A-549	15	3	4	-	1	-	-	1	-	1	-	-	-	1	-	11
HCT-15	15	4	2	1	1	-	-	1	-	-	1	-	-	-	-	10
Hep-G2	15	3	3	1	-	-	-	-	-	2	-	-	1	1	1	12
HL-60	15	4	5		-	\square	-	1^{-}	$\frac{6}{6}$	8		간	1	-	-	10
Jurkat	15	3	3	-	-	-	-	-	-	2	-	-	-	2	-	10
MIA-PaCa-2	15	3	-	2	-	-	-	2	1	-	-	-	1	1	-	10
SNU-C5	15	6	2	1	-	-	1	-	-	1	-	-	1	1	-	13
SNU-16	15	2	4	1	1	1	-	1	-	1	-	-	-	-	-	11
U-937	15	3	3	1	-	-	-	2	-	1	-	-	-	1	1	12
Total	210	58	37	10	4	1	5	11	2	11	1	1	4	10	2	157

* group numbers are given in Table 6.
cancer cells (A-549, HL-60, Jurkat, MIA-PaCa-2, SNU-16, and U-937) and three clones from 1 p36 in three cancer cells (Jurkat, MIA PaCa-2, and U-937), but not in normal cells (Table 8). In addition, HERV-K10 LTR transcripts from the eight chromosomal locations ($2 \mathrm{q} 14,2 \mathrm{q} 33,4 \mathrm{q} 31,7 \mathrm{q} 32,8 \mathrm{p} 11,10 \mathrm{q} 11,14 \mathrm{q} 11$, and 17 q 21) were shared two kinds of cancers. For example, HERV-K10 LTR clones transcribed from $2 q 14$ were observed in skin carcinoma A-431 and stomach adenocarcinoma SNU-16. The six locations (1q21, 2q14, 9q34, 13q14, 18q11, and 19q13) showed more than two clones from each single cell line. In these, three clones (JU-3, JU-4, and JU-6) transcribed from the same location 1q21 in jurkat. However, some transcripts from the six locations (1p35, 3q31, 5p14, 13q14, 18p11, and 18q11) were specific for normal cells. Those from 8 q 11 and 10 q 24 were observed in normal cells as well as in cancer cells. Except for HERV-K10 LTR groups, cell line specific transcripts have not found in chromosomes 11, 12, 16, 20, 21, and Y (Table 8).

7) HERV- K10 LTR elements divided into several clusters

Sixty-two different HERV-K10 LTRs obtained from human cells were subjected to phylogenetic analysis, along with twenty-eight elements, previously reported from the human genome, nine from chimpanzees (Pan troglodytes: AB023912, AB023913, AB023915, AB023916, AB023917, AB023918, AF311937, and M57949), two from macaques (Macaca mulatta: AB024015 and AB024016), two from gorillas (Gorilla gorilla: AB023923 and AB023921), and one from common squirrel monkey (Saimiri sciureus: AB023924). The neighbor-joining (NJ) tree constructed using DNA distances had three main clusters; a branch containing the common ancestral elements of primates, elements shared by human and macaques, and human-specific type I elements (Fi. 15). The human-macaques cluster was further subdivided into human-specific type II elements and other elements. In addition,

Table 8. Cell line-specific transcripts of the HERV-K10 LTR and its chromosomal locations

Chromosomal location	Symbol of clone*	No. of clone
1p36	JU-7, MP-7, U9-6	3
1p35	BG-1	1
1 q 21	$\begin{aligned} & \text { A5-2, HL-4, JU-3, JU-4, JU-6, MP-3, MP-5, } \\ & \text { SU-5, U9-2 } \end{aligned}$	9
2q14	A4-1, A4-3, SU-3	3
2q33	HL-5, MP-2	2
3 q 21	YJ-1	
3 q 29	MP-6	1
4 q 13	HL-3	1
4q31	HG-5, MP-1	2
5p14	YJ-2	1
5q11	HC-1	1
5q12	A5-3	1
6 p 21	HL-1	1
6 q 16	U9-1	1
6 q 25		1
7 p 22	U9-5 수내악표 훙아느서난	1
7q32	A3-1, SU-1 Onal university Library	2
8 p 11	A3-2, MC-2	2
8 q 11	CC-5, A4-2	2
8 q 24	A3-3, A5-4, BG-2	3
9 q 34	MC-4, MC-5	2
10q11	HG-3, MC-1	2
10 q 21	HG-1	1
10 q 24	BG-4, A5-1	2
13 q 14	CC-4, CC-6	2
14q11	A3-2, HC-5	2
15 q 26	MP-4	1
17 q 21	SC-2, SU-4	2
17 q 25	JU-2	1
18p11	BG-3	1
18 q 11	YJ-4, YJ-5, CC-1, CC-3	4
19 q 12	HC-3, HC-4	2
19 q 13	HL-2	1
22q11	SU-2	1
Xq26	HG-4	1

[^1]

Figure 15. Neighbor-joining tree based on the sequences of the HERV-K10 LTR transcripts in the human cells. Abbreviations of each HERV-K10 LTR clone were represented in Table 4. Gorilla, Gorilla gorilla; MacacaM, Macaca mulatta; Pant, Pan troglodytes; SaimiriS, Saimiri sciureus.
the cluster of common ancestral elements was subdivided into two subclusters: human-chimpanzee-gorilla and human-chimpanzee-common squirrel monkey.

2. Human long interspersed nuclear element-1

1) $\mathbf{L 1 H s}$ p40 elements were transcribed in various human cells

In RT-PCR analysis, L1Hs p40 transcripts were found in all cell lines tested, however, the transcripts could not be clearly distinguished among the cell lines tested (Fig. 16). Cellular mRNA for two normal fibroblasts (CCD-25Lu and HEL-299) also contained L1Hs p40 transcripts, but the relative levels of transcription had not significantly distinguished. The transcription levels of A-549, MCF-7, HCT-15 and SNU-16 were higher than those of leukemic cells and fibroblasts (Fig. 17).

2) Carcinogens changed the level of L1Hs $\boldsymbol{p} 40$ transcription in CCD-25Lu

RT-PCR analysis of mRNAs extracted from cultures treated with carcinogens were shown higher transcription levels, compared to control treated with saline (Fig. 18). Figure 19 shows the relative levels of L1Hs p40 transcription in each carcinogen treatment. Compared to β-actin, DMBA treatment caused the highest transcription rate, and EtBr treatment the lowest. Different expression patterns have been observed in the EtBr and MNNG treatments, and resulted in cell death.

3) L1Hs p40 transcribed from various locations on the chromosomes

Using RT-PCR products from four normal cells, fourteen new L1Hs elements were

제주대학교 중앙도서관

Figure 16. RT-PCR analysis of the L1Hs p40 transcription in the human cells. 100 ng of cDNA was used as a RT-PCR template for amplifying L1Hs p40. M is the DNA size marker, GenRuler DNA ladder.

제주대학교 중앙도서관

Figure 17. Relative levels of the L1Hs $p 40$ transcription in the human cells. 100 ng of cDNA was used as a RT-PCR template for amplifying L1Hs p40. RT-PCR bands were standardized by comparing the ratio of the L1Hs p40 to that of the human β-actin with Quantity One software (Bio-Rad) as described in Fig. 5.

Figure 18. RT-PCR analysis of the L1Hs $p 40$ transcription in CCD-25Lu cells treated with carcinogens. 100 ng of cDNA was used as a PCR template for amplifying each gene. M is the DNA size marker, 100 bp ladder plus.

Figure 19. Relative levels of the L1Hs $p 40$ transcription in CCD-25Lu cells treated with carcinogens. 100 ng of cDNA was used as a PCR template for amplifying L1Hs $p 40$. Standardization for the transcription level of each gene was performed as described in Fig. 17.
identified. Length variation was found in several sequences, which ranged from 376 to 382 bp (Table 9). The BLAST analysis showed that many of the determined L1Hs element sequences were identical to previously reported sequences (Table 10 and Table11). Furthermore, several copies of some identical sequences were found on several chromosomes. These were defined as 'L1Hs group', and thirteen distinct L1Hs groups were found (Table 10). For instance, in the human genome, L1Hs group 1 contains sixty-five identical sequences at fifty-one locations on twenty chromosomes excluding chromosomes 17,18 , and 21 . Of the L1Hs from normal cells, ten elements are transcribed from a single locus on one chromosome. The chromosome locations were distributed over all chromosomes, excluding chromosome 21, and ranged from the centromere to the telomere. The length of the L1Hs p40 gene, determined from various cancer cells, varied from 363 to 439 bp . Many L1Hs elements had the typical length of 379-bp. Clones HL-1 and JU-4 contained 5' additional sequences, and MP-2 had a $40-\mathrm{bp}$ tandem duplications in the 5^{\prime} region (Appendix 2). Forty-three sequences from cancer cells were transcribed from a single genome location.

To confirm the chromosomal locations and distributions of L1Hs elements, FISH analysis was performed with normal leukocyte cells. FISH analysis of L1Hs in the metaphase showed that it was a multi-copy retroelement, distributed on all chromosomes. FISH analysis using an L1Hs probe showed that there were over five thousand L1Hs element loci in a single metaphase preparation (Fig. 20)

4) Cell line specific L1Hs elements were transcribed from different chromosomal locations

In several cell lines, the specific transcripts of L1Hs p40 elements were observed. For instance, several L1Hs elements (transcribed from 1p13, 1q42, 3p24, 4p16, 5p13, and Xq13) were transcribed in normal cells but not in cancer cells tested. In these, three

Table 9. Chromosomal locations of the L1Hs p40 transcripts from the human cells

Cell line	Clone	Length	Similarity (\%)	The most similar sequence
CCD-25Lu	CC-1	378	98	AL139400.9(Xq13)
	CC-2	379	98 제	L1Hs group1; U93564.1(ND*), U93567.1(ND), U93573.1(ND), U93574.1(ND) AL354949.10(1p31), AL683886.8(1p13), AL357045.10(1p11), L021069(1q24), AL162431.17(1q25), AL592494.4(1q31), AC096569.1(2p13), AC015971.4(2p11), AC105762.4(2q14), AC104088.6(2q31), AC104820.4(2q31), AC012486.9(2q33), AF312225(2q34), AC138658.1(2q35) AC099664.2(3p12), AC046144.15(3q13), AC109583.2(3q21), AC011597.27(3q22) AC114806.5(4p15), AC093607.3(4p15), AC013724.8(4q12), AC106884.5(4q13), AC092663.2(4q13), AC004704(4q25), AC096898.6(4q28), AC125376.3(4q32), AC020599(4q32), AC010450.6(5p15), AC091872.3(5p15), AC008948.8(5q13) AL031768.9(6p25), AL512428.13(6p22), AL591051.7(6q22), AL589693.3(6q25), AC004694.1(7p15), AC079855.8(7q11), NG_000004(7q21), AC006992.2(7q35) AC090150.9(8p21) AL160001.10(9q31) AL391260.13(10q24) AC139427.3(11q13) AC024934.3(12q12), AC025263(12q14), AC095347.6(12q21), AC093025.5(12q21) AL138694.18(13q34) AL160234.3(14q23), AL137191.5(14q23) AC073940.4(15q15) AC007347(16q12) AL161938.6(20p12), AL096677.21(20p12) AF421375(22q11), AL078622.7(22q23) AL663118.2(Xp11), AL356317.8(Xq11), Z95325.2(Xq21), AL022308(Xq21), AL590306.7(Xq22) AC010081.4(Yp11)
	CC-3	379	98	L1Hs group 5; AC019201.6(2q24) AC140125.3(5q35) AL354951.7(10q25)
	CC-4	379	99	L1Hs group2; AL133320(1p31), AC104454(1p22) AC092505.2(3p24), AC107028(3p11) AC098597(4p15), AC108516(4q22), AC093729(4q22), AC018680(4q31) AC109494(5p12), AC093255(5q21), AC008467(5q22), AC011413(5q31) AC004200(6p21), AL356601(6q15), AL356438(6q21), AP006196(6q21), AL583853(6q22) AC093775(7p11), AC092595(7q22) AC084257(8q21), AC020783(8q21), AC067844(8q23) AP004242(11q19), AP001876(11q21) AC005885(12q24) AC044907(15q25) AC009063(16q23), AC106814(16q23) AC005939(17q35) AP001028(18p11), AC002980(Xp22), AF148856(Xp22), AC004554(Xp22), AC004000(Xq24)
HEL-299	HE-1	378	98	L1Hs group 11; AC104456(1p22), AL451010(1p21)
	HE-2	379	97	AL596133(1q42)
	HE-3	376	94	AL161450(9p24)
	HE-4	382	100	AC092795.2(3p24)

Table 9 (Continued)

Cell line	Clone	Length	Similarity (\%)	The most similar sequence
KYJ	YJ-1	379	100	AL160171.27(1p13)
	YJ-2	378	97	AC096740.3(4p16)
KBG	BG-1	379	98	L1Hs group 4; AC004514.1(8q21) AC040174.5(16q21), AC119049.1(16q21), AC040159.4(16q21)
	BG-2	378	96	L1Hs group 10; AC009319.19(3q27) AC090179.4(15q24), AC090751.9(15q24)
	BG-3	379	94	AL096710.8(6p11)
	BG-4	378	99	AC114967.2(5p13)
	BG-5	377	96	AL160171.27(1p13)
	BG-6	378	97	AL160171.27(1p13)
A-498	A4-1	377	98	AL121772.19(20p11)
	A4-2	379	96	L1Hs group 8; AC068206.10(15q25), AC020687.6(15q25)
	A4-3	380	98	AL096710.8(6p11)
	A4-4	379	100	AL157820.27(13q34)
	A4-5	379	97	AL096710.8(6p11)
A-549	A5-1	380	99	L1Hs group 12; AC079075.6(15q26), AC013787.15(15q26)
	A5-2	379	97	AC007000.2(7q11)
CEM-CM3	CE-1	383	95	AL139320.18(13q14)
	CE-2	378	93] 즌	AC079228.7(4q32) 다 서과
HCT-15	HC-1	378	98	AC034229.4(5p15) EIT LBRARY
	HC-2	379	99	$\begin{aligned} & \text { L1Hs group 3; } \\ & \text { AC094098.4(5q32), AC016572.6(5q35), AC022413.4(5q35) } \\ & \text { AL590095.5(10p15) } \\ & \text { AL117375.12(20p11), } \\ & \text { AL590285(Xp21), AL161778.19(Xq26) } \end{aligned}$
	HC-3	379	99	L1Hs group 9; AC073326.6(7q31) AL078623.28(20p12)
	HC-4	375	98	L1Hs group 13; AC007992.12(8q22) AC015998.8(8q22), AP003465.2(8q22)
	HC-5	380	98	AL031176.8(Xq23)
HL-60	HL-1	399	98	AC125236.4(4p11)
Jurkat	JU-1	376	97	AC078816.16(3q24)
	JU-2	379	97	AL590131.8(Xq26)
	JU-3	378	100	AL049831.2(14q11)
	JU-4	385	99	AC004140.2(7q21)
	JU-5	378	99	AC093388.4(2q32)
MCF-7	MC-1	376	99	Z72001.3(Xq26)
	MC-2	380	98	AC131151.2(3q11)
	MC-3	379	99	AC131151.2(3q11)
	MC-4	379	99	AC104648.2(2q14)
MIA-PaCa-2	MP-1	380	99	AC106750.3(5q22)
	MP-2	439	96	AC093733.2(4q22)
	MP-3	379	99	AC025477.6(5q12)
	MP-4	379	99	AL356284.11(9p24)

Table 9 (Continued)

Cell line	Clone	Length	Similarity (\%)	The most similar sequence
Molt-4	MO-1	379	97	AC087377.7(11p11)
	MO-2	379	98	AC144523.2(ND)
	MO-3	379	98	AC113385.2(5q21)
	MO-4	379	99	AL159154.16(13q22)
	MO-5	377	98	AL096710.8(6p11)
SK-N-SH	SN-1	379	99	AC022537.8(10q11)
	SN-2	379	99	AC022537.8(10q11)
	SN-3	379	98	AC022537.8(10q11)
	SN-4	379	99	AC004694.1(7p15)
	SN-5	379	99	AC004694.1(7p15)
SK-OV-3	SO-1	379	98	AC073196.3(4q12)
	SO-2	379	99	AC 011155.13 (18q21)
	SO-3	377	97	AC093783.2(4q28)
SNU-16	SU-1	379		L1Hs group 6; AC084264.7(2p22), AC011242.8(2p22) AL356794.10(6q24) AL160253.16(13q32)
	SU-2	379	96	AL139136.17(1q31)
	SU-3	385	91	AC079033.12(12q13)
	SU-4	379	97	L1Hs group 7; AC104623.4(2p24) AC091936.2(5q21) AL121852.3(14q12)
	SU-5	384	100	AC097515.5(4p16)
U-937	U9-1	379	100	$\mathrm{AC} 010365.5(19 \mathrm{q} 12)$
	U9-2	379	100	AC090060.15(12q21)
	U9-3	379	98	M80340(ND)

[^2]Table 10. L1Hs groups found in the similarity search

Group	No. of identical sequence	No. of location*	No. of chromosome**
L1Hs-1	65	51	20
L1Hs-2	34	38	14
L1Hs-3	7	6	4
L1Hs-4	4	2	2
L1Hs-5	3	3	3
L1Hs-6	4	3	3
L1Hs-7	3	3	3
L1Hs-8	2제주대학표 중앙두서관		1
L1Hs-9	2	2	2
L1Hs-10	3	2	2
L1Hs-11	2	2	1
L1Hs-12	2	1	1
L1Hs-13	3	1	1

* is determined by BLAST search in GenBank database.
** is determined by LOCUS search in Human Genome Resources in GenBank.

Table 11. L1Hs groups and the number of identical sequence clones from the cell lines tested

Cell line	No. of clones tested	No. of L1Hs group*													Total No. of clones found L1Hs group
		1	2	3	4	5	6	7	8	9	10	11	12	13	
KYJ	20	10	4	1		1		1				1			18
KBG	20	9	4				1								14
CCD-25Lu	20	9	3			1	1				1			1	16
HEL-299	20	8	6			2									16
A498	15	5	2		1	1					1				10
A549	15	5	3	2			1						1	1	13
CEM-CM3	15	4	1	2			2	1	1		1			1	13
НСТ-15	15	3	1	1	1	1				1			1	1	10
HL-60	15	8	2	1		1		1					1		14
Jurkat	15	3	2			$1 \stackrel{\rightharpoonup}{\square}$	II	중				1			10
MCF-7	15	1	3	2		2	1				1				11
MIA-PaCa-2	15	4	1	1	1	1			1			1	1		11
Molt-4	15	5	1			1		1		1		1			10
SK-N-SH	15	4	3	1		2									10
SK-OV-3	15	5	4		1		1				1				12
SNU-16	15	3	3	1	2		1								10
U-937	15	6	1	1	1		1	1	1						12
Total	275	92	44	13	8	14	9	5	5	3	5	4	4	4	210

* group numbers are given in Table 10.

Figure 20. Chromosomal distribution of the L1Hs elements detected by cytogenetic analysis. A, the metaphase chromosomes stained with Giemsa; B, acquired FISH image panel from various metaphases; C, marked chromosomes using mFISH program (Imstar), open circles indicate the centromere of each chromosome, filled-green circles do midsts, and symbol 'D' does un-defined chromosome.
transcripts (transcribed from 1q42, 3p24, and Xq13) were specific for leukocytes. In addition, some elements were specific for each cells, for example, L1Hs elements from $10 q 11$ and 7 p 15 was specific for neuroblastoma SK-N-SH cells, and those from $3 q 11$ did breast cancer MCF-7 (Table 12). Transcripts from 6p11 were shared a normal leukocyte KBG and two cancer cell lines (A-498 and Molt-4). In addition, four L1Hs clones were located on the chromosome X; a clone from normal fibroblasts and three from cancer cells.

