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�Abstract�

Liouville Type Theorem for (F ,F ′)p-Harmonic Maps

on Foliations

In this thesis, we introduce the concept of (F ,F ′)p-harmonic maps on foliated Rie-

mannian manifolds. Furthermore, the first and second variational formulas for (F ,F ′)p-
harmonic map are investigated explicitly according to the transversal p-energy. Simul-

taneously, the generalized Weitzenböck type formula is given and the Liouville type

theorem for (F ,F ′)p-harmonic map is illustrated precisely.
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1 Introduction

Let (M,g) and (M ′, g′) be Riemannian manifolds and let � ∶ (M,g) → (M ′, g′) be
a smooth map. Then � is said to be harmonic if the tension field ⌧(�) = trg(∇d�)
vanishes or � is a critical point of the energy functional E(�) which is defined by

E(�) = 1

2 �M �d��2µM ,

where µM is the volume element of M ([5]). In recent years, many geometers are

interested in harmonic maps on foliated Riemannian manifolds.

Let (M,g,F) and (M ′, g′,F ′) be foliated Riemannian manifolds and let � ∶ (M,g,F)→
(M ′, g′,F ′) be a smooth foliated map, i.e., � is a smooth leaf-preserving map. Then �

is said to be transversally harmonic if the transversal tension field ⌧b(�) vanishes, where
⌧b(�) = trQ(∇trdT�), dT� = d��Q and Q is the normal bundle of F . A transversally

harmonic map was introduced by J. Konderak and R. Wolak ([12]) and the properties

of such maps were considered in ([3,12,13,18]). It is well known that the transversally

harmonic map � is not a critical point of the transversal energy EB(�) which is defined

by ([10])

EB(�) = 1

2 �M �dT��2µM .

So S. Dragomir and A. Tommasoli ([4]) defined a new harmonic map, called (F ,F ′)-
harmonic map, which is a critical point of the transversal energy EB(�). But two

definitions are equivalent when F is minimal. In this thesis, we study (F ,F ′)p-harmonic

maps which are generalizations of (F ,F ′)-harmonic maps. In fact, a smooth foliated
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map � is said to be (F ,F ′)p-harmonic if � is a critical point of the transversal p-energy

EB,p(�) which is defined by

EB,p(�) = 1

p �M �dT��pµM .

Trivially, (F ,F ′)p-harmonic maps are p-harmonic maps for point foliations and (F ,F ′)2-
harmonic map is just (F ,F ′)-harmonic map ([4]). For p-harmonic map, see ([14,17,23]).

This thesis is organized as follows. In Chapter 2, we review some basic facts on

foliated Riemannian manifolds. In Chapter 3, the first and second variational formulas

for the transversal p-energy are given, respectively. At the same time, the transver-

sally stability is considered. In Chapter 4, we investigate the generalized Weitzenböck

type formula and its application. In Chapter 5, we study the Liouville type theorem

for (F ,F ′)p-harmonic maps. The Liouville theorem states that harmonic maps are

constant under some conditions. The classical Liouville theorem is that any bounded

harmonic function defined on the whole plane must be constant ([16]). Many geome-

ters discussed the Liouville type theorem on Riemannian manifolds ([8,22,26]) and on

foliated Riemannian manifolds ([6,9]), respectively.
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2 Basic facts on foliated Riemannian manifolds

Definition 2.1 A family F ≡ {L↵}↵∈A of connected subsets of a manifold Mp+q is

called a p-dimensional (or codimension q) foliation if

(1) M = ∪↵L↵,

(2) ↵ ≠ � �⇒ L↵ ∩L� = �,
(3) for any point in M , there exist a Cr−chart (local coordinate system) ('U , U), such
that if U ∩L↵ ≠ �, then 'U(U ∩L↵) = Ac ∩ '(U), where

Ac = {(x, y) ∈ Rp ×Rq �y = constant},

(4) on Ui ∩Uj ≠ �, the coordinate change 'j ○ '−1i ∶ 'i(Ui ∩Uj) → 'j(Ui ∩Uj) has the
form

'j ○ '−1i (x, y) = ('ij(x, y),�ij(y)),
where �ij ∶ Rq → Rq is a di↵eomorphism.

Here ('U , U) is called a distinguished (or foliated) chart.

Roughly speaking, a foliation corresponds to a decomposition of a manifold into a union

of connected submanifolds of dimension p called leaves.