5) L1Hs p40 protein sequences may be involved in protein interactions in various cellular metabolism

Putative protein sequences of L1Hs p40 have converted from the DNA sequences. Fourteen from RNA transcripts and twenty-four from GenBank Accessions had active protein sequences. In addition, twelve L1 Hs groups possessed the active protein sequences. The motif analysis has shown that the L1Hs p40 protein has two N-glycosylation sites, a cAMP- and cGMP-dependent protein kinase phosphorylation site, seven protein kinase C (PKC) phosphorylation sites, ten casein kinase II phosphorylation sites, an amidation site, a microbodies C-terminal targeting signal, a luecine zipper, and an N-myristoylation site (GKKQNRKTG). In addition, a helix-turn-helix DNA-binding motif (ALKELLKEALNMERNNQYQLLQ) have also found (Fig. 21). Multiple alignment of active L1Hs p40 protein sequences showed various missense mutations including in protein interaction positions (Appendix 3). In addition, nonsense mutations by nucleotide substitution have also been found in the transcripts from various cells (data not shown).

6) The sequences of transcripts and proteins of active L1Hs p40 divided into several clusters

Table 12. Cell line-specific transcripts of the L1Hs $p 40$ gene and its chromosomal locations

Chromosomal location	Symbol of clone*	No. of clone
1p13	YJ-1, BG-5, BG-6	3
1q31	SU-2	1
1 q 42	HE-2	1
2q14	MC-4	1
2q32	JU-5	1
3 p 24	HE-4	1
3 q 11	MC-2, MC-3	2
3 q 24	JU-1	1
4p16	YJ-2, SU-5	2
4 p 11	HL-1	1
4 q 12	SO-1	1
4 q 22	MP-2	1
4 q 28	SO-3	1
4 q 32	CE-2	1
5p15	HC-1	1
5p13	BG-4	1
5q12	MP-3	1
5q21	MO-3	1
5 q 22	MP-1 내읙1ㅔ 하ㅇㅡㅡ산	1
6 p 11	BG-3, A4-3, A4-5, MO-5 LIBRARY	4
7p15	SN-4, SN-5	2
7 q 11	A5-2	1
7 q 21	JU-4	1
8 q 22	HC-4	1
9p24	HE-3, MP-4	2
10q11	SN-1, SN-2, SN-3	3
11 p 11	MO-1	1
12 q 13	SU-3	1
12 q 21	U9-2	1
13 q 14	CE-1	1
13 q 22	MO-4	1
$13 q 34$	A4-4	1
14 q 11	JU-3	1
15 q 25	A4-2	1
15 q 26	A5-1	1
18 q 21	SO-2	1
19q12	U9-1	1
20p11	A4-1	1
Xq13	CC-1	1
Xq23	HC-5	1
Xq26	JU-2, MC-1	2

[^3]

Figure 21. Protein motifs of the L1Hs p40 protein. AMI, amidation site; CKII, casein kinase II phosphorylation site; cgPK, cAMP-and cGMP dependent protein kinase phosphorylation site; GLY, N-glycosylation site; HTH, helix-turn-helix motif; LZM, leucine zipper; MTS, microbodies C-terminal targeting signal; MYR, N-myristoylation site, PKC, protein kinase C.

Sixty-two L1Hs DNA sequences identified from human cells were subjected to phylogenetic analysis with those previously reported as active forms of L1Hs (Sassaman et al., 1997) and each representative member of L1Hs groups (Appendix 2). The L1Hs elements formed three clusters on a consensus tree, constructed after 1,000 bootstrap replications of the gene sequences. Interestingly, six L1Hs groups were located in the cluster L1C, only L1Hs-11 was in the cluster L1B, and the other six groups were in the L1A (Fig. 22).

Phylogenetic tree based on L1Hs p40 protein sequences showed that three main branches (p40A, p40B, and p40C) appear and resemble those of L1Hs p40 genes. However, p40A and p40C were human-specific, and p40B contained those of mice, gorilla, chimpanzees (Fig. 23). Active forms of L1Hs p40 have found at least a hundred and sixteen elements in the haploid human genome.

Figure 22. The strict consensus tree derived from the most parsimonious trees based on the L1Hs $p 40$ gene sequences obtained from various human cells and those reported previously in GenBank. The information of each clone is given in Table 9, and that of each group does in Table 11.

Figure 23. The strict consensus tree of active L1Hs p40 proteins from human cells and those converted the DNA sequences previously reported in GenBank. The information of each clone is given in Table 9, and those of groups do in Table 11. Gorg, Gorilla gorilla; Mouse, Mus musculus; Panp, Pan paniscus; Pant, Pan troglodytes.

IV. DISCUSSION

1. Transcription and Chromosomal Locations of the HERV-K

HERV-K genes were transcribed in both human cancer cells and normal cells, and the levels of transcription increased in fibroblasts treated with carcinogens. By RT-PCR analysis, RNA transcripts of HERV-K genes were observed as polyadenylated cellular transcripts, and the relative transcription levels varied in each cell line. HERV expression was found in the human cells including various cancers, placenta, and leukocytes of healthy individuals (Medstrand et al., 1992; Brodsky et al., 1993; Simon et al., 1994; Gotzinger et al., 1996; Yi et āl., 2001). Cell type-specificity was also observed for K10 LTR, T47D LTR, K10 env, and C4 env. Cell type-specificity and tissue specific expression were reported previously (Majors, 1990; Ting et al., 1992; Medstrand and Blomberg, 1993; Kjellman et al., 1999; Sugimoto et al., 2001; Andersson et al., 2002). The cell-type dependent expression of retroviruses is due to specific regulatory sequences located in the U3 region, which contains a number of transcription-factor responsive sequences (Majors, 1990). For example, T47D LTR can induce expression of a reporter gene displaying distinct activity in different cell lines (Schön et al. 2001). The promoter analysis on HERV-K LTRs using SIGNALSCAN supported the results previously reported. Transcription factor Oct-1 and C/EBP play important roles in the cell-type specific expression. However, neither the Oct-1 binding site nor the CAAT-box was required for such expression of K10 LTR. Instead, the 3^{\prime} terminus of U3 includes a TATA box sufficient for specificity (Baust et al., 2000; Schön et al., 2001; Vinogradova et al., 2001). The basic mechanery at the TATA box of K10 LTR may be determined the
cell-type specific expression (Lee et al., 2003). In addition, various mutations in K10 LTR sequences have also been observed in signal response elements (Appendix 1). Mutations in TATA box consequently can inhibit the transcription of genes. The other mutations in signal responsive elements can change the affinity of binding to transcription factors such as AP-1, c-MYC, GATA-1, Sp1, TGT3, and others. Since the 5'-LTR of HERV-K plays key roles in HERV-K transcription, this result indicates the sequence variations can also be responsible for the cell-type dependent patterns of HERV-K gene expressions and potential to retrotransposition.

HERV-K LTRs were expressed much more strongly than env genes, suggesting that there are many solitary LTRs distributed throughout the genome. In particular, the transcription patterns of env gene and LTRs were distinct in normal fibroblasts. Depil et al. (2002) suggested that HERV-K relative overexpression in leukemia cells might be specifically associated with tumor development, since there was no significant variation of HERV-K gene expression in normal peripheral blood mononuclear cells after exposure to different factors (PHA, gamma irradiation, 5 -azacytidine). Since the CCD-25Lu and HEL-299 cell lines were derived from lung, the expression of HERV-K genes in these lines may be correlated with the stage of cellular development or the degree of cell differentiation. Reports suggested that HERVs expression can be involved in differentiation and morphogenesis of cells (Larsson et al., 1996; Herbst et al., 1999; Lin et al., 1999; 2000; Mi et al., 2000; Feng et al., 2001). Herbst et al. (1999) described the differential expression of HERV-K and an association of HERV-K in pathogenesis of germ cell tumors. HERV-R mRNA increased in cellular differentiation of monocyte U-937 by inducer molecules including TPA, vitamin-D1 and retinoic acid (Larsson et al., 1996), as a consequence of increased immune activity rather than causative of distinct diseases (Johnston et al., 2001). In addition, retinoic acid increased the expression of HERV-K in embryonal carcinoma (Caricasole et al., 2000) and in human
breast cancer (Feng et al., 2001). Sichangi et al. (2002) described the expression of HERV in male reproductive tissues speculating possible roles in spermatogenesis, sperm maturation, or tumor formation.

The expression of C4 env in these two cell lines was different, probably due to differences in the expression of Complement 4 (C4). HERV-K(C4) is located in intron 9 of the $C 4$ gene in the reverse orientation to the $C 4$ coding sequence, and appears as a $6.4-\mathrm{kb}$ insertion in 60% of human C4 gene. The C4 expression leads to production of an anti-sense RNA, which might protect against exogenous retroviral infections (Chu et al., 1995; Schneider et al., 2001).

DNA sequencing and subsequent BLAST search showed that K10 LTR was transcribed from all chromosomes, excluding chromosomes 21 and Y. This supports previous reports of the localization and distribution of entire HERV-K proviruses and its derived solitary LTRs in the human genome (Leib-Mösch et al., 1993; Seifarth et al., 1998; Zsiros et al., 1998; Kim et al., 2001; Sugimoto et al., 2001; Mayer and Meese, 2002). The expression and distribution of multiple HERV elements in various cancers (Feng et al., 2001; 2003; Yi et al., 2001). However, the K10 LTR elements on chromosome 21 and Y were inactive in all cell lines tested. Many K10 LTR elements had functionally active forms and were distributed on several chromosomes or also at fragile sites (Table 13), suggesting associations with chromosomal instability, cancers (Table 14), and genetic disorders (Table 15).

In this study, at least forty-nine HERV-K LTR elements from different loci on the chromosomes transcribed in the cells (Table 6). Except for two loci (8q11 and 10q24), the locations of transcriptionally active K10 LTR elements of normal cells were distinct from cancer cells. The cancer cell-specific and the normal cell-specific loci were observed. In addition, seven of cancer cell-specific loci shared different cancer cells, for example, eight K10 LTR elements transcribed from 1 q21 in A-549, HL-60, Jurkat,

Table 13. Chromosomal location of detected retroelement transcripts and fragile sites

Table 13 (Continued)

Locus	Detection of retroelement		Fragile site	
	K10 LTR	L1Hs	Marker name	Class
11p15	$+$		FRA11C, I	A
11q13	++++	+	FRA11A, H	F, A
12q13	$+$	+	FRA12A	F
12q21		++	FRA12B	A
12q24		+	FRA12C	B2
$13 q 32$		+	FRA13D	A
14 q 23		++	FRA14B	A
16p12	++		FRA16E	D
16p13		제주대하표	FRA16A	F
16 q 23	+		FAR16D	A
18q21		+	FRA18B	A
19p13	+		FRA19B	F
20p11		++	FRA20A	F
20p12		+++	FRA20B	A
Xp22		+++	FRAXB	A
Xq22		+	FRAXC	A

* clone detected in LOCUSLINK search.
** is defined by Dhillon et al. (2003). Abbreviations: A1, common/aphidicolin; B1, common/BrdU; B2, rare/BrdU; D, common/distamycin-A; F, rare/folic acid; Z, common/ 5-azacytidine.

MIA-PaCa-2, SNU-16, and U-937 cells. 1 q21 has a fragile site FRA1F (Table 13); and a chromosomal breakpoint in several cancers including chronic lymphocytic leukemia (CLL), bladder cancer (BC), and rectum cancer (RC) (Table 14). This finding presumes the association between the activation of provirus HERV-K and cancer development, as a transcriptional hotspot. Further studies on the association between them should be performed.

When K10 LTR elements were compared to the sequences of primates (chimpanzee, gorilla, macaques, and common squirrel monkey), three major clusters were made (Fig. 15). Human-specific subclusters and primates shared clusters have also found in the neighbor-joining tree. The time of divergence of the gorilla and human lineages, usually estimated to have occurred between 8 and 11 million years before present (YBP), and that of the chimpanzee and human lineages did about 6 million YBP (Ruvolo et al., 1991; Ovchinnikov et al., 2002). Therefore, this suggests that the proviruses had introduced into the common ancestors of primates at several times before and after speciation. HERV-K10 LTR elements could be classified into 14 classes (noted above as a 'K10 LTR group'), while Mold et al. (1997) reported four major classes based on HERV-K U3 region sequences.

2. Transcription and Chromosomal Locations of the L1Hs p40

RNA transcripts of the L1Hs elements have been found in human cells, including peripheral leukocytes, fibroblasts, and various human cancer cells, as cell type-independent (Minakami et al., 1992; Becker et al., 1993; Bratthauer and Fanning, 1993).

Table 14. Chromosomal location of retroelement transcripts, human cancer breakpoints and proto-oncogenes

Locus	Detection of retroelement		Cancer breakpoint	Proto-oncogene
	K10 LTR	L1Hs		
1p11		+ ${ }^{1}$	ME	
1p13		++++	ChC*, NE	NRAS
1p21		+	OC, RC, RCC	
1 p 22	+	++	BC, CLL	
1p31		++	MA, RC	RAB3B, VJUN
1p36	+++		BC, CLL, ML, RC	$F G R, S R C, T N F R 2$
1 q 21	++++++++++		BC, CLL, RC	
1 q 22	+			SKI
1q25		+	BC, ChC, PC, RC	ARG, ABL2
1 q 42		+	$\mathrm{BC}, \mathrm{NS}, \mathrm{OC}, \mathrm{PC}$	RAB4
2p11		+	BC, RC	
2p13		+	CLL	REL
2p22		++	CC, GL	
2p24		+	CLL, RC	MYCN
2q14	++	+ 제즈	하그증아서과	LCO
2q31		++ 섿		
2q33	+	+ Jeun	CLL, RC, NS LIERARY	
2q34		+	TLL	
3p11		+	RCC	
3p12		+	RCC	
3p24		++	CLL, LC, RCC	RAB5, THRB
3 q 21	++	+	OC, RCC	
3 q 24		+	AML, ME	
3 q 26	++		RCC	
3 q 27		$+$	BC, BLL, NS, OC	
4 p 11		+		KIT
4p15		+++	BC, OC	
4p16	+	+	CE	RAF1P1
4q12		++	GIST, TT	
4q31	++	+	CLL	
5p13		+	BC, NS, OC	
5p14	$+$		BC	M1VI2
5 q 21		+++	APC, BC, CC, EC, RC	APC
5 q 22		+++	APC, RCC	
5 q 31		+	BC, CLL	AERB2, CTNNB1, TCTA
5 q 32		+	GC, RCC	
5 q 35		+++	AML, BC	CSF1R

Table 14 (Continued)

Table 14 (Continued)

Locus	Dectection	retroelement	Cancer breakpoint	Proto-oncogenes
	K10 LTR	L1Hs		
12p11	++		RB	
12q12		+		INT1
12q13	$+$	+	CLL, BC, ChC, LP	ERBB3, GLI, SAS, WNT
12q14		++		RAP1B
12q21		++	BC	
12q24		+	BC, CLL, HA	
13q14	+++	+	BC, BR, RB	BRCA2, RB1
13 q 22		+	MY	
13 q 32		+	BC, CLL	
13 q 34		++	SCC	RAP2A
14 q 23		++ 제주	$\mathrm{NS}, \overline{\mathrm{SC}} \text { 중앙도서관 }$	
15q25	+++	$+++\quad \text { Ule }$	BC	$F E S$
15 q 26	+	++		$F P S$
16q23	+	++	CLL, EC, MY, RC, US	MAF
17q21	++		ChC, OC, RCC, SC, TLL	$\begin{aligned} & \text { BCL5, BRCA1, NEU, } \\ & \text { NEU } \end{aligned}$
17q25	+		SC	ERBA2L
18p11		+	APC	
18q11	+++		HCC	
18 q 21		+	BC, CLL, HCC, NS, RC	$\begin{aligned} & \text { BCL2, BCL3, SSAV1, } \\ & \text { YES } \end{aligned}$
19p13	+		BC, LL	$\begin{aligned} & \text { JUNB, JUND, LPSA, } \\ & \text { MEL, MELL1, RAB3A, } \\ & V A V \end{aligned}$
20p12		+++	BC	
20q12	$+$			SRC
22q11		+	BC, BR	YESP

Table 14 (Continued)

Locus	Dectection of retroelement			
	K10 LTR	L1Hs		Proto-oncogenes breakpoint
Xp11	+	RCC, SS	ARAF1	
Xp22	+++	US	ELK1	
Xq11	+	PC		
Xq22		+	BC, CLL	MYCL2
Xq26	++	+++		HRASP

* childhood cancer not detailed.
** unspecified cancer.
Abbreviations: ACC, anal canal carcinoma; APC, adenomatous polyposis of the colon; AML, acute myeloid leukemia; BC, bladder cancer; BL, Burkitt's lymphoma; BLL, B lymphocytic leukemia; BR, Breast cancer; CC, colon cancer; CE, Cervical carcinoma; CLL, chronic lymphocytic leukemia; EC, esophageal cancer; GC, gastric cancer; GIST, gastrointestinal stromal tumor; GL glioma; HA, hepatic adenoma; HCC, hepatocellular carcinoma; LC, lung cancer; LL, lymphoid leukemia; LS, liposarcoma; MA, melanoma; ME, melanoma; MEN, multiple endocrine neoplasia; ML, myeloid cell leukemia; MTC, medullary thyroid carcinoma; MY, myeloma; NE, neuroblastoma; NS, non-small-cell lung cancer ; OC, ovary cancer; OS, oral squamous cell carcinoma; PC, prostate cancer; RB , retinoblastoma; RC, rectum cancer; RCC, renal cell carcinoma; SC, Schwannoma; SCC, squamous cell carcinoma; SS, synovial sarcoma; TLL, T lymphocytic leukemia; TT, testicular tumor.

In cellular RNA transcripts, various mutations led to the loss of function of retrotransposition. Several sequences had a missense mutation in the putative amino acid, or frame-shift mutations affecting their lengths. Length variation was usually caused by insertion/deletion mutations, although MP-2 had a 40-bp tandem duplication in the 5^{\prime} region, and HE-1 and JU-2 had 5' additional sequences. Sequencing of L1Hs $p 40$ gene showed that 35 elements were the typical length. Sequence analysis provided information on the chromosomal locations of the active elements of the L1Hs. The putative active elements were determined by comparing the similarity, the typical lengths, and the putative protein translation of elements with previously reported active elements and the predicted proteins produced by L1Hs elements. Many L1Hs RNA transcripts appear to be transcriptionally active; twelve L1Hs groups and twenty-five solitary elements had potential activity for retrotransposition.

Protein motif analysis of L1Hs p40 using PROSCAN against PROSITE database showed various motifs for protein interactions (Fig. 20). L1Hs p40 has a luecine zipper motif that contributes to $\mathrm{p} 40-\mathrm{p} 40$ interactions and formation of multimeric complexes (Hohjoh and Singer, 1997). Various protein phosphorylation sites and modification sites had also been found in putative protein sequences. This predicts that activation of L1Hs p40 protein should be necessary to interact with cellular proteins and modify the protein p40 by cellular organelles. In addition, virus-related myristoylation site has been found, suggesting L1Hs p40 can be involved in maturation of the viral proteins and subsequent proteolytic processing (Towler et al., 1988; Grand, 1989). Until now, there are several hypotheses on L1Hs introduction via virus packaging. While, the origin of L1Hs has been predicted based on the comparison analysis of DNA sequences. There are no direct evidences on the origin of L1Hs from retrovirus. Therefore, this finding will support the retrovirus origin or the virus-related introduction (George et al. 1996; Malik et al. 1999). Moreover, this
means that L1Hs activation can be associated to viral pathogenesis in cells. Further study on their relationship will be needed.

Cell line-specific transcripts were observed in many chromosomal locations including three positions on chromosome X . Chromosome 4 had the most transcriptional active locations to transcribe L1Hs elements, but six chromosomes ($15,16,17,21,22$, and Y) had not the transcriptionally active locations. Several locations were specific for normal cells and for cancer cells, and shared among them. For instance, locations on 7 p 15 and 10 q 11 were specific for the neuroblastoma SK-N-SH cells, and those on 1 p13 and 5 p13 did for the leukocyte KBG, respectively (Table 12). In addition, mutations of RNA transcripts might lead to changes of L1Hs p40 protein sequences (Appendix 3). Various amino acid substitutions has been shown by the putative translation. Substitutions in protein interaction motifs has also confirmed, supposing the differences of protein activation. For example, since transcript clone MO-1 has two substitutions in PKC phosphorylation motifs, activation of MO-1 L1Hs p40 by PKC phosphorylation will be different efficiency. In addition, four substitutions in HTH motif will change the nucleic acid binding affinity, resulting the altered activity in L1Hs retrotransposition (Pietrokovski and Henikoff, 1997).

In the phylogenetic tree based on L1Hs p40 DNA sequences, these were divided into three main clusters (L1A, L1B, and L1C); L1A was subdivided into two, and L1B into three subclusters (Fig. 22). Protein sequence phylogeny showed that three main branches (p40A, p40B, and p40C) appeared. Both p40A and p40C are human-specific, and p 40 B shared those of mice, gorilla, chimpanzees (Fig. 23). Of the two human-specific, p40A is more ancestral than others, suggesting L1Hs introduction into mammalian genome might be occurred several times before and after the speciation. Mammalian shared p 40 B suggested that speciation of mammalian predecessors might
have occurred after introduction of almost L1Hs elements. In addition, putative retrotransposable active L1Hs groups scattered over three branches, suggesting that ancestral LINE-1 elements possess the retrotransposition activity even in extracellular environment for a long time.

Up to date, it has been estimated that from thirty to sixty active L1Hs elements reside in the average diploid genome (Sassaman et al., 1997). However, this study suggested that at least a hundred and forty L1Hs elements in the haploid human genome have hypothetical activity potential for RNP complex formation, and they distributed over whole chromosomes. As showed in Figure 22, the active L1Hs elements divided into two clusters, but almost all of them are the members of cluster L 1 C . This result showed that L 1 C is the major active form of the L1Hs elements. The non-LTR superfamily is very ancient and LINE-1-like elements are ubiquitous in nature, those were found in plants, fungi, invertebrates, and various vertebrate classes from fish to mammals. L1 elements have been replicating and evolving in mammals for at least the past 100 million years (Furano, 2000). Also, human-specific or primate-specific sequences suggested that multiple introductions of LINE-1 elements, mediated a certain viral genome, had occurred during the mammalian evolution. This result will be contributed to explain the evolution and the speciation of mammals, while more extensive sampling and detailed approaches will be needed to elucidate the relationships between the molecular evolution of LINE-1 and mammals.

3. Transcription and Transposition of Retroelements by Carcinogens

This study showed the differential gene expressions of retroelements and the transposition activity by carcinogens. In the transposition analysis, the altered amplification patterns were also observed, resulting in transposition by carcinogen exposure.

HERV-K gene expression increased in fibroblast exposed to carcinogens along with changes in the expression of regulatory genes. However, the expression patterns of HERV-K env gene and LTRs increased, although this result was not directly associated with changes in the expression patterns of regulatory genes. Since the effects of carcinogens were different, response of the fibroblasts varied. For instance, in cells treated with TPA and DMBA, the expression of $B A X, c-M Y C, I L-6$ mRNA increased, while $p 53 \mathrm{mRNA}$ decreased. Although the apoptosis and proliferation pathways were activated, the cells actually proliferated. Levels of BAX and IL-6 in EtBr-treated fibroblasts were more expressed than did non-treated cells, while $c-M Y C$ and $p 53$ expression decreased. However, the only HERV-K gene expressed at a lower level was K10 LTR, suggesting that either HERV-K expression is independent of apoptosis or that HERV-K RNA transcripts have longer life span than cellular mRNAs. The expression of active HERV env has been described in various states; enveloping retrovirus-like particles, a transcript of cellular RNA, and a protein of normal human tissues and cell lines (Kitamura et al., 1996; Löwer et al., 1993; Sauter et al., 1995; Berkhout et al., 1999). Induction of $I L-6$ expression by carcinogens may lead to change of the immune activity and differentiation of lung fibroblast (Miyagi et al., 1991; Samad et al., 1994; Moodley et al., 2003). Cytokines and carcinogens induced the gene expression of HERVs, considering roles in inflammation and carcinogenesis (Larsson et al., 1996; Katsumata et al., 1999).

Under the carcinogen treatments, the expression of L 1 Hs was the highest in the DMBA treatment, and the lowest in the EtBr treatment. The relative transcription rate of

L1Hs was increased, as compared to the saline control, in all but the EtBr treatment. Since the patterns of relative transcription were different in the EtBr and MNNG treatments, although both EtBr and MNNG eventually induced the apoptosis of CCD-25Lu fibroblasts, the transcription of L1Hs elements is unlikely to be directly related to the induction of cell apoptosis. This means that EtBr and MNNG are contributed to different cellular pathways in CCD-25Lu cells, although the outcome was still apoptosis. In this process, a signal triggered by MNNG might increase the transcription of L 1 Hs , while EtBr has no effect on this.

The associations between location of repetitive DNA and chromosomal fragile sites were described. Transposon mariner-like elements (Hsmar) were found in human genome, suggesting relationship with fragile site and with genetic disorders (Reiter et al., 1999; Liehr et al., 2001). Hsmar elements are DNA transposons flanking ITR sequences. Chromosomal locations of Hsmar were known as a 'hotspot' to homologous recombination (Koyosawa and Chance, 1996; Reiter et al., 1996; Lupski, 1998). Analysis on transposition using ITR primers of this study showed that the transposition activity was stimulated by exposure to carcinogens, suggesting transposition mediated-genomic instability by carcinogens. Various carcinogens can affect to chromosomal stability. Retroelements and their remainders are involved in homologous recombination, causing chromosome rearrangement, and their expression can facilitate to chromosomal instability (Mager and Goodchild, 1989; Duesberg et al., 2000; Paige et al., 2000; Bardelli et al., 2001; Honma et al., 2002). Since the carcinogenic initiation begins of genomic alteration, chromosomal aberration and the errors in DNA mismatch repair causing to the activation of oncogenes or the inactivation of tumor suppressor genes, it is very important to explain the possible roles of carcinogenic effects on resulting genomic alteration in the cells. Certain stress condition, such as exposure to UV light (Rolfe and Banks, 1986), chemical mutagens (Bradshaw and McEntee,

1989; Morawetz and Hagen, 1990), low temperatures (Paquin and Williamson, 1984) or nitrogen starvation (Santos et al., 1997) can cause an increase in transposition activity (Staleva and Venkov, 2001). Staleva and Venkov (2001) has described the induction of transcription and subsequent retrotransposition of Tyl retrotransposon by mutagens (methyl methanesulfonate and 4-nitro quinolineoxide) in cultures and cells, and postulated the activation of Tyl element by DNA damage. Therefore, this finding suggests that the activation of retroelements can lead to transposition activity causing to genomic instability by carcinogens, and can also accelerate the carcinogenesis of the cells.

4. Association between Active Retrolements and Human Genetic Disorders

제 제대학교 중앙도서관

Active retroelements HERV-K10 LTR and L1Hs were found in the human cells. DNA sequencing and subsequent analyses were used to determine the chromosomal locations of transcripts. Interesting informations were obtained by comparing this result to Human Genome Resources in GenBank and those previously reported.

Many loci of retroelements L1Hs (forty-three) and HERV-K10 LTR (seventeen) were found at fragile sites. Moreover, at several fragile sites, these two retroelements were aligned in a repetitive manner (Table 13 and Appendix 4). Many proto-oncogenes and tumor suppressor genes mapped to these fragile sites, suggesting association with cancers and transformation of cells. For example, tumor suppressor genes $F G R, S R C$, and TNFR2 mapped to 1p36 (FRA1A) associated with BC, CLL, myeloid cell leukemia (ML), and RC. 5q21 (FRA5F) contained an oncogene APC and associated with adenomatous polyposis of the colon (APC), BC, colon cancer (CC), esophageal cancer
(EC), and RC. Proto-oncogenes $J U N B, J U N D, L P S A, M E L, M E L L 1, R A B 3 A$, and $V A V$ mapped to cancer breakpoint $18 q 21$ (FRA18B) related to BC, CLL, hepatocellular carcinoma (HCC), non-small lung cancer (NS), and RC (Table 14).

Fragile sites may be unstable regions of the human genome, which might play an important role in the genetic instability associated with cancer predisposition (Sutherland et al., 1998; Ribas et al., 1999). The most fragile sites were associated with cancer breakpoints. For example, the most common fragile sites involved in bladder cancer were FRA1D (1p22), FRA1F (1q21), FRA8C (8q24), FRA9D (9q22), FRA9E (9q32), and FRA11C (11p15) (Moriarty and Webster, 2003). Dhillon et al. (2003) described that the expression of the fragile sites induced by aphidicolin was evaluated from ovarian cancer (OC), breast (BR), and NS patients belonging to different stages of cancer development. The frequency of expression of the fragile sites in cancer patients and their first-degree relatives was found to be statistically significant than those of the controls. In addition, the distribution of fragile sites in BR patients was changed according to different stages of cancer. Fundia et al. (1998) identified the spontaneous breakage and fragile site expression in CLL and suggested that the most of cancer breakpoints were involved in structural abnormalities associated with CLL. FRA16D (16q23) is one of the regions of the long arm of chromosome 16 and has been reported to show loss of heterozygosity (LOH) in various cancers, have identified a over 600 kb homozygous deletion in some cases (Paige et al., 2000; Tunca et a., 2000; Bednarek et al., 2001; Dhillon et al., 2003), and involved in multiple myeloma translocations (Krummel et al., 2000). In addition, chromosomal fragility may be involved in neuro-behavioral disorders (Gericke, 1999), mental retardation (Tükün et al., 2000), senescence and schizophrenia (Morelli et al., 2002). In this study, transcriptional locations of active retroelements have also been found in fragile sites associated with BC (Moriarty and Webster, 2003), leukemia (Sbrana and Musio, 1995; Fundia et al., 1998), CC (Tunca et al., 2000), giant
cell tumors (Nilsson et al., 2002), and BR, OC, and NS (Dhillon et al., 2003) (Table 13). Therefore, this suggests that the location and activation of retroelements HERV-K and L1Hs may be involved in cancer development and genetic disorders.

In addition, a transposition event can result in the deletion, inversion, or translocation of the genes (Youssoufian et al., 1988; Sheen et al., 2000; Gilbert et al., 2002; Sankoff et al., 2002; Chi et al., 2003). Morelli et al. (2002) reported that the nucleotide sequence of FRA6F is rich in repetitive elements; deletion breakpoints within FRA6F are common in several human leukemias and solid tumors, and are associated with hereditary schizophrenia. The locations of the L1Hs elements supported the findings of Morelli et al. (2002), but not the HERV-K10 locations, suggesting that inactive or other types of HERVs are located on FRA6F. Florl and Schulz (2003) described that most deletion breakpoints in cancers were located in or close to L1Hs retrotransposon clusters, and therefore, deletions of $C D K N 2 A$ in 9 q 21 (FRA9C) may be facilitated by the presence of L1Hs clusters flanking the locus. A possible mechanism of recombination and transposition of transposable elements might be mediated chromosomal deletion and rearrangement (Lupski, 1998; Kiyosawa and Chance 1996; Reiter et al., 1996; Kolomietz et al., 2002; Toffolatti et al., 2002; Goryshin et al., 2003; Bosch and Jobling, 2003). Kolomietz et al. (2002) suggested Alu repeat clusters as mediators of chromosomal aberrations in tumors. Bosch and Jobling (2003) described that the duplication of the $A Z F a$ region of the human Y chromosome is mediated by homologous recombination between HERVs. Double transposition of Tn5 produced the chromosomal deletion (Goryshin et al., 2003). Huang et al. (1998) found HERV-H and small polydispersed circular DNA (spcDNA) molecules in the midst of FRA7G and FRA3B, and suggested an association with both spcDNA molecules and hotspots for viral integration. HERV-K10 and L1Hs loci are much more common at fragile sites, regardless of whether they are expressed. Fragile sites are hotspots for genomic
instability causing chromosome rearrangement and recombination (Bobe et al., 1993; Fundia et al., 1998; Sutherland et al., 1998; De Mesa et al., 2000; Tükün et al., 2000; Ostertag and Kazazian, 2001; Nowak et al., 2002; Tighe et al., 2002). This study showed the cancer specific transcriptional locations of active retroelements (Appendix 4).

Reports described genomic instability by the activation of interspersed elements such as transposons, by amplification of their flanking inverted terminal repeat sequences, between tumor and normal tissues (Maeda et al., 1999; Ayyadevara et al., 2000; Luceri et al., 2000; Jotwani et al., 2001; Singh and Roy, 2001; Misra et al., 2001). Misra et al. (2001) described the alteration of a sequence with homology to HERV-K in primary human glioma, and suggested the viral repeat mediated genomic rearrangement in tumorigenesis. Inverted repeats are as source of genomic instability in yeast (Gordenin et al., 1993). As far as human disease is concerned, recombination in a defective low density lipoprotein (LDL) receptor gene in cases of familial hypercholesterolemia (Horsthemke et al., 1987). Genomic changes by activation of HERVs has been detected in some cancer and cultured cells (Huang et al., 1998; Misra et al., 2001; Goryshin et al., 2003), and hypomethylation of HERV-rich regions is also reported (Florl et al., 1999).

In the cells, repression of retrotransposition activity is very important. Methylation is an important epi-genetic mechanery in the repression of the repetitive transposable elements (Jurgens et al., 1996; Hata and Sakaki, 1997; Woodcock et al., 1997; Yoder et al., 1997; Florl et al., 1999). Florl et al. (1999) found the tissue specific hypermethylation of LINE-1 and HERV-K in various human cells and speculated that decreased methylation of retroelements may contribute to genomic instability in specific human tumors such as urothelial carcinoma by rendering these normally repressed sequences component for transcription and recombination. In this regard, hypermethylation of L1Hs has been suggested to inactivate the gene and chromosome. It has been proposed that L1Hs repeats may be mediators for the spread of

X chromosome inactivation; in normal somatic cells, X -linked L1Hs elements are hypermethylated on the inactive X (Lyon, 1998; Bailey et al., 2000; Riggs, 2002; Allen et al., 2003; Hansen, 2003). In addition, hypomethylation of L1Hs has been observed in hepatocellular carcinomas, but not in surrounding liver cirrhosis. Differential methylation has also been found in various cancer cells, compared to normal controls. Hypomethylation of the promoters of retroelements has led to increased expression of retroelements and probably to retrotransposition (Alves et al., 1996; Feng et al., 1996; Takai et al., 2000; Lin et al., 2001). In addition, DNA hypomethylation had also reduced genomic instability and can lead to elevated mutation rates (Chen et al., 1998; Rizwana and Hahn, 1999). In this study, transcripts of L1Hs on chromosome X were found in several cell lines (CCD-25Lu, HCT-15, Jurkat, and MCF-7). However, it was impossible to determine the origin of transcripts whether the those derived from inactive or not.

제주대학교 중앙도서관

Recent reports described the retrotransposition activity of SINE, LINE-1 and HERVs, resulting in the generation of pseudogenes and multiple genes (Misra et al., 2001; Pavlicek et al., 2002; McNaughton et al., 1998; Cardazzo et al., 2003). Identical sequences and its variants had also been found in this study, which concluded that widespread distributions of the retroelements should be resulted from the retrotransposition. In general, non-LTR element L1Hs and LTR-elements HERV-K also utilize the 'replicative transposition' mechanism of integration, which enables purifying selection to retain active copies in a lineage (Malik et al., 1999). In genomic evolution, intronic expansion and processed pseudogenes might be made by transposition activity. The enlargement of the genome size and the decrease in genome compactness increasing the number and size of introns is a general pattern during the evolution of eukaryotes. Among the possible mechanisms for modifying intron size, insertion of transposable elements might have important roles in driving intron evolution (Cardazzo et al., 2003;

Salem et al., 2003).
The present study showed transcription and chromosomal location of active retroelements HERV-K and L1Hs in the human cells. These retroelements are multicopy and widespread on chromosomes, and also potentially active. Its activation of transposition and recombination events may be caused to human genetic disorders. Table 15 shows the human genetic disorders related to the transcriptionally active chromosomal locations of these retroelements. Gene expression, germ line and somatic mutations, and insertions of endogenous retroviruses have been found, suggesting a possible role for HERV-K elements in human diseases. Roles in insulin dependent diabetes mellitus (Conard et al., 1997), hypertension (Sirokman et al., 1997), cardiovascular disease (Bing et al., 1998), autoimmune disease (Krieg et al., 1992; Wu et al., 1993; Andersson et al., 1998), multiple sclerosis (Clausen, 2003), neoplastic disease (Suzuki et al., 1986; Bussemakers et al., 1992; Zsiros et al., 1998) and mouse embryonic lethal mutation in a_{1} (I) collagen gene (Schnieke et al., 1983) have been postulated (Misra et al., 2001; Florl et al., 1999). Germ line mutations having the retrotransposition of L1Hs elements which abrogate the functions of important genes are known in several diseases, such as the coagulation factor VIII gene in hemophilia A (Kazazian et al., 1988), the dystrophin gene in Duchenne muscular dystrophy (Narita et al., 1993; McNaughton et a., 1998), the fukutin gene in Fukuyama-type congenital muscular dystrophy (Kobayashi et al., 1998) and the cytochrome b558 heavy-chain $(C Y B B)$ gene in chronic granulomatous disease (Kumatori et al, 1998; Meischl et al., 2000). In addition, somatic mutations caused by retrotransposition of an L1 element had been known in the APC gene in a colon cancer (Miki et al., 1992; Miki, 1998) and in the oncogene c-MYC in a breast cancer (Morse et al., 1988) and in a colon cancer (Naas et al., 1988).