Examples 2.2 (1) M = Rn and Lc = {Rp × c} with c ∈ Rn−p.

(2) M = R2 − {0} and Lr = {(x, y)�x2 + y2 = r2}.
(3) M = R2 and La = {(x, y)�y = x2 + a}.
(4) M = R2 and La = {(x, y)�y = ln � secx� + a}. Equivalently, La is the solution of
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dy
dx = tanx.
(5) A manifold M with Euler characteristic �(M) = 0 admits a nonzero vector field X

and the integral curves of X is a 1-dimensional foliation.

(6) Consider a closed 1-form ! = adx + bdy, a, b ∈ R on T 2 = R2�Z2. Then we obtain a

family of lines which defines a foliation in T 2. In this case, each leaf is R ([28]).

(7) A submersion f ∶M → B is a map of manifolds with a surjective derivative map at

every point of M . Then for b ∈ B, Lb = f−1(b) is a connected submanifold of M . All

these submanifolds have the same dimension.

Let (M,g,F) be a Riemannian manifold with a foliation F of codimension q and

a Riemannian metric g. Let TM be the tangent bunlde of M , L the tangent bundle

of F and then L is the integrable subbundle of TM . i.e., X,Y ∈ �L�⇒ [X,Y ] ∈ �L.
Let Q = TM�L be the corresponding normal bundle of F . Then the metric g defines a

splitting � in the exact sequence of vector bundles

0 // L // TM �
// Q⇡oo // 0 ,

where ⇡ ∶ TM → Q is the natural projection and � ∶ Q→ L⊥ is a bundle map satisfying

⇡ ○ � = id. Thus g = gL ⊕ gL⊥ induces a metric gQ on Q that is

gQ(s, t) = g(�(s),�(t)) ∀s, t ∈ �Q.

So we have an identification L⊥ with Q via the isometric splitting (Q,gQ) ≅ (L⊥, gL⊥).

Definition 2.3 A Riemannian metric gQ on Q of a foliation F is holonomy invariant
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if ✓(X)gQ = 0 for any X ∈ �L, where ✓(X) is the transverse Lie derivative, i.e.,

XgQ(s, t) = gQ(⇡[X,Ys], t) + gQ(s,⇡[X,Yt]), ∀X ∈ �L, ∀s, t, ∈ �Q,

where Ys = �(s) for any s ∈ �Q.

Definition 2.4 A foliation F is Riemannian if there exists a holonomy invariant metric

gQ on Q. A metric g is bundle-like (with respect to F) if the induced metric gQ is

holonomy invariant.

Theorem 2.5 ([24]) Let F be a foliation on (M,g). Then the following conditions are

equivalent.

(a) F is Riemannian and g is bundle-like.

(b) There exists an orthonomal adapted frame {Ei,Ea} such that

g(∇M
Ea

Ei,Eb) + g(∇M
Eb
Ei,Ea) = 0,

where ∇M be the Levi-Civita connection on M .

(c) All geodesics orthogonal to a leaf at one point are orthogonal to each leaf at every

point.

Definition 2.6 ([24]) The transverse Levi-Civita connection ∇Q on the normal bundle

Q is defined by

∇Q
Xs =

�����������������

⇡([X,Ys]) ∀X ∈ �L,
⇡(∇M

X Ys) ∀X ∈ �L⊥,
(2.1)

where ∇M be the Levi-Civita connection associated to the Riemannian metric g and

Ys = �(s).
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Then the transverse Levi-Civita connection ∇Q is metrical and torsion-free with respect

to gQ = gL⊥ . That is, ∇Q
XgQ = 0 for all X ∈ �TM and

TQ(Y,Z) = ∇Q
Y ⇡(Z) −∇Q

Z⇡(Y ) − ⇡[Y,Z] = 0

for any Y,Z ∈ �TM , where TQ is the transversal torsion tensor field of ∇Q.

Let RQ be the transversal curvature tensor of ∇Q ≡ ∇, which is defined by

RQ(X,Y ) = [∇X ,∇Y ] −∇[X,Y ], ∀X,Y ∈ �TM.

It is trivial that i(X)RQ = 0 for any X ∈ �L, where i(X) is the interior product. In

fact, RQ(X,Y )s = 0 for any Y ∈ �TM and s ∈ �Q ([Proposition 3.6, 25]).

Definition 2.7 The transversal sectional curvature KQ, transversal Ricci operator

RicQ and transversal scalar curvature �Q with respect to ∇ are respectively, defined by

KQ(s, t) = gQ(RQ(s,t)t,s)
gQ(s,s)gQ(t,t)−gQ(s,t)2 , ∀s, t, ∈ �Q

RicQ(s) = q∑
a=1R

Q(s,Ea)Ea, �Q = q∑
a=1 gQ(RicQ(Ea),Ea),

where {Ea} is a local orthonomal basic frame of Q.

Definition 2.8 The mean curvature form  of F is given by

(X) = gQ( p�
i=1
⇡(∇M

Ei
Ei),X), ∀X ∈ �Q,

where {Ei}i=1,�,p is a local orthonormal basis of L. The foliation F is said to beminimal

(or harmonic) if  = 0.
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Definition 2.9 A di↵erential form ! is basic if

i(X)! = 0, ✓(X)! = 0, ∀X ∈ �L.

Locally, the basic r−form ! is expressed by

! = �
a1<�<ar

!a1�ar
dya1

∧�∧ dyar
,

where
@!a1�ar

@xj = 0 for all j = 1,�, p.
Let ⌦r

B(F) be the space of all basic r–forms. Then ([1])

⌦∗B(M) = ⌦∗B(F)⊕⌦∗B(F)⊥.

Denote !B by the basic part of the form !.

Now, we define the star operator ∗̄ ∶ ⌦r
B(F)→ ⌦q−r

B (F) naturally associated to gQ.

The relationship between ∗̄ and ∗ is characterized by

∗̄� = (−1)p(q−r) ∗ (� ∧ �F),
∗� = ∗̄� ∧ �F

for � ∈ ⌦r
B(F), where �F is the characteristic form of F and ∗ is the Hodge star

operator ([24]). Let ⌫ be the transversal volume form, i.e., ∗⌫ = �F and �⋅, ⋅� be the

inner product on ⌦r
B(F), which is defined by ��, �⌫ = � ∧ ∗̄ for any �, ∈ ⌦r

B(F).
Then the global inner product ��⋅, ⋅��B on ⌦r

B(F) is given by

���, ��B = �
M
��, �µM

for any �, ∈ ⌦r
B(F), where µM = ⌫ ∧ �F is the volume form of M . With respect to

this global inner product ��⋅, ⋅��B, the formal adjoint operator �B ∶ ⌦r
B(F) → ⌦r−1

B (F)
7



of dB = d�⌦∗B(F) is given by

�B� = (−1)q(r+1)+1∗̄(dB − ∧)∗̄�.
Therefore, we have the following definition.

Definition 2.10 The basic Laplacian �B acting on ⌦∗B(F) is given by

�B = dB�B + �BdB,
where �B is the formal adjoint operator of dB = d�⌦∗B(F), which are locally given by

dB = q�
a=1

✓a ∧∇Ea
, �B = − q�

a=1
i(Ea)∇Ea

+ i(♯B),
where ♯B is the gQ–dual vector of B, {Ea}a=1,�,q is a local orthonormal basic frame

of Q and {✓a} is its gQ–dual 1–form.

Theorem 2.11 ([1]) For a Riemannian foliation F on a closed manifold, B is closed,

i.e., dBB = 0.

We define ∇∗tr∇tr ∶ ⌦r
B(F)→ ⌦r

B(F) by
∇∗tr∇tr = − q�

a=1
∇2

Ea,Ea
+∇♯B ,

where ∇2
X,Y = ∇X∇Y −∇∇M

X Y for any X,Y ∈ �TM .

Proposition 2.12 ([7]) The operator ∇∗tr∇tr is positive definite and formally self ad-

joint on the space of basic forms, i.e.,

�
M
�∇∗tr∇tr', �µM = �

M
�∇tr',∇tr �µM ,

where �∇tr',∇tr � = q∑
a=1�∇Ea

',∇Ea
 �.
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Definition 2.13 ([11]) A vector field Y ∈M is an infinitesimal automorphism of F if

[Y,Z] ∈ �L, ∀Z ∈ �L.

Let V (F) be the space of all infinitesimal automorphaisms and let V̄ (F) = {Ȳ =
⇡(Y )�Y ∈ V (F)}. It is trivial that an element s of V̄ (F) satisfies ∇Xs = 0 for all

X ∈ �L. Hence the metric defined by (2.4) induces an identification ([19])

V̄ (F) ≅ ⌦1
B(F).