Consequently, it is believed that the locations and expression of retroelements are

Table 15. Chromosomal location of detected retroelement transcripts and the map of human genetic disorders

Locus	Retroelement			Genetic disorders identified
	K10	LTR	L1Hs	
1p11			+	Adrenal hyperplasia II
1 p 13			++++	Hypothyroidism; Adrenal hyperplasia
1 p 21			+	Stargardt MD; Glycogen storage disease III
1 p 22	+		++	Zellweger S-2; Congenital disorder of glycosylation
1 p 31			++	Maple-syrup urine disease type III; Corneal dystrophy, gelatinous drop-like; Multiple sclerosis
1 p 35	++			Hypercholesterolemia, autosomal recessive
1 p 36	+++			Erythroblastosis fetalis
1q21	+++	++++++		Gaucher's disease type 1
1 q 22	+			Urate oxidase deficiency
1 q 24			+	Deafness, nonsyndromic
1q25			+	Nephrotic syndrome, steroid-resistant, autosomal recessive; Short stature, pituitary and cerebellar defects
1q31			++	Cardiomyophathy familial 2; Branchiootic S2; RP 12
1q44	+			Fanconi's anemia; Familial cold autoinflammatory S; Lupus erythematosus, systemic
2p11			+	Smith-Magenis S; Methionine adenosyltransferase deficiency
2p13			+	Pakinson disease 3, autosomal dominant; Lower motor neuron disease, progressive without sensory symptoms
2p22			++	Cáfe-au-lait spots, multiple
2p24			+	NIDDM
2q24			+	Abetalipoproteinemia
2q31			++	Fibromuscular dystrophy of arteries; Syndactyly, type II
2q32			+	Winkle skin S
2q33	+		+	Gracile S; IDDM
2q34			+	Ehlers-Dalnos S, type X
2q35			+	Brachydactyly, type A1; Dermatitis, atopic
3 p 11			+	Dementia, familial
3 p 12			+	Spinocerebellar ataxia 7
3p24			++	Thyroid hormone unresponsiveness; Asthma; Marfan S; Moyamoya disease
3 q 11			++	SCZD 1
3 q 13			+	Hypoparathyroidism, Familial isolated; Hyperparathyroidism, neonatal severe primary
3 q 21	++		+	Alkaptonuria, Allergic rhinitis; SCZD2; Dermatitis atopic
3 q 22			+	Night blindness, congenital stationary
3 q 24			+	Thyroid hormone resistant, Xenoderma pigmentosa
3 q 26	++			Sucrose intolerance

Table 15 (Continued)

Locus	Retroelement			Genetic disorders identified
	K10	LTR	L1Hs	
4p15			+++	Phenylketonuria II
4p16	+		+	Huntington's disease; Ellis van Creveld S; Hypochondroplasia
4q12			++	Limb-girdle MD; Graves disease
4q13	$+$		++	Dentonogenesis imferpecta-1
4 q 22			+++	Abetalipoproteinemia
4 q 25			+	longevity 1; Mental retardation autosomal recessive
4 q 28			+	Afibrinogenemia, congenital
4 q 32			+++	Aspartylglucosaminuria
5p13			+	C6, C7, C9 deficiency; SCID
5q11	+			Mucopolyssacharidosis type IV; Polycystic ovary S; SCZD 1
5q12	+		+	Stroke (cerebrovascular accident); Spinal muscular atrophy 1
5q13			+	Sandhoff disease; Laron dwarfism
5q21			+++	ד $5 q-S$; Desmoid disease, hereditary
5 q 22			+++	Corneal dystrophy; MD, limb-girdle, autosomal dominant
5 q 31			+	Osteoporosis; Graves disease; Carnitine deficiency;
5q32			+	Achondrogenesis type IB; Neonatal osseous dysplasia; IgE responsiveness; Dermatitis, atopic 6
6 p 11			++++	Autoimmune disease (MHC related)*
6p12	++			NIDDM
6p21	+		+	C2, C4 deficiency, Bare lymphocyte S; IDDM; SCZD; Polycystic kidney disease, autosomal recessive, Autoimmune disease; Asthma; Laterality defects, autosomal dominant
6p22			++	Fanconi's anemia, complementation group E; Maple syrup urine disease 3, SCZD
6q16	+			Chorioretinal atrophy, progressive; MD, retinal, California type I
6 q 21			+++	Senescence; SCZD; IDDM
6 q 22			+	Hepatic fibrosis; MD, congenital merosin deficient
6q24			+	Diabetes mellitus, transient neonatal
6 q 25	+		+	Pakinson disease, juvenile, autosomal recessive
7p11			+	Nystagmus, congenital, autosomal dominant
7p15	+		+++	Spinal muscular atrophy; Hyperinsulinism, autosomal dominant; RP 9

Table 15 (Continued)

Locus	Retroelement		Genetic disorders identified
	K10 LTR	L1Hs	
7 q 11		++	Williams S
7 q 21		++	Erythremia
7 q 22		+	Chloride diarrhea, familial; Osteogenesis imperfecta, congenital
7 q 31		+	Cystic fibrosis
7 q 32	++		RP10
7 q 35		+	Pancreatitis, hereditary; Glaucoma I
8 p 11	+		Werner S; Pfeiffer S; SCID1
8 q 11	+++		SCID1; RP1
8 q 21		+++	Cockane S ; Aldesterone deficiency; Hyperaldosteronism; Giant cell hepatitis, $S C Z D$
8 q 22		+++	Cohen S; Hyperlipoproteinemia
8 q 23		+	Hashimoto thyroiditis; Autoimmune thyroid disease
8 q 24	++++		Langer-Giedion S; Epilepsy; Myeolcytomatosis
9 q 31		+	Fukuyama-type congenital MD
9 q 34	++		C5 deficiency 후안뜻tㅏㄴ
10p15		$+$	SCZD IONAL UNIVERSITY LIBRARY
10q11	+	+++	Chronic infections
10q21	+		Moebius S; Multiple endocrine neoplasia
10q24	++	+	Congenital adrenal hyperplasia B
10q25		+	IDDM
11p11		+	Dysprothrombinemia
11p15	+		Niemann-Pick disease; Sickle-cell anemia
11q12	+		Atopy
11q13	++++	+	multiple endocrine neoplasia I
11q14		+	Systemic lupus erythematosus Papillon-Lefervre S
11q21		+	$S C Z D$
11q22	+		Ataxia, episodic
12p11	++		Pakinson disease; Alzheimer disease type V
12q12		+	Rickets, vitamin D-resistant
12q13	+	+	Achondrogenesis type II; Stickler S
12q14		++	Tyrosinemia, type III
12q21		++	MD
12 q 24		+	Alcohol intolerance, acute; Fetal alcohol S, SCZD

Table 15 (Continued)

Locus	Retroelement		Genetic disorders identified
	K10 LTR	L1Hs	
13q14	+++	+	Wilson's disease; Retinoblastoma
13 q 22		+	Megacolon
13 q 32		+	SCZD
13q34		++	Factor VII, X deficiency; SCZD
14q11	++	+	Ichthyosis; RP; Inflammatory Bowel disease
14q12		+	Cardiomyopathy, familial hypertrophic
14q23		++	Cataract, anterior polar
15q15		+	MD, Limb-girdle, autosomal recessive; SCZD
15q24		++	Mental retardation, severe, with spasticity; Cerebellar ataxia with mental retardation
15q25	+++	+++	Tay-Sachs disease
15q26	+	++	Bloom S
16p12	++		Batten disease
16 pl 13	+		Cataract, congenital
16 p 13	$+$		Familial Mediterranean fever
16q12		+	Inflammatory Bowel disease I; Amyotrophic lateral sclerosis
16q21		+++	TX Hypodontia; Cataract lamellar
16 q 23	+	++	Pseudohyperkamelia
17q21	++		Glanzmann thromboasthemia; Hypertension essential
17q25	+		Rusell-Silver S
18p11		+	Glucocorticoid deficiency
18q11	+++		Amyloid neuropathy, familial
18q21		+	Cholestasis; IDDM
19p13	+		IDDM; Hypercholesterolemia, familial; Cerebellar ataxia, Cayman type
19q12	++	+	Nephrosis 1, congenital, Finnish type; Pseudoachodroplastic dysplasia; Migraine, familial; Alzheimer disease 2
20p12		+++	Huntington disease-like 1 ; Kindler S
20q12	+		NIDDM; Immunodeficiency with hyper-IgM, SCZD
22q11		+	Cat-eye S; DeGeorge S; SCZD
Xp11		+	Brunner S; Night blindness, type I
Xp21		+	Becker $M D^{4} ; M D$; Retinitis pigmentosa; Cone dystrophy X-linked; Duchenne MD
Xp22		+++	Glycogen storage disease VIII
Xq11		+	Testicular feminization S
Xq13		+	Cleft plate; Turner S
Xq21		++	Agammaglobulinemia type 1; Duchenne MD; Granulomatous disease, chronic

Table 15 (Continued)

Locus	Retroelement			Genetic disorders identified
	K10	LTR	L1Hs	
Xq22			+	Agammaglobulinemia type 2; Alagille S; Amelogenesis imperfecta; Alport S and associated diffuse leiomyomatosis
Xq23			+	Hyperglycerolemia; Cerebellar ataxia 2; Arthrogrypopsis X-linked; Mental retardation X-linked
Xq24			+	Glycogen storage disease Πb; Albinism-deafness S; Mental retardation X-linked
Xq26	++		+++	Albinism-deafness S; Immunodeficiency, X-linked, with hyper-IgM
Yp11			+	Gonadal dysgenesis; Azoospermia factor 1, AZF1

Abbreviations: IDDM, insulin-dependent diabetes mellitus; MD, muscular dystrophy; NIDDM, noninsulin-dependent diabetes mellitus, SCZD, schizophrenia; SCID, severe combined immunodeficiency; RP, Retinitis pigmentosa; S, syndrome.

Italic-lettered names are retroelement-related diseases previously reported.
closely related to the chromosomal instability responsible for genetic stability. This study showed that retroelements HERV-K and L1Hs are transcriptionally active in the human cells, as the cell-type specific transcription in HERV-K, and as the cell-type independent in L1Hs, respectively. Many retroelements are still transposing, suggesting the associations between the retrotransposition activity and genomic instability, cancer developments, genetic or epigenetic diseases. In addition, carcinogens may induce the transposition activity of transposable elements in the cells. In the activation of retroelements, various cellular factors may involve in transcription of retroelements and post-translational processes of their proteins. Since the molecular mechanisms that causes the hypomethylation and the activation of L1Hs, HERV-K provirus, and other repetitive sequences are virtually unknown, investigations of this mechanism will be very important. Also, further studies on biological function of retroelements and on the associations between the activation of retroelements and the human genetic disorders will be necessary.

LITERATURE CITED

Allen E, Horvath S, Tong F, Kraft P, Spiteri E, Riggs AD and Marahrens Y (2003) High concentrations of long interspersed nuclear element sequence distinguish monoallelically expressed genes. Proc Natl Acad Sci USA 100: 9940-9945.

Alves G, Tatro A and Fanning T (1996) Differential methylation of human LINE-1 retrotransposons in malignant cells. Gene 176: 39-44.

Andersson G, Svensson AC, Setterblad N and Rask L (1998) Retroelements in the human MHC class II region. Trends Genet 14: 109-114.

Andersson A, Venables PJW, Tönjes RR, Scherer J, Eriksso L and Larsson E (2002) Developmental expression of HERV-R (ERV3) and HERV-K in Human Tissue. Virology 297: 220-225.

Asch HL, Eliacin E, Fanning TG, Conolly JL, Bratthauer G and Asch BB (1996) Comparative expression of the LINE-1 p40 protein in human breast carcinomas and normal breast tissues. Oncol Res 8: 239-247.

Augé-Gouillou C, Hamelin MH and Demattei MV (2001) The wild-type conformation of the Mos-1 inverted terminal repeats in suboptional for transposition in bacteria. Mol Genet Genomics 265: 51-57.

Ayyadevara S, Thaden JJ and Shmookler Reis RJ (2000) Anchor polymerase chain reaction display: a high-throughput method to resolve, score, and isolate dimorphic genetic markers based on interspersed repetitive DNA elements. Anal Biochem 284: 19-28.

Bailey JA, Carrel L, Chakravarti A and Eichler EE (2000) Molecular evidence for a relationship between LINE-1 elements and X chromosome inactivation: the Lyon repeat hypothesis. Proc Natl Acad Sci USA 97: 6634-6639.

Bairoch A, Bucher P and Hofmann K (1997) The PROSITE database, its status in 1997. Nucleic Acids Res 25: 217-221.

Bardelli A, Cahill DP, Lederer G, Speicher MR, Kinzler KW, Vogelstein B and Lengauer C (2001) Carcinogen-specific induction of genetic instability. Proc Natl Acad Sci USA 98: 5770-5775.

Baust C, Seifarth W, Germaier H, Hehlmann R and Leib-Mösch C (2000)

- xci -

HERV-K-T47D-related long terminal repeats mediate polyadenylation of cellular transcripts. Genomics 66: 98-103.

Baust C, Seifarth W, Söchn U, Hehlmann R and Leib-Mösch C (2001) Functional activity of HERV-K-T47D-related long terminal repeats. Virology 283: 262-272.

Becker KG, Swergold GD, Ozato K and Thayer RE (1993) Binding of the ubiquitous nuclear transcription factor YY1 to a cis regulatory sequence in the human LINE-1 transposable element. Hum Mol Genet 2: 1697-1702.

Bednarek AK, Keck-Waggoner CL, Daniel RL, Bergsagel PL, Kiguchi K, Brenner AJ and Aldaz CM (2001) WWOX, the FRA16D gene, behaves as a suppressor of tumor growth. Cancer Res 61: 8068-8073.

Benit L, Lallemand JB, Casella JF, Philippe H and Heidmann T (1999) ERV-L elements: a family of endogenous retrovirus-like elements active throughout the evolution of mammals. J Virol 73: 3301-3308.

Berkhout B, Jebbink M and Zsiros J (1999) Identification of an active reverse transcriptase enzyme encoded by a human endogenous HERV-K retrovirus. J Virol 73: 2365-2375.

Bing OHL, Sirokman G and Humphries DE (1998)-Hypothesis: link between endogenous retroviruses and cardiovascular disease. J Mol Cell Cardiol 30: 1257-1262.

Birren B., Green ED, Klapholz S, Myers RM and Roskams J (1997) Genome analysis: A laboratory manual. Cold Spring Harbor Laboratory Press, USA.

Bobe P, Benihoud K and Kiger N (1993) Allogenic MHC class II determinant(s) in MRL/Ipr autoimmune disease-prone mice. Unusual expression of an L1 transposable element creates molecular mimicry. J Immunol 151: 2813-2819.

Boller K, Kong H, Sauter M, Müeller-Lantzsch N, Löwer R, Löwer J and Kurth R (1993) Evidence of HERV-K is the endogenous retrovirus sequence that codes for the human teratocarcinoma-derived retrovirus HTDV. Virology 196: 349-353.

Bosch E and Jobling MA (2003) Duplications of the $A Z F a$ region of the human Y chromosome are mediated by homologous recombination between HERVs and are compatible with male fertility. Hum Mol Genet 12: 341-347.

Bradshaw V and McEntee K (1989) DNA damage activates transcription and transposition of yeast $T y$ retrotransposons. Mol Gen Genet 218: 465-474.

Bratthauer GL, Cardiff RD and Fanning TG (1994) Expression of LINE-1

- xcii -
retrotransposons I human breast cancer. Cancer 73: 2333-2336.
Bratthauer GL and Fanning TG (1992) Active LINE-1 retrotransposons in human testicular cancer. Oncogene 7: 507-510.

Bratthauer GL and Fanning TG (1993) LINE-1 retrotransposon expression in pediatric germ cell tumors. Cancer 71: 2383-2386.

Brodsky I, Foley B, Haines D, Johnston J, Cubby K and Gillespie D (1993) Expression of HERV-K proviruses in human leukocytes. Blood 81: 2369-2374.

Brouha B, Meischl C, Ostertag E, De Boer M, Zhang Y, Neijens H, Roos D and Kazazian HHJr (2002) Evidence consistent with human L1 retrotransposition in maternal meiosis I. Am J Hum Genet 2002 71: 327-336.

Bussemakers MJG, Van Bokhoven A, Van Groningen JJM, Debruyne FMJ and Schalken JA (1992) Increased expression of retroviral sequences in progressionally advanced prostatic tumors. Biochem Biophys Res Comm 182: 318-324.

Cardazzo B, Bargelloni L, Toffolatti L and Patarnello T (2003) Intervening sequences in paralogous genes: a comparative genomic approach to study the evolution of X chromosome introns. Mol Biol Evol (in press).

Caricasole A, Ward-van Oostwaard D, Mummery C and van den Eijnden-van Raaij A (2000) Bone morphogenetic proteins and retinoic acid induce human endogenous retrovirus HERV-K expression in NT2D1 human embryonal carcinoma cells. Dev Growth Differ 42: 407-411.

Chen RZ, Pettersson U, Beard C, Jackson-Grusby L and Jaenisch R (1998) DNA hypomethylation leads to elevated mutation rates. Nature 395: 89-93.

Chi CS, Tsai CR, Chen LH, Lee HF, Mak BS, Yang SH, Wang TY, Shu SG and Chen CH (2003) Maple syrup urine disease in the Austronesian aboriginal tribe Paiwan of Taiwan: a novel DBT (E2) gene 4.7 kb founder deletion caused by a nonhomologous recombination between LINE-1 and Alu and the carrier-frequency determination. Eur J Hum Genet 11: 931-936.

Chu X, Rittner C and Schneider PM (1995) Length polymorphism of the human complement C4 gene is due to an ancient retroviral integration. Exp Clin Immunogenet 12: 74-81.

Clausen J (2003) Endogenous retroviruses and MS: using ERVs as disease markers. Int MS J 10: 22-28.

Clements AP and Singer MF (1998) The human LINE-1 reverse transcriptase: effect of

- xciii -
deletions outside the common reverse transcriptase domain. Nucleic Acid Res 26: 3528-3535.

Coffin JM, Hughes SH and Heidmann T (1997) Retroviruses, Cold Spring Harbor Laboratory Press, Cold spring Harbor, NY.

Conard B, Weissmahr RN, Böni J, Arcari R, Schüpbach J and Mach BA (1997) A human endogenous retroviral superantigen as candidate autoimmune gene in type I diabetes. Cell 90: 303-313.

Cost GJ and Boeke JD (1998) Targeting of human retrotransposon integration is directed by the specificity of the L1 endonuclease for regions of unusual DNA structure. Biochemistry 37: 18081-18093.

Demattei MV, Auge-Gouillou C, Pollet N, Hamelin MH, Meunier-Rotival M and Bigot Y (2000) Features of the mammal marl transposons in the human, sheep, cow, and mouse genomes and implications for their evolution. Mamm Genome 11: 1111-1116.

De Mesa RL, Sierrasesúmaga L, Calasanz MJ, de Cerain AL and Patiño-García A (2000) Nonclonal chromosomal aberrations induced by anti-tumoral regimens in childhood cancer: relationship with cancer-related genes and fragile sites. Cancer Genet Cytogenet 121: 78-85.

Depil S, Roche C, Dussart P and Prin L (2002) Expression of a human endogenous retrovirus, HERV-K, in the blood cells of leukemia patients. Leukemia 16: 254-259.

Dhellin O, Maestre J and Heidmann T (1997) Functional differences between the human LINE retrotransposon and retroviral reverse transcriptase for in vivo mRNA reverse transcription. EMBO J 16: 6590-6602.

Dhillon VS, Huain SA and Ray GN (2003) Expression of aphidicolin-induced fragile sites and their relationship between genetic susceptibility in breast cancer, ovarian cancer, and non-small-cell lung cancer patients. Teratog Carcinog Mutagen Suppl 1: 35-45.

Dickson D, Eisenmann R, Fan H, Hunter E and Teich N (1982) Protein biosynthesis and assembly. In RNA Tumor Viruses, pp 135-146. Edited by Weiss, R. Reich N, Varmus H, and Coffin J, Cold spring Harbor, NY.

Dodd IB and Egan JB (1990) Improved detection of helix-turn-helix DNA-binding motifs in protein sequences. Nucleic Acids Res 18: 5019-5026.

Domansky AN, KoDpantzev EP, Snezhkov EV, Lebedev YB, Leib-Mösch C and

- xciv -

Sverdlov ED (2000) Solitary HERV-K LTRs posses bi-directional promoter activity and contain a negative regulatory element in the U5 region. FEBS Lett 472: 191-195.

Dombroski BA, Feng Q, Mathias SL, Sassaman DM, Scott AF, Kazazian HHJr and Boeke JD (1994) An in vivo assay for the reverse transcriptase of human retrotransposon L1 in Saccharomyces cereviciae. Mol Cell Biol 14: 4485-449.

Drechsler M and Royer-Pokora B (1996) A LINE element is present at the site of a $300-\mathrm{kb}$ deletion starting in intron 10 of the PAX6 gene in a case of familial aniridia. Hum Genet 98: 297-303.

Duesberg P, Li R, Rasnick D, Rausch C, Willer A, Kraemer A, Yerganian G and Hehlmann R (2000) Aneuploidy precedes and segregates with chemical carcinogenesis. Cancer Genet Cytogenet 119: 83-93.

Fanning TG and Singer MF (1987) LINE-1: a mammalian transposable element. Biochem Biophys Acta 910: 203-212.