For the later use, we recall the transversal divergence theorem on a foliated Riemannian

manifold ([28]).

Theorem 2.14 (Transversal divergence theorem) Let (M,g,F) be a closed, ori-

ented Riemannian manifold with a transversally oriented foliation F and a bundle-like

metric g with respect to F . Then

�
M

div∇(X̄)µM = �
M

gQ(X̄,♯B)µM

for all X ∈ V (F), where div∇(X̄) denotes the transversal divergence of X̄ with respect

to the connection ∇ of (2.1).

Now we define the bundle map AY ∶ ⇤rQ∗ → ⇤rQ∗ for any Y ∈ V (F) by ([11])

AY � = ✓(Y )� −∇Y �.

It is well-known ([11]) that for any s ∈ �Q

AY s = −∇Ys
Ȳ ,
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where Ys is the vector field such that ⇡(Ys) = s. In fact, AY s = ✓(Y )s − ∇Y s =
∇Y s−∇Ys

Ȳ −∇Y s = −∇Ys
Ȳ . Thus, AY depends only on Ȳ = ⇡(Y ). Now, we recall the

generalized Weitzenböck type formula on ⌦∗B(F) ([7]).

Theorem 2.15 (Generalized Weitzenböck type formula) On a foliated Rieman-

nian manifold (M,g,F), we have

�B� = ∇∗tr∇tr� + F (�) +A♯B�, � ∈ ⌦r
B(F), (2.2)

where F (�) = ∑
a,b
✓a∧i(Eb)R∇(Eb,Ea)�. If � is a basic 1–form, then F (�)♯ = RicQ(�♯).
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3 Variational formulas for the transversal p-energy

Let (M,g,F) and (M ′, g′,F ′) be two foliated Riemannian manifolds. Let � ∶
(M,g,F) → (M ′, g′,F ′) be a smooth foliated map, i.e., d�(L) ⊂ L′. Then we define

dT� ∶ Q→ Q′ by

dT� ∶= ⇡′ ○ d� ○ �.
Then dT� is a section in Q∗ ⊗ �−1Q′, where �−1Q′ is the pull-back bundle on M . Let

∇� and ∇̃ be the connections on �−1Q′ and Q∗ ⊗ �−1Q′, respectively.

Definition 3.1 The map � ∶ (M,g,F) → (M ′, g′,F ′) is called transversally totally

geodesic if

∇̃trdT� = 0,
where (∇̃trdT�)(X,Y ) = (∇̃XdT�)(Y ) for any X,Y ∈ �Q.

Note that if � ∶ M → M ′ is transversally totally geodesic, then for any transversal

geodesic � in M , � ○ � is also transversal geodesic. From now on, we use ∇ instead of

all induced connections if we have no confusion.

Definition 3.2 The transversal p-tension field ⌧b,p(�) of � is defined by

⌧b,p(�) = trQ(∇tr(�dT��p−2dT�)) = q�
a=1
(∇Ea

�dT��p−2dT�)(Ea),

where �dT��2 = q∑
a=1 gQ′(dT�(Ea), dT�(Ea)).
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From Definition 3.2, we get

⌧b,p(�) = q�
a=1
(∇Ea

�dT��p−2dT�)(Ea)
= q�
a=1
(∇Ea

�dT��p−2dT�(Ea) − �dT��p−2dT�(∇Ea
Ea))

= q�
a=1
(�dT��p−2∇Ea

dT�(Ea) − �dT��p−2dT�(∇Ea
Ea) +Ea(�dT��p−2)dT�(Ea))

=�dT��p−2⌧b(�) + (p − 2)�dT��p−3dT�(gradQ(�dT��))
=�dT��p−2{⌧b(�) + (p − 2)dT�(gradQ(ln �dT��))},

where �dT�� ≠ 0 and ⌧b(�) = trQ(∇trdT�) is the transversal tension field ([10]). It

follows that ⌧b,2(�) = ⌧b(�).

Definition 3.3 Let ⌦ be a compact domain of M . Then the transversal p-energy of �

on ⌦ ⊂M is defined by

EB,p(�;⌦) = 1

p �⌦ �dT��pµM ,

where µM is the volume element of M .

Definition 3.4 The map � ∶ (M,g,F) → (M ′, g′,F ′) is said to be (F ,F ′)p-harmonic

if � is a critical point of the transversal p-energy EB,p(�).

In particular, a (F ,F ′)2-harmonic map is called a (F ,F ′)-harmonic map. Some

properties of (F ,F ′)-harmonic map have been discussed in ([4]). Next, we consider

the first variational formula for the transversal p-energy. Let V ∈ �−1Q′. Obviously, V

may be considered as a vector field on Q′ along �. Then there is a 1-parameter family
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of foliated maps �t with �0 = � and d�t

dt �t=0 = V . Then the family {�t} is said to be

a foliated variation of � with the normal variation vector field V . Then we have the

following theorem.

Theorem 3.5 (The first variational formula) Let � ∶ (M,g,F) → (M ′, g′,F ′) be
a smooth foliated map. Let {�t} be a smooth foliated variation of � supported in a

compact domain ⌦. Then

d

dt
EB,p(�t;⌦)�t=0 = −�

⌦
�V, ⌧̃b,p(�)�µM ,

where ⌧̃b,p(�) = ⌧b,p(�) − �dT��p−2dT�(♯B), V = d�t

dt �t=0 is the normal variation vector

field of {�t} and �⋅, ⋅� is the pull-back metric on �−1Q′.

Proof. Let ⌦ be a compact domain of M and let {�t} be a foliated variation of �

supported in ⌦ with the normal variation vector field V ∈ �−1Q′. Fix x ∈ M . Let

{Ea} be a local orthonormal basic frame on Q such that (∇Ea)(x) = 0. Define � ∶
M × (−✏, ✏)→M ′ by �(x, t) = �t(x). Obviously, d�(Ea) = dT�t(Ea) and d�( @@t) = d�t

dt .

Moreover, we have ∇ @
@t

@
@t = ∇ @

@t
Ea = ∇Ea

@
@t = 0. Hence at x,

d

dt
EB,p(�t;⌦) = 1

p

d

dt �⌦(
q�

a=1
�d�(Ea), d�(Ea)�) p

2µM

= �
⌦

q�
a=1
�dT��p−2�∇ @

@t
d�(Ea), d�(Ea)�µM

= �
⌦

q�
a=1
�dT��p−2�∇Ea

d�( @
@t
), d�(Ea)�µM
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= �
⌦

q�
a=1
{Ea�d�( @

@t
), �dT��p−2d�(Ea)� − �d�( @

@t
), (∇Ea

�dT��p−2d�)(Ea)�}µM

= �
⌦

q�
a=1

Ea�d�t
dt

, �dT�t�p−2dT�t(Ea)�µM −�
⌦
�d�t
dt

, ⌧b,p(�t)�µM ,

where �dT��2 = q∑
a=1�d�(Ea), d�(Ea)� = �dT�t�2.

If we choose a normal vector field Xt with

�Xt, Z� = �d�t
dt

, �dT�t�p−2dT�t(Z)�

for any vector field Z, then

div∇(Xt) = q�
a=1

Ea�d�t
dt

, �dT�t�p−2dT�t(Ea)�.

So by the transversal divergence theorem (Theorem 2.14), we have

d

dt
EB,p(�t;⌦) = �

⌦
div∇(Xt)µM −�

⌦
�d�t
dt

, ⌧b,p(�t)�µM

= �
⌦
�Xt,

♯
B�µM −�

⌦
�d�t
dt

, ⌧b,p(�t)�µM

= −�
⌦
�d�t
dt

, ⌧b,p(�t) − �dT�t�p−2dT�t(♯B)�µM

= −�
⌦
�d�t
dt

, ⌧̃b,p(�t)�µM ,

which proves (3.5) by t = 0. �

Corollary 3.6 The map � ∶ (M,g,F) → (M ′, g′,F ′) is a (F ,F ′)p-harmonic map if

and only if ⌧̃b,p(�) = 0.

Since EB,2(�) = EB(�) is the transversal energy, we have the following.
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Corollary 3.7 ([10]) Let � ∶ (M,g,F) → (M ′, g′,F ′) be a smooth foliated map. Let

{�t} be a smooth foliated variation of � supported in a compact domain ⌦. Then

d

dt
EB(�t;⌦)�t=0 = −�

⌦
�V, ⌧̃b(�)�µM ,

where ⌧̃b(�) = ⌧b(�) − dT�(♯B), V = d�t

dt �t=0 is the normal variation vector field of {�t}
and �⋅, ⋅� is the pull-back metric on �−1Q′.