Felsenstein J (1993) PHYLIP (Phylogeny Inference Package), ver. 3.5c. Distributed by the author. Department of Genetics, University of Washington, Seattle.

Feng Q, Moran JV, Kazazian HHJr and Boeke JD (1996) Human L1 retrotransposon encodes a conserved endonuclease required for retrotransposition. Cell 87: 905-916.

Feng WJ, Frost AF, Jian B, Azuero R, Lu DW, Chen D and Johanning GL (2003) Detecting the expression of Human endogenous retrovirus E envelope transcripts in human prostate adenocarcinoma. Cancer 98: 187-197.

Feng WJ, Frost AF, Johanning GL, Khazaeli MB, LoBuglio AF, Shaw DR and Strong TV (2001) Expression of human endogenous retrovirue K envelope transcripts in human breast cancer. Clin Cancer Res 7: 1553-1560.

Feuchter-Murthy AE, Freeman JD and Mager DL (1993) Splicing of a human endogenous retrovirus to a novel phospholipase A2 related gene. Nucleic Acids Res 21: 135-143.

Florl AR, Löwer R, Schmitz-Drager BJ and Schulz WA (1999) DNA methylation and expression of LINE-1 and HERV-K provirus sequences in urothelial and renal cell carcinomas. Br J Cancer 80: 1312-1321.

Florl AR and Schulz WA (2003) Peculiar structure and location of 9p21 homozygous deletion breakpoints in human cancer cells. Genes Chromosomes Cancer 37: 141-148.

Fundia A, Giere I, Larripa I and Slavutsky I (1998) Spontaneous breakage and fragile site expression in chronic lymphocytic leukemia. Cancer Genet Cytogenet 103: 144-148.

Furano AV (2000) The biological properties and evolutionary dynamics of mammalian LINE-1 retrotransposons. Prog Nucleic Acid Res Mol Biol 64: 255-294.

George JA, Burke WD and Eickbush TH (1996) Analysis of the 5' junctions of R2 insertions with the 28S gene: implications for non-LTR retrotransposition. Genetics 142: 853-863.

Gericke GS (1999) Chromosomal fragility may be indicative of altered higher-order DNA organization as the underlying genetic diathesis in complex neurobehavioural disorders. Med Hypotheses 52: 210-208.

Gilbert N, Lutz-Prigge S and Moran JV (2002) Genomic deletions created upon LINE-1 retrotransposition. Cell 110: 315-325.

Gordenin DA, Lobachev KS, Degtyareva NP, Malkova AL, Perkins E and Resnik MA (1993) Inverted DNA repeats: a source of eukaryotic genomic instability. Mol Cell Biol 13: 5315-5322.

Goryshin IY, Naumann TA, Apodaca J and Reznikoff WS (2003) Chromosomal deletion formation system based on Tn5 double transposition: use for making minimal genomes and essential gene analysis. Genome Res 13: 644-653.

Gotzinger N, Sauter M, Roemer K and N Müeller-Lantzsch (1996) Regulation of human endogenous retrovirus-K Gag expression in teratocarcinoma cell lines and human tumors. J Gen Virol 77: 2983-2990.

Grand RJ (1989) Acylation of viral and eukaryotic proteins. Biochem J 258: 625-638.

Gunning P, Ponte P, Okayama H, Engel J, Blau H and Kedes L (1983) Isolation and characterization of full-length cDNA clones for human $\alpha-$, β-, and gamma-actin mRNAs: skeletal but not cytoplasmic actins have an amino-terminal cysteine that is subsequently removed. Mol Cell Biol 3: 787-795.

Hansen RS (2003) X inactivation-specific methylation of LINE-1 elements by DNMT3B: implications for the Lyon repeat hypothesis. Hum Mol Genet 12: 2559-2567.

Hata K and Sakaki Y (1997) Identification of critical CpG sites for repression of

- xcvi -

L1 transcription by DNA methylation. Gene 189: 227-234.
Herbst H, Sauter M and Müeller-Lantzsch N (1996) Expression of human endogenous retrovirus K elements in germ cell and trophoblastic tumors. Am J Pathol 149: 1727-1735.

Hohjoh H and Singer MF (1997) Sequence-specific single-strand RNA binding protein encoded by the human LINE-1 retrotransposon. EMBO J 16: 6034-6043.

Holmes SE, Dombroski BA, Krebs CM, Boehm CD and Kazazian HHJr (1994) A new retrotransposable human L1 element from the LRE2 locus on chromosome 1q produces a chimaeric insertion. Nat Genet 7: 143-148.

Honma M, Tadokoro S, Sakamoto H, Tanabe H, Sugimoto M, Furuichi Y, Satoh T, Sofuni T, Goto M and Hayashi M (2002) Chromosomal instability in B-lymphoblastoid cell lines from Werner and Bloom syndrome patients. Mutat Res 520: 15-24.

Horsthemke B, Beisiegel U, Dunning A, Havinga JR, Williamson R and Humphries S (1987) Unequal crossing-over between two alu-rpetitive DNA sequences in the low-density-lipoprotein-receptor gene; a possible mechanism for the defect in a patient with familial hypercholesterolemia, Eur J Biochem 164: 77-81.

Huang H, Qian J, Proffit J, Wilber K, Jenkins R and Smith DI (1998) FRA7G extends over a broad region: coincidence of human endogenous retroviral sequences (HERV-H) and small polydispersed circular DNAs (spcDNA) and fragile sites. Oncogene 16: 2311-2319.

Hugh MR (1996) Members of the pogo superfamily of DNA-mediated transposons in the human genome. Mol Gen Genet 252: 761-766.

Hutchison CA, Hardies SC, Loeb DD, Shehee WR and Edgell MH (1989) LINES and related retroposons: long interspersed sequences in the eukaryotic genome. In Mobile DNA, Berg DE and Howe MM eds, pp. 593-617. ASM press, Washington, DC.

Hwu HR, Roberts JW, Davidson EH and Britten RJ (1986) Insertion and/or deletion of many repeated DNA sequences in human and higher ape evolution. Proc Natl Acad Sci USA 83: 3875-3879.

Johnston JB, Silva C, Holden J, Warren KG, Clark AW and Power C (2001) Monocyte activation and differentiation augment human endogenous retrovirus expression: implications for inflammatory brain diseases. Ann Neurol 50: 434-442.

Jotwani G, Misra A, Chattopadhyay P, Sarkar C, Mahapatra AK and Sinha S (2001) Genetic heterogeneity and alterations in chromosome 9 loci in a localized region of a functional pituitary adenoma. Cancer Genet Cytogenet 125: 41-45.

Jurgens B, Schmitz-Drager BJ and Schulz WA (1996) Hypomethylation of L1 LINE sequences prevailing in human urothelial carcinoma. Cancer Res 56: 5698-5703.

Kalter SS, Helmke RJ, Heberling RL, Panigel M, Fowler AK, Strickland JE and Hellman A (1973) C-type particles in normal human placentas. J Natl Cancer Inst 50: 1081-1084.

Kapitonov VV and Jurka J (1999) The long terminal repeat of an endogenous retrovirus induces alternative splicing and encodes and additional carboxyl-terminal sequences in the human leptin receptor. J Mol Evol 48: 248-251.

Katsumata K, Ikeda H, Sato M, Ishizu A, Kawarada Y, Kato H, Wakisaka A, Koike T and Yoshiki T (1999) Cytokine regulation of env gene expression of human endogenous retrovirus-R in human endothelial cells. Clin Immunol 93: 75-80.

Kazazian HHJr (2000) Genetics. L1 retrotransposons shape the mammalian genome. Science 289: 1152-1153.

Kazazian HHJr and Goodier JL (2002) LINE drive. retrotransposition and genome instability. Cell 110: 277-280.

Kazazian HHJr, Wong C, Youssoufian H, Scott AF, Phillips DG and Antonarakis SE (1988) Haemophilia A resulting from de novo insertion of L1 sequences represents a novel mechanism for mutation in man. Nature 332: 164-166.

Kimberland ML, Divoky V, Prchal J, Schwahn U, Berger W and Kazazian HHJr (1999) Full-length human L1 insertions retain the capacity for high frequency retrotransposition in cultured cells. Hum Mol Genet 8: 1557-1560.

Kim HS, Yi JM and Jeon SH (2001) Isolation and phylogenic analysis of HERV-K long terminal repeat cDNA in cancer cell. AIDS Res Hum Retroviruses 17: 987-990.

Kimura M (1980) The neutral theory of molecular evolution, Cambridge University press, Cambridge.

Kitamura Y, Ayukawa T, Ishikawa T, Kanda T and Yoiiske K (1996) Human endogenous retrovirus K10 encodes a functional integrase. J Virol 70: 3302-3306.

Kiyosawa H and Chance PF (1996) Primate origin of the CMT1A-REP repeat and
analysis of a putative transposon-associated recombination hotspot. Hum Mol Genet 5: 745-753.

Kjellman C, Sjgren H-O, Salford LG and Widergen B (1999) HERV-F(XA34) is a full-length human endogenous retrovirus expressed in placental and fetal tissues. Gene 239: 99-107.

Knössl M, Löwer R and Löwer J (1999) Expression of the human endogenous retrovirus HTDV/HERV-K is enhanced by cellular transcription factor YY1. J Virol 73: 1254-1261.

Kobayashi K, Nakahori Y, Miyake M, Matsumura K, Kondo-Iida E, and Nomura Y, Segawa M, Yoshioka M, Saito K, Osawa M, Hamano K, Sakakihara Y, Nonaka I, Nakagome Y, Kanazawa I, Nakamura Y, Tokunaga K and Toda T (1998) An ancient retrotransposal insertion causes Fukuyama-type congenital muscular dystrophy. Nature 394: 388-392.

Kolomietz E, Meyn MS, Pandita A and Squire JA (2002) The role of Alu clusters as mediators of recurrent chromosomal aberrations in tumors. Genes Chromosomes Cancer 35: 97-112.

Kowalski PE, Freeman JD and Mager DL (1999) Intergenic splicing between a HERV-H endogenous retrovirus and two adjacent human genes. Genomics 57: 371-379.

Krieg AM, Gourley MF and Perl A (1992) Endogenous retroviruses: potential etiologic agents in autoimmunity. FASEB J 6: 2537-2544.

Krummel KA, Roberts LR, Kawakami M, Glover TW and Smith DI (2000) The characterization of the common fragile site FRA16D and its involvement in multiple myeloma translocations. Genomics 69: 37-46.

Kumatori A, Faizunnessa NN, Suzuki S, Moriuchi T, Kurozumi H and Nakamura M (1998) Nonhomologous recombination between the cytochrome b_{558} heavy chain gene $(C Y B B)$ and LINE-1 causes an X-linked chronic granulomatous disease. Genomics 53: 123-128.

Kuo KW, Sheu HM, Huang YS and Leung WC (1998) Expression of transposon LINE-1 is relatively human specific and function of the transcripts may be proliferation-essential. Biochem Biophys Res Comm 253: 566-570.

Larsson E, Venables PJ, Andersson AC, Fan W, Rigby S, Botling J, berg F, Cohen M and Nilsson K (1996) Expression of the endogenous retrovirus ERV3 (HERV-R) during induced monocyte differentiation in the U-937 cell line. Int J Cancer 67: 451-456.

Lee WJ, Kim HJ and Jang KL (2003) Analysis of transcriptional regulatory sequences in the human endogenous retrovirus W long terminal repeat. J Gen Virol 84: 2229-2235.

Leib-Mösch C, Halmeier M, Werner Y, Geigl EM, Brack-Werner R, Francke U, Erfle V and Hehlmann R (1993) Genomic distribution and transcription of solitary HERV-K LTRs. Genomics 18: 261-269.

Liehr T, Reiter LT, Lupski JR, Murakami T, Claussen U and Rautenstrauss B (2001) Regional localization of 10 mariner transposon-like ESTs by means of FISH-evidence for a correlation with fragile sites. Mamm Genome 12: 326-328.

Lin CH, Hsieh SY, Sheen IS, Lee WC, Chen TC, Shyu WC and Liaw YF (2001) Genome-wide hypomethylation in hepatocellular carcinogenesis. Cancer Res 61: 4238-4243.

Lin L, Xu B and Rote NS (1999) Expression of endogenous retrovirus ERV-3 induces differentiation in BeWo, a choriocarcinoma model of human placenta trophoblast. Placenta 20: 109-118.

Lin L, Xu B and Rote NS (2000) The cellular mechanism by which the human endogenous retrovirus ERV-3 env gene affects proliferation and differentiation in human placental trophoblast model, BeWo. Placenta 21:73-78.

Löwer R, Boller K, Hasenmaier B, Korbmacher C, Müeller-Lantzsch N, Löwer J and Kurth R (1993) Identification of human endogenous retroviruses with complex mRNA expression and particle formation. Proc Natl Acad Sci USA 90: 4480-4484.

Löwer R, Löwer J and Kurth R (1996) The viruses in all of us: characteristics and biological significance of human endogenous retrovirus sequences. Proc Natl Acad Sci USA 93: 5177-5184.

Luan DD, Korman MH, Jakubczak JL and Eickbush TH (1993) Reverse transcription of R2Bm RNA is primed by a nick at the chromosomal target site: a mechanism for non-LTR retrotransposition. Cell 72: 595-605.

Luceri C, De Filippo C, Caderni G, Gambacciani L, Salvadori M, Giannini A and Dolara P (2000) Detection of somatic DNA alterations in azoxymethane-induced F344 rat colon tumors by random amplified polymorphic DA analysis. Carcinogenesis 21: 1753-1756.

Lupski JR (1998) Genomic disorders: structural features of the genome can lead to DNA rearrangements and human disease traits. Trends Genet 14: 417-422.

Lyon MF (1998) X-chromosome inactivation: a repeat hypothesis. Cytogenet Cell

Genet 80: 133-137.
Maeda T, Jikko A, Hiranuma H and Fuchihata H (1999) Analysis of genomic instability in squamous cell carcinoma of the head and neck using random amplified polymorphic DNA method. Cancer Lett 138: 183-188.

Mager DL and Goodchild NL (1989) Homologous recombination between the LTRs of a human retrovirus-like element causes a $5-\mathrm{kb}$ deletion in two siblings. Am J Hum Genet 45: 848-854.

Mager DL, Hunter DG, Schertzer M and Freeman JD (1999) Endogenous retroviruses provide the primary polyadenylation signal for two new human genes (HHLA2 and HHLA3). Genomics 59: 255-263.

Majors J (1990) The structure and function of retroviral long terminal repeats. Curr Top Microbiol Immunol 157: 49-92.

Malik HS, Burke WD and Eickbush TH (1999) The age and evolution of non-LTR retrotransposable elements. Mol Biol Evol 16: 793-805.

Martin MA, Bryan T, McCutchan TF and Chan HW (1981) Detection and cloning of murine leukemia virus-related sequences from African green monkey liver DNA. J Virol 39: 835-844.

Mayer J and Meese EU (2002) The human endogenous retrovirus family HERV-K (HML-3). Genomics 80: 331-343.

Mayer J, Meese EU and Müeller-Lantzsch N (1998) Human endogenous retrovirus K homologous sequences and their coding capacity in old world primates. J Virol 72: 1870-1875.

Mayer J, Meese EU and Müeller-Lantzsch N (1997) Multiple human endogenous retrovirus (HERV-K) loci with gag open reading frames in the human genome. Cytogenet Cell Genet 78: 1-5.

McNaughton JC, Cockburn DJ, Hughes G, Jones WA, Laing NG, Ray PN, Stockwell PA and Petersen GB (1998) Is gene deletion in eukaryotes sequence-dependent? A study of nine deletion junctions and nineteen other deletion breakpoints in intron 7 of the human dystrophin gene. Gene 222: 41-51.

Medstrand P and Blomberg J (1993) Characterization of novel reverse transcriptase encoding human endogenous retroviral sequences similar to type A and type B retroviruses: Differential transcription in normal human tissues. J Virol 67: 6778-6787.

Medstrand P, Lindeskog M and Blomberg J (1992) Expression of human endogenous retroviral sequences in peripheral blood mononuclear cells of healthy individuals. J Gen Virol 73: 2463-2466.

Meischl C, Boer M, Ahlin A and Roos D (2000) A new exon created by intronic insertion of a rearranged LINE-1 element as the cause of chronic granulomatous disease. Eur J Hum Genet 8: 697-703.

Miki Y, Nishisho I, Horii A, Miyoshi Y, Utsunomiya J, Kinzler KW, Vogelstein B and Nakamura Y (1992) Disruption of the $A P C$ gene by a retrotransposal insertion of L1 sequence in a colon cancer. Cancer Res 52: 643-645.

Miki Y (1998) Retrotransposal integration of mobile genetic elements in human diseases. J Hum Genet 43: 77-84.

Minakami R, Kurose K, Etoh K, Furuhata Y, Hattori M and Sakaki Y (1992) Identification of an internal cis-element essential for the human L1 transcription and a nuclear factor(s) binding to the element. Nucleic Acids Res 20: 3139-3145.

Mi S, Lee X, Li X, Veldman GM, Finnerty H, Racie L, Lavallie L, Tang XY, Edouard P, Howes S, Keith JCJr and McCoy JM (2000) Syncytin as a captive retroviral envelope protein involved in human placental morphogenesis. Nature 403: 785-789.

Misra A, Chosdol K, Sarkar C, Mahapatra AK and Sinha S (2001) Alteration of a sequence with homology to human endogenous retrovirus (HERV-K) in primary human glioma: implications for viral repeat mediated rearrangement. Mutat Res 484: 53-59.

Miyagi T, Akachi M, Yamato K, Miyoshi I and Koeffler HP (1991) D-factor: modulation of expression in fibroblasts. Leuk Res 15: 441-451.

Mold DE, Wu TC, Askin F and Huang RC (1997) Four classes of HERV-K long terminal repeats and their relative promoter strengths for transcription. Biomed Sci 4: 78-82.

Moodley YP, Misso NL, Scaffidi AK, Fogel-Petrovic M, McAnulty RJ, Laurent GJ, Thompson PJ and Knight DA (2003) Inverse effects of interleukin-6 on apoptosis of fibroblasts from pulmonary fibrosis and normal lungs. Am J Respir Cell Mol Biol 29: 490-498.

Moran JV, Holmes SE, Naas TP, DeBerardinis RJ, Boeke JD and Kazazian HHJr (1996) High frequency retrotransposition in cultured mammalian cells. Cell 87: 917-927.

Morawetz I and Hagen U (1990) Effect of irradiation and mutagenic chemicals on the generation of $A D H 2$ - and $A D H 4$-constitutive mutants in yeast: the inducibility of Ty transposition by UV and ethyl methanesulfonate. Mutat Res 229: 69-77.

Morelli C, Karayianni E, Magnanini C, Mungall AJ, Thorland E, Negrini M, Smith DI and Barbant-Brodano G (2002) Cloning and characterization of the common fragile site FRA6F harboring a replicative senescence gene and frequently deleted in human tumors. Oncogene 21: 7266-7276.

Moriarty HT and Webster LR (2003) Fragile sites and bladder cancer. Cancer Genet Cytogenet 140: 89-98.

Morse B, Rotherg PG, South VJ, Spandorfer JM and Astrin SM (1988) Insertional mutagenesis of the myc locus by a LINE-1 sequence in a human breast carcinoma. Nature 333: 87-90.

Müeller-Lantzsch N, Sauter M, Weiskircher A, Weiskircher K, Best B, Buck M and Graesser F (1993) Human endogenous retroviral element K10 (HERV-K10) encodes a full-length gag homologous 73-kDa protein and a functional protease. AIDS Res Hum Retroviruses 9: 343-350.