Now, we consider the second variational formula for the transversal p-energy. Let

V,W ∈ �−1Q′. Then there exists a family of foliated maps �t,s(−✏ < s, t < ✏) satisfying
���������������������������

V = @�t,s

@t �(t,s)=(0,0),
W = @�t,s

@s �(t,s)=(0,0),
�0,0 = �.

(3.1)

The family {�t,s} is said to be a foliated variation of � with the normal variation vector

fields V and W .

Theorem 3.8 (The second variational formula) Let � ∶ (M,g,F) → (M ′, g′,F ′)
be a (F ,F ′)p-harmonic map. Then for the normal variation vector fields V and W of

the foliated variation {�t,s},
@2

@t@s
EB,p(�t,s;⌦)�(t,s)=(0,0)
=�

⌦
�dT��p−2�∇trV,∇trW �µM −�

⌦
�dT��p−2�trQRQ′(V, dT�)dT�,W �µM

+ (p − 2)�
⌦
�dT��p−4�∇trV, dT���∇trW,dT��µM ,
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where

�����������������

trQR
Q′(V, dT�)dT� = q∑

a=1R
Q′(V, dT�(Ea))dT�(Ea),

�∇trV, dT�� = q∑
a=1�∇Ea

V, dT�(Ea)�.
Proof. Let � ∶ M × (−✏, ✏) × (−✏, ✏) → M ′ be a smooth map which is defined by

�(x, t, s) = �t,s(x). Then d�(Ea) = dT�t,s(Ea), d�( @
@s) = @�t,s

@s and d�( @@t) = @�t,s

@t .

Trivially, [X, @
@t] = [X, @

@s] = 0 for any vector field X ∈ TM . For convenience, we put

f = �dT�t,s�p−2. By making use of the first variational formula, it turns out that

@

@s
EB,p(�t,s;⌦) = −�

⌦
�d�( @

@s
), ⌧̃b,p(�t,s)�µM . (3.2)

Di↵erentiating (3.2) with respect to t, we get

@2

@t@s
EB,p(�t,s;⌦) = −�

⌦
�∇ @

@t
d�( @

@s
), ⌧̃b,p(�t,s)�µM −�

⌦
�d�( @

@s
),∇ @

@t
⌧̃b,p(�t,s)�µM .

Since � is a (F ,F ′)p-harmonic map, from Corollary 3.6, we have that at (t, s) = (0,0),
@2

@t@s
EB,p(�t,s;⌦)�(0,0) = −�

⌦
�W,∇ @

@t
⌧̃b,p(�t,s)�(0,0)�µM .

By choosing a local orthonormal basic frame field Ea with ∇Ea(x) = 0 at some point

x ∈M , we have that at x,

∇ @
@t
⌧̃b,p(�t,s)
=∇ @

@t
⌧b,p(�t,s) −∇ @

@t
fd�(♯B)

= q�
a=1
∇ @

@t
{(∇Ea

fd�)(Ea)} − f∇♯Bd�( @@t) −
@f

@t
d�(♯B)
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= q�
a=1
{∇Ea

∇ @
@t
fd�(Ea) +R�( @

@t
,Ea)fd�(Ea)} − f∇♯Bd�( @@t) −

@f

@t
d�(♯B)

= q�
a=1
{∇Ea

∇Ea
fd�( @

@t
) +∇Ea

(@f
@t

d�(Ea) −Ea(f)d�( @
@t
)) +R�( @

@t
,Ea)fd�(Ea)}

− f∇♯Bd�( @@t) −
@f

@t
d�(♯B). (3.3)