Naas TP, DeBerardinis JR, Moran JV, Ostertag EM, Kingsmore SF, Seldin MF, Hayashizaki Y, Martin SL and Kazazian HHJr (1988) Disruption of the APC gene by a retrotransposal insertion of L1 sequence in a colon cancer. EMBO J 17: 590-597

Narita N, Nishio H, Kitoh Y, Ishikawa Y, Minami R, Nakamura H and Matsuo M (1993) Insertion of a 5^{\prime} truncated L1 element into the 3^{\prime} end of exon 44 of the dystrophin gene resulted in skipping of the exon during splicing in a case of Duchenne muscular dystrophy. J Clin Invest 91: 1862-1867.

Nilsson M, Hoglund M, Panagopoulos I, Sciot R, Dal Cin P, Debiec-Rychter M, Mertens F and Mandahl N (2002) Molecular cytogenetic mapping of recurrent chromosomal breakpoints in tenosynovial giant cell tumors. Virchows Arch 441: 475-480.

Nowak MA, Komarova NL, Sengupta A, Jallepalli PV, Shih leM and Vogelstein B (2002) The role of chromosomal instability of tumor initiation. Proc Natl Acad Sci USA 99: 16226-16231.

Ono M, Yaunaga Y, Miyata T and Ushikobo H (1986) Nucleotide sequence of human endogenous retrovirus genome related to the mouse mammary tumor virus genome. J Virol 60: 589-598.

Ostertag EM and Kazazian HHJr (2001) Biology of mammalian L1 retrotransposons. Annu Rev Genet 35: 501-538.

Ovchinnikov I, Rubin A and Swergold GD (2002) Tracing the LINEs of human evolution. Proc Natl Acad Sci USA 99: 10522-10527.

Ovchinnikov I, Troxel AB and Swergold GD (2001) Genomic characterization of recent human LINE-1 insertions: evidence supporting random insertion. Genome Res 11: 2050-2058.

Paige AJ, Taylor KJ, Stewart A, Sgouros JG, Gabra H, Sellar GC, Smyth JF, Porteous DJ and Watson JE (2000) A 700-kb physical map of a region of 16 q 23.2 homozygously deleted in multiple cancers and spanning the common fragile site FRA16D. Cancer Res 60: 1690-1697.

Paquin CE and Williamson VM (1984) Temperature effects on the rate of Ty transposition. Science 226: 53-55.

Patience C, Simpson GR, Colletta AA, Welch HM, Weiss RA and Boyd MT (1996) Human endogenous retrovirus expression and reverse transcriptase activity in the T47D mammary carcinoma cell line. J Virol 70: 2654-2657.

Pavlicek A, Paces J, Ellder D and Hejnar J (2002) Processed pseudogene of human endogenous retroviruses generated by LINEs: their integrations, stability, and distribution. Genome Res 12: 391-399.

Pepinsky RB and Vogt VM (1984) Fine-structure analyses of lipid-protein and protein-protein interactions of gag protein p 19 of the avian sarcoma and leukemia viruses by cyanogen bromide mapping. J Virol 52: 145-153.

Pietrokovski S and Henikoff S (1997) A helix-turn-helix DNA-binding motif predicted for transposases of DNA transposons. Mol Gen Genet 254: 689-695.

Prestridge DS (1991) SIGNAL SCAN: A computer program that scans DNA sequences for eukaryotic transcriptional elements. CABIOS 7: 203-206.

Reiter LT, Liehr T, Rautenstrauss B, Robertson HM and Lupski JR (1999) Localization of mariner DNA transposons in the human genome by PRINS. Genome Res 9: 839-843.

Reiter LT, Murakami T, Koeuth T, Pentano L, Muzny DM, Gibbs RA and Lupski JR (1996) A recombination hotspot responsible for two inherited peripheral neuropathies is located near a mariner transposon-like element. Nat Genet 12: 288-297.

Ribas M. Miró R, Gelagert A and Egozcue J (1999) Chromosome instability in lymphocytes from two patients affected three sequential primary cancers: the role of fragile sites. Cancer Genet Cytogenet. 110: 133-135.

Riggs AD (2002) X chromosome inactivation, differentiation, and DNA methylation revisited, with a tribute to Susumu Ohno. Cytogenet Genome Res 99: 17-24.

Rizwana R and Hahn PJ (1999) CpG methylation reduces genomic instability. J Cell Sci 112: 4513-4519.

Rolfe M and Banks G (1986) Induction of yeast Ty element transcription by ultraviolet light. Nature 319: 339-340.

Ruvolo M, Disotell TR, Allard MW, Brown WM and Honeycutt RL (1991) Resolution of the African hominid trichotomy by use of a mitochondrial gene sequence. Proc Natl Acad Sci USA 88: 1570-1574.

Salem AH, Myers JS, Otieno AC, Watkins WS, Jorde LB and Batzer MA (2003) LINE-1 preTa elements in the human genome. J Mol Biol 326: 1127-1146.

Samad F, Bergtrom G and Amrani DL (1994) Regulation of plasminogen activation by interleukin-6 in human lung fibroblasts. Biochem Biophys Acta 28: 307-314.

Sankoff D, Deneault M and Turbis P (2002) Chromosomal distributions of breakpoints in cancer, infertility, and evolution. Theor Popul Biol 61: 497-501.

Santos R, Schenberg ASG, Gardner DSG and SG Oliver (1997) Enhancement of Ty transposition at the $A D H 4$ and $A D H 2$ loci in meiotic yeast cells. Mol Gen Genet 254: 555-561.

Sassaman DM, Dombroski BA, Moran JV, Kimberland ML, Naas TP, DeBerardinis RJ, Gabriel A, Swergold GD and Kazazian HHJr (1997) Many human L1 elements are capable of retrotransposition. Nat Genet 16: 37-43.

Sauter M, Roemer K, Best B, Afting M, Schommer S, Seitz G, Hartmann M and Müeller-Lantzsch N (1996) Specificity of antibodies directed against Env protein of human endogenous retroviruses in patients with germ cell tumors. Cancer Res 56: 4362-4365.

Sauter M, Schommer S, Kremmer E, Remberger K, Dolken G, Lemm I, Buck M, Best B, Neumann-Haefelin D and Müeller-Lantzsch N (1995) Human endogenous retrovirus K10: expression of gag protein and detection of antibodies in patients with seminomas. J Virol 69: 414-421.

Sbrana I and Musio A (1995) Enhanced expression of common fragile site with occupational exposure to pesticides. Cancer Genet Cytogenet 82: 123-127.

Schneider PM, Witzel-Schlmp K and Rittner C (2001) The endogenous retroviral insertion in the human complement C 4 gene modulates the expression of homologous genes by antisense inhibition. Immunogenetics 53: 1-9.

Schnieke A, Harbers K and Jaenisch R (1983) Embryonic lethal mutation in mice induced by retrovirus insertion intron the alpha $_{1}$ (I) collagen gene. Nature 304: 315-320.

Schön U, Seifarth W, Baust C, Hohenadl C, Erfle V and Leib-Mösch C (2001) Cell type-specific expression and promoter activity of human endogenous retroviral long terminal repeats. Virology 279: 280-291.

Seifarth W, Baust C, Murr A, Skladny H, Krieg-Schneider F, Blusch J, Werner T, Hehlman R and Leib-Mösch C (1998) Proviral structure, chromosomal location, and expression of HERV-K-T47D, a novel human endogenous retrovirus derived from T47D particles. J Viol 72: 8384-8391.

Sheen FM, Sherry ST, Risch GM, Robichaux M, Nasidze I, Stoneking M, Batzer MA and Swergold GD (2000) Reading between the LINEs: human genomic variation induced by LINE-1 retrotransposition. Genome Res 10: 1496-1508.

Sichangi MW, Langat DK and Mwenda JM (2002) Endogenous retrovirus sequences expressed in male mammalian reproductive tissues: a review. East Afr Med J 79: 38-41.

Simon M, Haltmeier M, Papakonstantinou G, Werner T Hehlmann R and Leib-Mösch C (1994) Transcription of HERV-K-related LTRs in human placenta and leukemic cells. Leukemia 8 Suppl 1: S12-S17.

Singer MF, Krek V, McMillan JP, Swergold GD and Thayer RE (1993) LINE-1: a human transposable element. Gene 135: 183-188.

Singh KP and Roy D (2001) Identification of novel breast tumor-specific mutation(s) in the q11.2 region of chromosome 17 by RAPD/AP-PCR fingerprinting. Gene 269: 33-43.

Sirokman GF, Humphries DE and Bing OHL (1997) Endogenous retroviral transcripts in myocytes from spontaneously hypertensive rats. Hypertension 30: 88-93.

Smit AF (1999) Interspersed repeats and other mementos of transposable elements in mammalian genomes. Curr Opin Genet Dev 9: 657-663.

Staleva LS and Venkov P (2001) Activation of Ty transposition by mutagens. Mutat Res 474: 93-103.

Strickland JE, Fowler AK, Kind PP, Hellman A, Kalter SS, Heberling RL and Helmke RJ (1973) Group specific antigen and RNA-directed DNA polymerase activity in normal baboon placenta. Proc Soc Exp Biol Med 144: 256-258.

Sugimoto J, Matsuura N, Kinjo Y, Takasu N, Oda T and Jinno Y (2001) Transcriptionally active HERV-K genes: Identification, isolation and chromosomal mapping. Genomics 72: 137-144.

Sutherland GR, Baker E and Richards RI (1998) Fragile sites still breaking. Trends Genet 14: 501-506.

Suzuki N, Fujiyoshi T, Maehara Y, Takahashi M, Yamamoto M and Endo H (1986) A new family of LTR-like sequences abundantly expressed in rat tumors. Nucleic Acids Res 14: 9271-9289.

Sverdlov DL (1998) Perpetually mobile footprints of ancient infections in human genome. FEBS Lett 428: 1-6.

Takai D, Yagi Y, Habib N, Sugimura T-and Ushijima T (2000) Hypomethylation of LINE1 retrotransposon in human hepatocellular carcinomas, but not in surrounding liver cirrhosis. Jpn J Clin Oncol 30: 306-309.

Thompson JD, Higgins DG and Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22: 4673-4680.

Tighe PJ, Stevens SE, Dempsey S, Le Deist F, Rieux-Laucat F and Edgar JD (2002) Inactivation of the Fas gene by Alu insertion: retrotransposition in an intron causing splicing variation and autoimmune lymphoproliferative syndrome. Genes Immun 3 Suppl 1: S66-70.

Ting CN, Rosenberg MP, Snow CM, Samuelson LC and Meisler MH (1992) Endogenous retroviral sequences are required for tissue-specific expression of human salivary amylase gene. Genes Dev 6: 1457-1465.

Toffolatti L, Cardazzo B, Nobile C, Danieli GA, Gualandi F, Muntoni F, Abbs S, Zanetti P, Angelini C, Ferlini A, Fanin M and Patarnello T (2002) Investigating the mechanism of chromosomal deletion: characterization of 39 deletion breakpoints in introns 47 and 48 of the human dystrophin gene. Genomics 80: 523-530.

Tönjes RR, Boller K, Limbach C, Lugert R and Kurth R (1997) Characterization of human endogenous retrovirus type K virus-like particles generated from recombinant baculoviruses. Virology 233: 280-291.

Towler DA, Adams SP, Eubanks SR, Towery DS, Jackson-Machelski E, Glaser L and Gordon JI (1988) Myristoyl CoA: protein N-myristoyltransferase activities from rat liver and yeast possess overlapping yet distinct peptide substrate specificities. J Biol Chem 263: 1784-1790.

Tükün A, Renda Y, Topçu M, Tuncali T and Bökesoy I (2000) Mental retardation with rare fragile site expressed at 2q11. Brain Devel 22: 498-500.

Tunca B, Egeli U, Zorluoglu A, Yilmazlar T, Yerci O, Kizil A (2000) The expression of fragile sites in lymphocytes of patients with rectum cancer and their first-degree relatives. Cancer Lett 152: 201-209.

Varmus H (1988) Retroviruses. Science 240: 1427-1435.
Varmus H (1987) Reverse transcription. Sci Am 257: 56-59.
Vinogradova TV, Leppik LP, Nikolaev LG, Akopov SB, Kleiman AM, Senyuta NB and Sverdlov ED (2001) Solitary human endogenous retroviruses-K LTRs retain transcriptional activity in vivo, the mode of which is different in different cell types. Virology 290: 83-90.

Wilkinson DA, Mager DL and Leong JA (1994) Endogenous human retroviruses, pp. 465-535. In The Retroviridae, J.A. Levy ed., Plenum Press, NY.

Wilson GA and Young FE (1975) Isolation if a sequence specific endonuclease (BamI) from Bacillus amyloliquefaciens H. J Mol Biol 97: 123-125.

Wingender E (1994) Recognition of regulatory regions in genomic sequences. J Biotechnol 35: 273-280.

Woodcock DM, Lawler CB, Linsenmeyer ME, Doherty JP and Warren WD (1997) Asymmetric methylation in the hypermethylated CpG promoter region of the human L1 retrotransposon. J Biol Chem 272: 7810-7816.

Woods-Samuels P, Wong C, Mathias SL, Scott AF, Kazazian HHJr and Antonarakis SE (1989) Characterization of a nondeleterious L1 insertion in an intron of the human factor VIII gene and further evidence of open reading frames in functional L1 elements. Genomics 4: 290-296.

Wu J, Zhou T, He J and Mountz JD (1993) Autoimmune disease in mice due to integration of an endogenous retrovirus in an apoptosis gene. J Exp Med 178:

- cviii -

461-468.

Yi JM, Kim HM and Kim HS (2001) Molecular cloning and phylogenetic analysis of the human endogenous retrovirus HERV-K long terminal repeat elements in various cancer cells. Mol Cells 12: 137-141.

Yoder JA, Walsh CP and Bestor TH (1997) Cytosine methylation and the ecology of intragenomic parasites. Trends Genet 13: 335-340.

Youssoufian H, Kasper CK, Phillips DG, Kazazian HHJr and Antonarakis SE (1988) Restriction endonuclease mapping of six novel deletions of the factor VIII gene in hemophilia A. Hum Genet 80: 143-148.

Zsiros J, Jebbink MF, Lukashov VV, Voute PA and Berkhout B (1998) Evolutionary relationships within a subgroup of HERV-K-related human endogenous retroviruses. J Gen Virol 79: 61-70.

APPENDIX I

Multiple aligned sequences of the HERV-K10 LTR from human cells

제주대학교 중앙도서관

GRI

TET3 AP－1 AgTCTEMAATATEECCTCETEBEMABEDAA ABTCTETAATATEECCTCETEGEAAEEEAAA ABTCTEAAATATERCCTCETGEGAAEGEAAA АВTCTEAגん АатствגAגFA

 AECCTEAEAEATEECCTTGTGEDAACEGAAA АЕТСТ AgTCTEAAMTATEGCCTCETGEGAAGEGAA AETCTEAANTATEECCTCETEEEATEEEAAA ABTCTGAAATATBECCTCETGEEgEgegAA

 ABTCTEAAATATEECCTTGTEGEAAEEEAAA
 ATCTEAAATATGECCTCETEFEAAREEAAA авсСтвAAATATEGCCTCATGETAAEEEAAA AECCTEAAATATEECCTCATEGEAMEEEAAA ABTCTEAABTATEGCCTCETEGEAAGEEAAA Авіст

le
Th box
box 120 gagbangicat
ghgeancecht BRERARABECAT bagmanigcat gagianaricat BABEAMEICAT GREGABGECAT A EAEBAREEANT A GAREMAEFAMT GAEFAMEIG－－ GABEAMETANT GAEEAAEEAAT －bagbanceant CEAEEAAEEAAC A GABEGAEEGAKT ceaggakgeanc －EABEAABECAT －babighaigicat GREEARAEGAAT GAEEAMRECAT GATEAAEEAAT batgangighat
 agtctanaatacamectcatgeganeggana
 ABTCTEAANTATEGCCTCETGEGAAGEGAAA

 AETCTGAAATATGECCTCETEGEAREGGAA ABTCTEAAATATEBCCTCETEGEABEEEAA

 AвTCTEAAATACA Аатст AETCTGAMATATGECCTCGTGEGAAEEGAM AETCTBAAATATEECCTCATAEEAREEGAA ABTCTEAAATATEGCCTCGTEEGAAEGEAA

 ABTCTEAAATATEECCTCATEGEAAEEEAAB

 ABTCTGAAATATBECCTCETGEGAAEGgAA
 ABTCTEAAATACAECCTCETGEGAAEGEAAA AвTCTEAגA

 AGTCTEAAATATEECCTCETGEGAAEEEAAA

 AgTCTGANATATBECCTCETBEEATGEGAAA АатствגдגтА

 AETCTEAAATATEECCTCGTEEEAAEEEAAA abcctangatacercctcctarghaberana AgTCTBAAATATEGCCTCATGEGAMEDGAAA ABTCTEAMATATEECCTCETEGEAMEEGAMA ABTCTGAAATATGECCTCGTGEGAABEGAA
 Аатст
 Авіст А
 AbTCTEAAATATEECCTCETEEGAREEGAA

Acdodan	gectctit－	abaca	AAES	тетectacec	TEEECAATEGAATETCTC－GETATMAAACCCGATTE－	TACETTCCATCTACTE		E日－AMAAA
ACDDADT9	－CCTCTITE	AEATA	AAES	тетcctacte	TEEECAATEGAATETCTE－AETGTAAAACCTGATTE－	－Tatattceatctacta		EA－bAABA
ACILD725 3	ECCTCTTE－	ABACA	AAES	тетеctece	TEEECAATEEAATETCTC－EETATAAAACCCEATTE－	－tatectecatctacta		EE－AMAAA
ACDII322． 2	bectctita	AAACA	AAES	тетеctece	TEEECAATE日－－－－－－－－－TETMAAACCCEATTE－	－tateitccatctacta		EE－ENASA
ACDD3975	вcctctis－	ABACA	AAES	тетестece	TEEECCATEGAATETCTC－GETATAAAACCCEATTE－	－tacgitccatctacta	c	EE－AAASA
ACDIDIS5 4	ncctetta－	abaca	AAES	тетеctaces	TEEECAATGEAATETCTC－GETATAAAACCCEATTE－	－Tatactecatctacta		EE－AAAAA
APDDD3E5．1	gectctita	ABATA	AAES	тетсctectea	TGEECAATEGAATETCTT－GETETAAAECCTEATTE－	－Tatateccatctacta		EA－gAMAA
Pant－1	acctette－	ABACA	AMES	тетcetacec	TEEECAATEGAATETCTC－GETATAAAACCCEATTE－	－TATEctccatctacta		E日－AMAAA
Pant－2	bectctib－	ABACA	AAEE	тctectacec	TEEECCATGEAATETCTC－GETATMAAACCCEATTE－	－Tatgctecatctacta		EE－AMABA
Pant－5	вCCTCTTE－	ABACA	AREE	тетеctece	TEEECCATEEAATETCTC－GETATAAAACCCEATTE－	－TATETTCCCTCTACTE－		EE－EAAAA
Pant－	вCCTCTTE－	ABACA	MAES	тетCctece	TEEECAATEEAATETCTC－ETTATAAAACCCEATTE－	－tacettccatctacti		E－AAAMA
Pmit－9	accterta－	ABACA	MAEP	тetcetace	TEEECAATGEAATETCTC－GETATAAAACCCEATTE－	－Tatectecatctacta		［10－AXAAA
Saimiris	accectia－	ABACA	EAES	тetcetace	TEESCAATEGAATETCTC－GETATAAAACCCEATTE－	－targetceatctacta		EE－AAAAA
Gorilla－1	ECCTCTTE－	AEACA	AAES	tctectace	TEEECAATEGAATETCTC－GETATAAAACCCEATTE	－TATgetccatctacta		EE－AABAA
Eorilla－2	вcctctia－	ABACA	AAEE	тetcetace	TEEECAATEEAATETCTC－bETATAANACCCEATTE	－targetceatctacta		EE－AAMAA
NacmenN－3	всетствв	AEATA－	MAMES	тстectacec	TEEECAATEEAACETCTE－g®TETAAAACCCEATTE	－Tatettctattiacta		A－ESMAS

Abbreviations of each K10 LTR clone were represented in Table 4. Bars in the sequences indicate the gaps, and asterisks under the sequences do the identical sequences. Shadowed sequences are the conserved and corresponding to each signal at the top of the sequences. Gorilla, Gorilla gorilla; MacacaM, Macaca mulatta; Pant, Pan troglodytes; SaimiriS, Saimiri sciureus. AP-1, AP-1 binding site; CAC-BP, CAC-binding protein binding site; c-MYC, c-MYC binding site; GATA-1, GATA-1 binding site; GR1, glucocorticoid hormone response element 1 , GR2, delayed secondary glucocorticoid response element; $\mathrm{Sp} 1, \mathrm{Sp} 1$ binding site; TGT3, TGT3 binding site; window 4 and window 10 , human epidermal growth factor response elements.

APPENDIX II

Multiple aligned sequences of the L1Hs p40 gene from human cells

제주대학교 중앙도서관

C1HE-1
$1 \mathrm{HE}-3$
1 HE t
$61 \mathrm{HE}-5$
$61 \mathrm{HE}-6$
LHE-
1月E-9
IhHE-1D
2 $1 \mathrm{HE} \mathrm{F}-11$
$61 \mathrm{HE}-12$
$21 \mathrm{HE}-12$
yopad
193572
193571
193570

 TAАTT
 TAATTGTCAGATTCACCMAㅁTTВMATEA TAATTGTCAEATTCACCAAGETTGAAATEAAEEAAAAA-TGTTAAGEGCAECCAEAGAG-AEAEGTCEEGGTACCCACAAAEEA-AAGCCCATCAGACTAACAECAECTCTCCCAECAE

 ТАА
 TAATTGTCAEATTCACCAAAETTEAAKТБA
 ТМАТРТСАПМТГА

 TAATY
 TAATTGTCAEATTCACCEAABTTGAAATEAAGEAAAAA-TВTTAABEECAECCA
 TMATATCARATCACCMSロTTRA-

 TA-TTATCA

 TAATTGTCAEATTCACCAA ТМАТTGTA ATTA CMA

 ТАА

 ТААТРТСАЕМТ

 TAATTGTCAGATTCACCAA

 TAATTGTCAOATTEATCAA

 ТААТТ

 TААТTGTCAEATTCACCA TААТСЕТСАБАТTСАССАААВ TAATTGTCAEATTCACCAA

 TМАТТ
 ТАА ТААТТ ТАТтТ

201

 AAACCCTACAAECCABAAE-AEAATGEEEECCAATATTCAAC--ATTCTTAAAEAAABEATTTT--CAACCCA- ВAATCTCATATCCAECC-AAACTAAECTTCTTAAET----TAAEE
 ААגссСТАСАגБССА

 AAACTCTACAAECCAGAAG-AEAGTEGEGECCAATATTCAAC--ATTCTTAAAGAAAGAATTTT--CAACCC-AGAATTTCATATCCAECC-CAACTAAGCTTCATAAGT---- تRARE

 АААСТСТАСААБССА AAATTCTACAAECCAGAAE-ACAATGEEEECCAATATTCAAC--ATTCTTAAABAAAAGTATTTT--TCACCC-ABAATTTCETATCCAECCAAATTAEGCTTCCTAAGE---TAAAEE AAACTCTACAAECCABAAB-AEABTEEAERCCAAFATECAAC-TTTC----ABAMAA АААСЕСТАСАААССА

 AAACCCTACAABCCAEAAB-AEAETEEEEECCAATATTCAAC--ATTCTTAAAEACAAEAATTTT--CAACCT-GEAATTTCATATCCAECE-AAACTAAECTTCATAAEC---- BAAEE ATACTCTACAAECCAEAAE-AEAETEEEEECCAATATTCAAC--ATTCTTAAAEAMAAETATTTT--CAACCC-AEAATTTCATATCCAECC-AAACTAAECTTCATAAET----GAAEE

 АААссстдсдв
 АААСТСТАA

 АААСТСТАСААвсСАвגдв-Авגв МАСТСТАСААЕСА

 AAACECTACAABCCABAAB-AEABTGEGEECCAATATTCAAC--ATTCTTAAA

 AAACCCTACAAECCAEAAE-AEAETEEEEECCAATATTCAAC--ATTCTTAAAEAAAAEAATTTT--CAACCC-ABAATTTCATATCCAECC-AAACTAAECTTCATAAET-----GAAEE

 АААСССТАСААЕССАвגА -Авגв

Abstract

1hHE－10 АААсСстACAA АА AAACCCTACAAECCABAAE－AEAETGEEGECCAATATTCAAC－－ATTCTTAAAGAAAAGAATTTT－－CAACCC－AEAATTTCATATCCAECC－AAACTAAECTTCATAAET－－－－GAAEE АА АСССТАСАА גМ AAACTCTACAAECCARAA日－AEA日TERERECCAATATTCAAC－－ATTCTTAA AAACTCTACAABCCABAAE－AEABTTEEEECCAATATTCAAC－－ATTCTTAA BAAAAEAATTTT－－CAACCC－ABAATTTCATATCCABCC－AAACTAAECTTCATAATT－－－－BAABE AMACTCTACAAECCAEAAG－AEAETGEEEECCCAATATTCAAC－－ATTCTTAAAGEAAABAATTTT－－CAACCCA－GAATTTCATATCCAFCC－AAACTAAECTTTATAAET－－－－BAAE ＂$"$＂ ．．

 AEAAATAAAATC－CTTTA－CAEACAAE－CAAATGCCEAR－AEATTTTETCAC－－CACC－AEECCTECCCTAAAAEAECTCCTEAAEEAAEAECTAAACATGEAA

 A AGAMATAAATC－CTTTA－CAEACAAR－CMAACICTEAE－AFATTCTGTCAC－－CACC－A
 AGAAATAAAATC－CCTTA－CAEECAAE－CAAATECTTAB－AGATTTTETCAC－－CACC－AGECCTECCCTAAAAEAECTCCTGAAGEAAGCACTAAACATGEAAA

 AGAAATAAAATC－CTTTA－CAEACAAE－CAAATGCTEAE－AEATGTTETCAC－－CACC－AEECCTECCTTACAAEABCTCCTGAAEEMAGCACTAAACATEEAA

 А
 як风А

 AGAAATAAAATA－CTTTA－CAEACAAB－CAAATACTEAG－AGATTTTETCAC－－CACC－AERCCTECCCTAAAAEAECTCCTEAAEEAAGTGCTAAACATGEAM

 Аад৯ТААд гА

 А

 Ав А
 АСММТАМ从TC－CTTTA

 AGAAATAAAATA－CTTTA－TAEACAAB－CAAATECTEAR－AGATTTTETCAC－－CACC－ABECCTECCCTAAAAEAECTCCTEAAEEAAECFETAAACATGEAA A巨AMATAMAATA－CTTTA－CAEACAAE－CAAATECTGAE－AEATTTTGTCAC－－CACC－AEECCTECCTTACAAEAGTTCCTEAAGEAAECACTAAACATEGAA
 АВ
 А

 AAATAMATA－CTTTA－CAEACAAE－CAAATECTEAE－AEATTTTETCAC－－CACC－ABECCTECCTTAAAAEAECTCCTEAAEEAABTGCTAAACACAEAA

Abstract

 АвגА (АААА АЕММТМММТノ-CTTM- AEAAATAAATC-CTTTA-CAEACAAE-CAAATGCCEAE-ABATTTTGTCAC--CACC-AEECCTECCCTAAAAEAECTCCTEAAEEAAECECTAAACATGEAA А $\triangle M A T A M A T$ - A $\operatorname{AAAATAMAATA-CTTTA-TAGACAAG-CAAATGCTGAG-AGATTTTGTCAC--CACC-AEECCTGCCCTAAAAGAECTCCTEAAEEAAECGCTAAACATEGAA~}$ А ABAAATAAATA-CTTTA-TAEACAAB-CAAATECTEAE-ABATTTTETCAC--CACE-AGECCTECCCTAAAABAECTCCTEAAEEAAECECTAAACATEEAA АвגдТАגф А

Abbreviations of each L1Hs $p 40$ clone and each symbol of L1Hs groups were represented in Table 8. Bars in the sequences indicate the gaps, and asterisks under the sequences do the identical sequences.

APPENDIX III

Multiple aligned sequences of the L1Hs p40 protein from human cells 제주대학교 중앙도서퐌

	1		20	40	$50 \quad \mathrm{BO}$
	PKC(1, 2, and 3) CKI			II PKC4	
B6-1	EIRETPQRE		Hitver	MKEKMLRABREKBWY	GKPIRLTADLSAESLQRRREMGPIFNILEEKNFRA
CC-2	EIREMPDRY		HiIver	MRGKMLRARREKBRV	GKPIRLTADLSAETQQRRREMGPIFNILKEKNFQP
CC-3	EIDETPQR		HIIVEP	MKEKMLRARREKERV	GKPIRLTADLSEETLRARREMGPIFNILEEKNFQP
CC-4	BIREMPRRY		HIIVEF	MEEKMLRARREKBRV	GKPIRLTADLSAETLQARREMSPIFNILKEKNFPP
A5-2	EIDRMPRRC		HIIVRE E	MEEKMLRARREKBCV H	GKPIRLTADLLAETLQARSEMGPIFNILEEKNFQP
HC-2	EIRETPQRY		HIIVRF	MKEKMLRARREKBRV	GKPIRLTADLSAETLQARREMGPIFNILKEKNFDP
HC-3	EIRETPQRY		HIIVRF	MKEKMLRARREKBRV	GKPIRLTADLSAETLQARREMGPIFNILEEKNFQP
Ju-2	EIRRTQRRS L		HIIVEP	MEEKVLRAREGEBRV	BKPIRLTADLLTDTLDARREMBPIFNILEEKYFQP
MC-3	EIRETRQRY		HIIVEP	MKEKMLRARREKBRV	GKPIRLTADLSAETLQARRDMEPIFNILKBKNFDP
MC-4	EIRETPQRY	B	HIIVEF	MKEKMLRARREKBRV	GKPIRLTADLSEETLKARREMGPIFNILEEKNFDP
MP-3	EIREMPQRY		HIIVEP	MKEEMLRARREKBRV	GKPIRLTEDLSAETLQRRRQMGPIFNILEEKNFQP
MP-4	EIDRTPRRS		HIIVEF	MEEEMLRABREKBRV H	GKPIRLTADLLAETLQARREMSPIFNILEEKNFQP
MD-1	EIRETPQRY	Γ	NIIVEF	MaEkMLRAATEKBRV H	GKPIRLITDLSAETLQRRREMGPIFNRLREKNFHL
MD-2	KIRETPQRE	LTP	HIILRF	MKEEILRARREKBRV H	GKPIRVTADLSAETLQARRVMGPLFNILEEKNFDL
SK-1	EIQRTPQRY		HIIVEF	MEEKVLRARREKBRV H	GKPIRLTAELSAETLQRRREMBPIFNILEEKNIFQP
SN-2	EIRETPQRY		HIIVEP	MKEKMLRARREKBRV H	GKPIRLTAELSAETLQARREMGPIFNTLEEKNFDP
SN-3	EIRRAPQRY		IHIIVEF	KKEKVLRARREKBRV H	BKPIRLTAELSAETLQRRREMGPIFNILKEKNIFQP
SN-4	EIREMPRRY		HIIVEF	MEEKMLRARRVEBRV	GKPIRLTADLSAETLQARREMGPIFNILEEKNFDP
SN-5	EIREMPRRY		HIIVRE	MEEKMLRARRVEBRV	GKPIRLTADLSAETLQARREMGPIFNILEEKNFDP
SD-1	BIREMPQRY		HIIVEP	MEEKMLRAMREKBWY	BKPIRLTADLLAETLDARREMSPIFNILEEKNIFDP
SD-2	EIREMPQRY		HIIVEF	MKEKTLBARREKBRV H	GKPIRLTADLSAETLDARREMGPIFNILKEKNIFQP
Su-1	EIRETPRRYA		RIIVEP	MKEKMLRARREKBRV	GKPIRLTADLSAETLQARREMGPIFNILEEKNFDP
09-1	EIREMPQR II		HIIVEF LO	LQMKEKMLRARREKBWY	GKSIRLTADLSAETLQRRREMGPIFNILEEKNFRP
09-2	EIREMPQRY	L	\% HTIVEF	MEEKMLRARREKBRV	GKPIRLMADLSAETLQARREMGPIFNILEEKNFDP
09-3	EIDRTPQRY		HIIERE	DHEEKMERARAEKPRV	GKPIRLIADLSAETLQRRRELSPIFNILKEKNFRP
L1Hs-1	EIRETPQRY		HIIVRF	MKEKMCRAMRESERV	GKPIRLTADLSAETLQARREMGPIFNILEEKNFDP
L1Hs-2	BIDETPQR		Hitver	MKEKMLRARREK日RV	GRPIRLTADLSAETLQRRREMGPIFNILEEKNFQP
L. $1 \mathrm{Hs}-3$	EIRETPQRY		HIIVEF	MEEKMLRARREKBRV	GKPIRLTADLSAETLQARRDMGPIFNILEEKNFQP
L. $1 \mathrm{~Hz}=4$	EIRETPQRY		HIIVEP	MEEKMLRARRESEIW	GKPIRLTADLSAETLQRRREMGPIFNILEEKNFQP
L.1Hs-5	EIRETPQRY		HIIVEF	MEEKMLRARREKBRV	GKPIRLTADLSAETLDARREMGPIFNILKEKNFQP
L2Hs-5	EIDETPQRY		HIIVEF	MEEKMLRARREKBRV	GKPIRLTADLSAETLDARREMSPIFNILKEKNFQP
L1Hs-7	EIRETPQRY		HIIVEF	MKEKMLRARREKBRV	GKPIRLTADLSAETLQARREMGPIFNILEEKNFQP
L.1Hs-8	EIRETPQRY		HIIVRE	MEEKMLRARREKBQV	GKPIRLTADLSAETLQARREMGPIFNILEEKNFDP
L1Hs-9	EIRETPQRY		HIIVEF	MEEKMLRARREKBRV	GKPIRLTADLSAETLQRRREMGPIFNILEEKNFQP
L1HS-10	EIDETPQRY		HIIVRE	MMEKMLRARRESEQ	GKPIRLTADLSAETLQARREMEVIFNILEEKNFDP
L. $1 \mathrm{Hs}-11$	EIREMPREY	∇	HIIIEF	MKEKMLRARREKBRV H	GKPIRLTADLSAETLQRRREMGPIFNILEEKNFRH
L.18s-13	EIRETPRRY		HIIVEF	MEEKMLRARREKBRV H	GKPIRLTADLSAETLQARREMRPIFNIFEEKNFDP
M80340	EIRETPRRY		HIIVEF	MREKMLRARREKBRV	GKPIRLTADLSAETLQARREMGPIFNILEEKNFQP
093572	EIRETPQRY		HIIVEF	MKEKMLRARREKBRV	GKPIRLTADLLAETLQARREMGPIFNILKIGKNFQP
093571	EIREMPRRY		HIIVEF	MKEKMLRARREKECY	GKPIRLTADLSAETLQARREMGPIFNILEEKNFDP
093570	EIRETPQRY		HIIVEF	MKEKMLRAMREKBRV	GKPIRLTADLSAETLQARREMGPIFNILEEKNFDP
093569	EIRETPQRY		HIIVRF	MKEKMLRARREKBRV	GKPIRLTADLSAETLQARREMGPIFNILEEKNFQP
093568	EIQRTPQRY		HIIVEP	MKEKMLRARREKERVF	BKPIRLTADLSAETLQRRREMBPIFSILKEKNFQP
093555	EIQRTPQRY		HIIVRF	MEEKMLRARREKBRV	GKPIRLTADLSAETLQARREMBPIFNILEEKNFQP
093565	EIRETPQRY		HIIVEF	MEEKMLRARREKBWY	GKPIRLTADLSAETLQARREMSPIFNILEEKNFQP
093563	EIRETPQRY		HIIVEP	MEEKMLRARREKBRV	BKPIRLTADLSAETLDARREMSPIFNILKEKNIFQP
093562	EIRETPQRY		HIIVEF	MEEKMLRARREKBRV	GKPIRLTADLSAETLDARREMESIFNILEEKNFPP
AL590131	EIRETRQRS L		HIIVRF	MKEKML.RAMBGEBRV	GKPIRLTADLSAETLQRRREMGPIFNILKEKNFPP
AC131151	EIRETPQRY		HIIVEF	MKEKMLRARREKBRV	GKPIRLTADLSAETLQARRDMEPIFNILKGKNFQP
AL096710	EIREMPRRY	B	HIIVEP	MEEKMLRARREKBRV H	BKPIRLTADLSAETLDARREMSPIFNILKEKNIFQP
AC022537	EIRETPQRY		HIIVEF	MKEKVLRARREKBRV H	GKPIRLTAELSAETLQARREMGPIFNILEEKNFQP
AL139136	EIRETPQRY		HIIVRF	MEEKMLRARREKBRV	GKPIRLTADLSAETLQRRREMGPIFNILSEKNFDP
AC099845	EIRETPQRY		HIIVEF	MEEKMLRARREKBRV	GKPIRLTADLSAETLQARREMGPIFNILEEKNFDP

[^4]| Pant－L1－1 | EIQRTPQRY |
| :--- | :--- |
| Pant－L1－2 | EIQRTPQRY |
| Pant－L1－3 | EIQRTPQRY |
| Pant－L1－4 | EIQRTPQRY |
| Pant－L1－5 | EIQRTPQRY |
| Pant－L1－5 | EIQRTPQRY |
| PanP－L1－1 | EIQRTPQRY |
| Panp－L1－2 | ERQRTPQRY |
| Borg－L1－1 | EIQRTPQRY |
| Mouse－L1－1 | EIQRTPQRY |
| Mouse－L1－2 | EIQRTPQRY |

BI

HIIVEF MKEKMLRAREQKBRV HIIVEF MKEKMLRAARQKERV HIIVEF MREKMLRAREQKBRV HIIVEF MKEKMLRAREQKBRV HIIVEF MKEKMLRAREQKDRV HIIVEF MKEKILRAREQKDRV HIIVEF MKEKMLRAMRRKBRV HIIVEF MKEKMLRAREQKEQV HIIVRF MEEKMLRARREKBRV HIIVRF MOEKMLRAAKEKEQV HIIVRF MKEKMLRTAREKBRV

GKPIRLTADLSAETLQARREUGPIFNILKEKNFQP GKPIRLTADLSAETLQARREUGPIFNILKEKNFQP GKPIRLTADLSAETLDARREMGPIFNILKEKNFQP GKPIRLTADLSAETLQARREMGPIFNILKEKNFQP GKPIRLTADCSAETLDARREUGPIFNILKEKNFQP GKPIRLTADLSAETLQARREMGPIFNILKEKNFQP GKPIRLTADCSAETLQARREUGPIFNILKEKNFQP GKPIRLTADCSAETLDARREUGPIFNILKEKNFQP GKPIRLTADLSAETLQRRREMGPIFNILKEKNFQP GKPIRLTADPLAETLQARREUGPISNLLKEKNFQP GKPIRLTVDLSAETLDARREMGPIFNILKBKNFRP

CC－2
CC－3
CC－4
A5－2
HC－2
HC－3
Ju－2
MC－3
MC－4
MP－3
MP－4
MD－1
MD－2
SN－1
$5 \mathrm{SN}-2$
SN－3
5N－4
$5 N-5$
SD－1
SD－2
SU－1
U9－1
09－2
09－3
L．1Hs－1
L． $1 \mathrm{Hs}-2$
L1Hs－3
L．1Hs－4
L．1Hs－5
L．1月s－5
L．1月s－7
L．1月s－8
L．1月s－9
L1HS－10
L．1． $18-11$
L1H5－13
M80340
093572

100
CKII

120 H2H

RISYL．AKLSEI IKYFTDKAMLRDFVTTRP RISYPAKLSFI IKYFIDKDML＿RDFVTTRP REYFTDKLMLRDFVTTRP IKYFIDKQMLRDFVTTRP IKYFTDRQILRDFFTNRPP Q
IKYFTDKAMLRDFYTRP Q s
IKYFTDKQMLRDFVTTRP I
IKYFTDKAMLRDFYTTRP
IKYFRDKAMLRDFVTTRP V
IKSFTDKAMLRDFYTTRP

8 IKSFTDKZMLRNFYTTRH
ID B I I IBRARY
INSFTDRHCRDSVITRP I D B I LIBRARY
R IKYFTDKHMCRDFVTTRH
IKSFTDKDMLRDFVTTRP
IKSFTDKQMCRDFVTTRP
IESFTDKAMLRDFYTTRP D
IKYFIDKAMLRDFYTTRP
IKYFIDKRMLRDFVTTRP
IKYFTDKAMLRDFYTTRP QF
IKYFTDKQMLRDFVTTRP K
AKYFTDKLMLRDFYTTRP
IKYFTDKQMLRDFYTTRP V T
IKYFTDKLMLRDFYTTRP
IKYFIDKAMLRDFYTTRP
IKYFIDKロMLRDFVTTRP
IKYFIDKQMLRDFYTTRP
IEYFTDKRMLRDFYTTRP
IKYFTDKDMCRDFYTTRP
IKYFTDKOMLRDFYTTRP
IKYFTDKQMLRDFVTTRP
IKYFIDKOMLRDFVTTRP
IKYFIDKGMLRDLVTTRP
IKYFTDKQMLRDFVTTRP
IKSFTDKロMPRDFVTTRP
E IKSFTDKAMLRDFYTTRP
IKYFTDKRMLRDFVTTRP
IKYFIDKQMLRDFYTTRP
IKYFIDKDMLRDFYTTRP

Q \quad D
D

D

093571	RISYPAKLSFI	IEYFIDKQILRDFYTTRP	
093570	RISYPAKLSFI	INYFIDKQML.RDFYTTRP	L.
093559	RISYPAKLSFI	IESFTDRQMLRDFVTTRP	
093568	RISYPAKLSFI	IKYFIDKQMLRDFYTTRP	
093565	RISTPAKLSFI	IEYFIDKQML.RDFVITRP	
093565	RISYPAKLSFI	IEYFIDKQML.RDFYTTRP	
093563	RISTPAKLSFI	IEYFIDKQML_RDFYTTRP	
093562	RISYPAKLSFE	IEYFIDKDML.RDFYTTRP	
AL.590131	RISTPAKLSFI	IEYFTDKQML_RDFYTTRP	
AC131151	RISYPAKLSFI	IEYFRDKDMLRDFYTTRP V	
AL096710	RISYPAKLSFI	IKYFTDKPMLRDFVTTTP	R
AC022537	RISYPAKLSFI	IKSFTDKQML.RDFVTTRP	
AL139136	RISYPAKLSFI	KIKYFTDKQMLRDFATTRPD	
AC099845	RISYPAKLSFI	IEYFTDKQMETDFYTTRP	
Pant-L1-1	RISYPAKLSFI	IEYFTDKQMLTDFVTTRP	
Pant-L1-2	RISYPAKLSFI	IEYFTDKQMETDFVTTRP V	
Pant-L1-3	RISYPAKLSFI	IEYFTDKQMLTDFVTTRP	
Pant-L1-4	RISYPAKLSFI	IEYFTDKRMLTDFYTTRP	
Pant-L1-5	RISYPAKLSFI	IEYFTDKQMETDFYTTRP	
Pant-L1-5	EISYPAKLSFI	IEYFTDKDMETDFYTTRP	
Panp-L1-1	RISYPAKLSFI	IEYFTDKQMETDFYTTRP	
Pamp-L1-2	RISTPAKLSFI	IEYFTDKDMLTDFYTTRP	
Borg-L1-1	RISYPAKLSFI	IEYFTDKQMLRDFYTTRP	
Mouse-L1-1	RISYPAKLSFI	IESFTDKDML.RDFVTTRT	
Mouse-L.1-2	RISYPAKLSFI	IEYFTDKMMLRDFYTIRP	E
			\%

Abbreviations of each L1Hs p40 clone and each symbol of L1Hs groups were represented in Table 8. Gorg, Gorilla gorilla; Mouse, Mus musculus; Panp, Pan paniscus; Pant, Pan troglodytes. HTH, helix-turn-helix motif; PKC, protein kinase C phosphorylation site; CKII, casein kinase II phosphorylation site. Asterisks indicate the identical sequences. Shadowed sequences are the conserved sequences corresponding to each protein interaction motif at the top of the sequences.

APPENDIX IV

Chorompsomal locations of each transcript of the HERV-K10 LTR and the L1Hs p40

제주대학교 중앙도서관

Idiograms of the human chromosomes were obtained from Human Genome Resources in GenBank. Information of each clone was given in Table 5 to HERV-K10 LTR and Table 9 to L1Hs $p 40$. Open rectangles indicate the transcript of HERV-K10 LTR and filled rectangles do that of L1Hs $p 40$.

APPENDIX V

Examples of Default Display of L1Hs Sequences Deposited in GenBank Database and the Search Result of the Part of Submissions

제주대학교 중앙도서관

1: AY392754
Homo sapiens map 7q cell-line CCD-25Lu LINE-1 element, partial sequence gi|37624749|gb|AY392754.1|[37624749]

2: AY392753
Links
Homo sapiens map 10q cell-line CCD-25Lu LINE-1 element, partial sequence gi|37624748|gb|AY392753.1|[37624748]

3: AY392752

Links
Homo sapiens map 7p cell-line CCD-25Lu LINE-1 element, partial sequence gi|37624747|gb|AY392752.1|[37624747]

4: AY392751
Links
Homo sapiens map Xq13.1 cell-line CCD-25Lu LINE-1 element, partial sequence gi|37624746|gb|AY392751.1|[37624746]

5: AY392750

Links
Homo sapiens map Xq23 cell-line HCT-15 LINE-D element, partial sequence gi|37624745|gb|AY392750.1|[37624745]

6: AY392749
Links
Homo sapiens map 8q cell-line HCT-15 LINE-1 element, partial sequence gi|37624744|gb|AY392749.1|[37624744]

7: AY392748
Homo sapiens map 7q cell-line HCT-15 LINE-1 element, partial sequence gi|37624743|gb|AY392748.1|[37624743]

8: AY392747
Links
Homo sapiens map 5q cell-line HCT-15 LINE-1 element, partial sequence gi|37624742|gb|AY392747.1|[37624742]

9: AY392746
Links
Homo sapiens map 5p cell-line HCT-15 LINE-1 element, partial sequence gi|37624741|gb|AY392746.1|[37624741]

초 록

전위인자 (transposable element)는 유전체 기능에 중요한 역할을 담당하며 전위 와 재조합을 통해서 염색체의 다른 위치로 전위할 수 있다. 그 결과로 생성된 반복 서열들은 많은 유전적 재조합의 기회를 제공하게 된다. 뿐만 아니라, 염색체상에서 전위인자의 위치 변화는 유전체 불안정성, 세포의 형질전환과 분화를 초래하기도 한다. 인간 유전체에서 몇 종류의 역전위인자 (retro-transposable elements)들이 알려 져 있다. 대표적 역전위인자인 인간내생성레트로바이러스 (HERVs)와 긴 산재형 고반복 인자 (LINEs)들은 기능적인 전위활성 보유하고 있다. HERV는 인간 유전 체의 $0.5 \%-3 \%$ 정도로 추정된다; 전형적인 레트로바이러스 단백 질인 gag, pol, env 를 암호화하고 있으며, 양 끝에 유사 프로모터로 작용하는 장만달반복배열 (LTR) 들이 위치한다. 인간 유전체에서 발견된 HERV LTR과독자적인 LTR들은 세포생 물학적으로 중요한 역할을 수행하고 있다. LTR들은 HERV 유전자 및 인접한 숙주 유전자의 발현을 조절하는 다양한 요소들을 보유하고 있다. 인간 LINE-1 (L1Hs)은 두 개의 열린 해독틀 (ORF)이 내재하고 있다: 그 중 하나는 역전사를 담당하는 역 전사효소를 암호화하고, 다른 하나는 RNA-단백질 복합체 형성을 담당한다. 본 연 구는 다양한 인간 세포주들 (2종의 정상 림프구와 2종의 정상 섬유아세포, 16 종의 암세포주)을 대상으로 HERV-K와 L1Hs의 전사 및 전사체의 염색체 위치를 조사하 였다. 또한, 이들 역전위인자들의 유전자 발현에서 몇 가지 화학적 발암물질의 효 과를 시험하였다. 역전위인자들의 RNA 전사체는 사용된 모든 세포주에서 발견되 었으나, 확인된 전사체의 상대적인 양은 세포 유형에 따라 서로 다르게 나타났다. 예를 들어, 섬유아세포들과 백혈구 세포들에서 전사 수준이 세포의 발생단계에 따 라 상이하게 나타났다. 또한, HERV-K 유전자들 (HERV-K10 LTR, HERV-K(T47D) LTR, HERV-K(C4) env, and HERV-K10 env)과 L1Hs p40 유전자, 조절 단백질 유전 자들 (BAX, c-MYC, IL-6, and $p 53$)의 발현 양상은 처리된 발암물질에 따라 변화하였

다. 다양한 세포에서 HERV-K 유전자의 활성이 세포유형 특이적으로 보고 되었기 에, HERV-K 유전자들이 세포의 증식, 사멸, 분화, 암 발생 및 외생성레트로바이러 스의 유입에 대항하는 항바이러스 방어 전략 등에 관여함을 암시한다. L 1 Hs 의 전 사는 세포유형적 특이성을 보이지는 않았으나, 스트레스나 암 발생 인자에 대한 반 응에서는 다양하게 나타났다. 비록, 역전위인자 RNA 전사체가 연구에 사용한 모 든 세포주에서 발견되었지만, 역전위인자의 발현과 인간 암 사이에서 직접적인 관 련성에 대한 증거를 찾기에는 불충분하였다. 이상의 결과는 발암물질에 대한 반응 에서 HERV-K와 L1Hs p40 유전자 발현의 변화를 근거하여, 역전위인자의 활성 수 준의 변화가 세포의 형질전환에 기여함을 암시하고 있다. 몇몇 발암물질은 전위활 성을 유도하였다. 트랜스포존 특이적 ITR과 인위적인 무작위 ITR을 증폭 시 발체로 사용하여 유전체 수준의 증폭을 수행한 결과, 증폭산물은 변화된 양상을 보였다. 평균 5 세대 배양 후, 증폭산물 중에서 구별되는 절편들이 관찰되었다. 염기서열 분 석에 수반된 BLAST 검색, 계통유전학적 분석을 통해 역전위인자의 전사체들이 거 의 모든 염색체의 다양한 좌위로부터 전사됨을 보여주었다. HERV-K10 LTR 인자 의 전사체들은 21 번 염색체와 Y 염색체에서는 나타나지 않았으며, 전사좌위는 염 색체의 동원체 부근부터 말단소립에 이르기까지 전 영역에서 걸쳐 나타났다. HERV-K10 LTR은 포유류 종분화 이전과 이후에 수차례에 걸쳐 인간 유전체로 유 입된 것으로 보인다. L 1 Hs 전사체들은 21 번 염색체를 제외한 모든 염색체에서 확 인되었다. 유사도 검색과 DNA 서열에 대한 가상적인 단백질 서열 해독은 인간 반 수체 유전체 내에 적어도 140 개의 전사활성 좌위가 확인되었다. 또한 절대성 원칙, 단순통합분지도 (majority rule, strict consensus tree)에서 활성 L1Hs 인자들이 두 집 단 (cluster)을 형성하였다. 염색체상의 위치를 살펴보면, 역전위인자 전사체들이 다수의 염색체취약부위 (fragile site)로부터 전사되며, 이와 같은 사실은 역전위인 자의 염색체상 위치와 염색체 불안정성 (chromosomal instability)과 암관련 절단부 위 (cancer-related breakpoint), 유전병관련 좌위 사이의 관련을 암시하고 있다. 역전 위인자들이 인간유전체로 유입된 이후, 유전체의 인트론을 확장시키고, 많은 유사

유전자 (pseudogene)들을 생성하였다. 결론적으로, 본 연구는 많은 역전위인자들이 숙주 유전체 내에서 전사, 전위되고 있을 뿐만 아니라, 세포내외 환경으로부터 다 양한 자극에 대해서도 반응할 수 있음을 제안하고 있다. 또한, 활성형 HERV-K와 L 1 Hs 역전위인자들은 인간 유전체에서 자신의 전위 활성이 잠재성을 유지한 채 광 범위하게 분포하고 있다.

주요어: 돌연변이, 레트로포손, 레트로바이러스, 발암물질, 암, 역전위, 역전위인자, 염색체, 염색체 불안정성, 염색체 재배열, 유전병, 유전자 발현, 유전체, 유전체 불 안정성, 전사, 전위인자, 전위, 재조합, 취약부위, 트랜스포존, env, HERV-K, HERV-K10 LTR, LINE-1, L1Hs p40, LTR

감사의 글

하루하루 가던 시간속에 어느덧 훌쩍 오늘 이 자리까지 오게 되엇습니다. 그리고 지난 4년 동안의 박사학위연구가 이 논문으로 결실을 맺게 되엇습니다. 어찌보면 가장 중요하면서도 힘들었던 시기에 결에서 또는 멀리서 격려와 도움을 주신 모든 분들께 짤막하나마 감사 인사를 드립니다.
학문 연구와 논문 작성에 이르기까지 모든 면에서 부족하기만 했던 저를 위해 귾이 없는 관심과 사랑으로 보살펴주셧고, 학문에 임하는 마음가짐을 흩어지지 않게 인 도해주신 오문유 교수님께 진심으로 감사의 말씀을 드립니다. 지난 6년, 대학원 석 사, 박사 과정을 거치는 동안 항상 학문에 정진할 수 잇게 가르쳐주셧고, 언제나 강 직하고 올골은 학자의 상을 보여주셧기에, 아직도 많이 모자라지만 오늘 이 자리에 설 수 잇게 되엇습니다. 감사하다는 말로는 이루 다 보답할 수 없는 은혜를 입고 떠 나는 제자를 아껴주시니, 은혜에 감사하고 항상 올바른 학문탐구에 매진할 것을 다 짐하며, 다시 한 번 머리숙여 감사드리며 항상 건강하시길 기원합니다.
부족한 제 논문에 대한 심사를 맡아바뿌신 와중에도 세세히 다듬어 주시고, 더불 어 더 나은 연구자의 길을 보여주신 제주대 생명과학과 김세재 고수님, 의학과 강 희경 고수님, 제주교대 홍승호 고수님, 제주하이테크산업진훙원 김기옥 박사님께 도 깊은 감사의 말씀을 드립니다. 그리고 생물학에 관한 많은 가르침을 주신 김원 택 고수님, 이응필 고수님, 오덕철 고수님, 이화자 교수님, 고석찬 고수님께도 감사 의 말씀을 드립니다. 석사논문 연구때부터 많은 가르침을 주셧던 김세재 고수님께 재삼 감사드립니다.
철부지같던 시절 대학원 생활의 두려움을 없애 주엇고, 학문이라는 험한 길을 걸어 갈 힘을 더해 준 고미희 박사님, 정응환 박사님께 감사드립니다. 실험과정에서 같 이 밤새며 부푼 라면으로 허기를 달래도 불평 한 번 않던 유전학실험실 가족들. 오 유성 선생님과 오주형 선생님 고맙습니다. 김재환, 송지훈 대학원 후배들, 이제 대 학원생이 될강민철, 오대주 후배들 너무 고맙고, 황준호, 강성일, 김윤정, 김동철 후 배들도 너무너무 고맙다. 더불어 그동안 유전학실험실을 거져간 선후배들에게도 감사의 뜻을 전합니다. 특히, 대학원 입학에 대한 응기를 일매워주엇고, 때로 형보 다도 더 친근한 모습으로 다독이며 앞서간 어느 자리에서도 후배에게 격려와 함께 많은 도움을 준 정용환 박사님 께 진심으로 고마움을 전합니다.
지난 6 년간의 대학원 생할에 많은 도움을 준 분자생물학실험실 박지권 박사님, 강

신해 박사님, 정형복, 진영준, 죄진영 대학원생들, 미생물학실험실 이동헌 박사님, 이정배 선배님, 생태학실험실 송관필선배님, 문명옥 선배님과 생물학과 모든 대학 원생들에게 감사드립니다.
의과대학 해부학고실 이봉희 고수님, 김명주 고수님, 조직학교실 이영기 고수님, 박덕배 고수님, 병리학교실 강현욱 고수님, 생화학교실 조문제 고수님, 기생중학고 실 정영배 고수님께도 감사드립니다. 특히, 실험을 위해 많은 도움을 주신 약리학 고실 강희경 고수님, 유은숙 고수님, 박수영 박사님, 이혜자, 김상철, 현재희, 윤원 종 대학원생, 미생물학고실 고영상 고수님과 윤지현 후배에게도 진심으로 감사드 립니다. 임희경, 김영미, 강윤석, 이정희 선생에게도 감사의 뜻을 전합니다.
생물학에 대한 제 관심과 연구에 대한 의윽을 키워낼 수 잇었던 사범대학 과학교육 과 생물교육 박행신 고수님, 정충덕 고수님, 오홍식 고수님, 이순동 고수님께도 감 사드립니다. 제주도 자연사박물관 정세호 박사님, 김완병 선배님께도 감사드립니 다. 농업시험장 김성철 박사님께도 감사드립니다. 그리고 쉽지 않은 연구 소재에 애타고 잇을 때, 멀리서 힘을 실어준 부산대학고 김희수 고수님, 이주미 대학원생 에게도 진심으로 감사드리며, 격려해주신 해양과학대학 이제희 고수님께도 감사 드립니다.
고등학고를 졸업하고 지금껏 못난 진구 둔 덕에 마음고생 많으면서도, 어느날 불쑥 나타나도 반겨주던 친구 최종철에게 감사드립니다. 짧지만은 않앗던 1년여의 시간 동안 내 결을 지켜주며 때로 나보다 더 몸과 마음을 걱정해 주며, 읏음과 기쁨을 건 네준 고윤미에게도 진심으로 감사의 뜻을 전합니다.
바쁜 생할 속에서도 언제나 동생에 대한 관심을 늦추지 않앗던 하나뿐인 누님과 넉 넉한 매형, 읏음이 예쁜 귀염덩어리 오하나양에게도 감사드립니다.

언젠가 어린시절, "대학원 가겟다"는 말을 들으시고는 많이 놀라시고도 그러마 하 셧고, 엇는 형편에 홀로 한숨과 눈물로 살아오시면서도 너무나 당당한 모습으로, 오늘의 저가 잇기마지 밤낮으로 비바람 가리지 않고 어려움 막아주시고 보살펴 주 신 사랑하는 나의 어머님. 지난 30 년간 드릴 것 하나엇던 제가 오늘 비로소 어머님 께 감사하다는 말씀과 함께 미약하나마 이 논문을 드릴 수 잇어 더엇이 기쁩니다. 부디 오래오래 건강하십시오.

[^0]: * not determined in Human Genome Resources in GenBank.
 ** is previously reported by Yi et al. (2001).

[^1]: * is given in Table 5.

[^2]: * not determined the chromosomal location in Human Genome Resources in GenBank.

[^3]: * Symbol of clone is given in Table 9.

[^4]: - cxxii -