From (3.3), we have

�
⌦
�∇ @

@t
⌧̃b,p(�t,s), d�( @

@s
)�µM

=�
⌦

q�
a=1
�∇Ea

∇Ea
fd�( @

@t
), d�( @

@s
)�µM

+�
⌦

q�
a=1
�RQ′(d�( @

@t
), d�(Ea))fd�(Ea), d�( @

@s
)�µM

+�
⌦

q�
a=1
�∇Ea

@f

@t
d�(Ea), d�( @

@s
)�µM −�

⌦

q�
a=1
�∇Ea

Ea(f)d�( @
@t
), d�( @

@s
)�µM

−�
⌦
�f∇♯Bd�( @@t), d�(

@

@s
)�µM −�

⌦
�@f
@t

d�(♯B), d�( @@s)�µM

= −�
⌦
�∇∗tr∇trfd�( @

@t
), d�( @

@s
)�µM +�

⌦
�∇♯Bfd�( @@t), d�(

@

@s
)�µM

+�
⌦

q�
a=1
�RQ′(d�( @

@t
), d�(Ea))fd�(Ea), d�( @

@s
)�µM

+�
⌦

q�
a=1

Ea�@f
@t

d�(Ea), d�( @
@s
)�µM −�

⌦

q�
a=1
�@f
@t

d�(Ea),∇Ea
d�( @

@s
)�µM

−�
⌦

q�
a=1

Ea�Ea(f)d�( @
@t
), d�( @

@s
)�µM +�

⌦

q�
a=1
�Ea(f)d�( @

@t
),∇Ea

d�( @
@s
)�µM

−�
⌦
�f∇♯Bd�( @@t), d�(

@

@s
)�µM −�

⌦
�@f
@t

d�(♯B), d�( @@s)�µM . (3.4)

Let Xt,s and Yt,s be two normal vector fields such that

���������������
�Xt,s, Z� = �@f@t d�(Z), d�( @

@s)�,
�Yt,s, Z� = �Z(f)d�( @@t), d�( @

@s)�
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for any vector field Z on M , respectively. Then

�����������������

div∇(Xt,s) = q∑
a=1Ea�@f@t d�(Ea), d�( @

@s)�,
div∇(Yt,s) = q∑

a=1Ea�Ea(f)d�( @@t), d�( @
@s)�.

(3.5)

By (3.5) and the transversal divergence theorem (Theorem 2.14), we have

�
⌦

q�
a=1

Ea�@f
@t

d�(Ea), d�( @
@s
)�µM −�

⌦

q�
a=1

Ea�Ea(f)d�( @
@t
), d�( @

@s
)�µM

=�
⌦
div∇(Xt,s)µM −�

⌦
div∇(Yt,s)µM

=�
⌦
�Xt,s,

♯
B�µM −�

⌦
�Yt,s,♯B�µM

=�
⌦
�@f
@t

d�(♯B), d�( @@s)�µM −�
⌦
�♯B(f)d�( @@t), d�(

@

@s
)�µM . (3.6)

From (3.4) and (3.6), we get

@2

@t@s
EB,p(�t,s;⌦)
=�

⌦
�∇∗tr∇trfd�( @

@t
), d�( @

@s
)�µM

−�
⌦

q�
a=1

f�RQ′(d�( @
@t
), d�(Ea))d�(Ea), d�( @

@s
)�µM

+�
⌦

q�
a=1
�@f
@t

d�(Ea),∇Ea
d�( @

@s
)�µM −�

⌦

q�
a=1
�Ea(f)d�( @

@t
),∇Ea

d�( @
@s
)�µM

=�
⌦
f�∇trd�( @

@t
),∇trd�( @

@s
)�µM

−�
⌦

q�
a=1

f�RQ′(d�( @
@t
), d�(Ea))d�(Ea), d�( @

@s
)�µM

+�
⌦

q�
a=1
�@f
@t

d�(Ea),∇Ea
d�( @

@s
)�µM . (3.7)

Since

@f

@t
= (p − 2)�dT�t,s�p−4 q�

b=1
�∇Eb

d�( @
@t
), dT�t,s(Eb)�, (3.8)

18



the proof of Theorem 3.8 follows from (3.7) and (3.8) at (t, s) = (0,0). �

Corollary 3.9 ([4]) Let � ∶ (M,g,F)→ (M ′, g′,F ′) be a (F ,F ′)-harmonic map. Then

@2

@t@s
EB(�t,s;⌦)�(t,s)=(0,0) = �

⌦
�∇trV,∇trW �µM −�

⌦
�trQRQ′(V, dT�)dT�,W �µM .

Definition 3.10 Let � ∶ (M,g,F) → (M ′, g′,F ′) be a (F ,F ′)p-harmonic map. Then

� is said to be transversally stable if I(V,V ) ≥ 0, where

I(V,W ) ∶= @2

@t@s
EB,p(�t,s)�(t,s)=(0,0)

for the normal variation vector fields V and W as in (3.1).

It is easy to obtain the following theorem from Theorem 3.8.

Theorem 3.11 Let � ∶ (M,g,F) → (M ′, g′,F ′) be a (F ,F ′)p-harmonic map with

compact M . If the transversal sectional curvature of M ′ is non-positive, then � is

transversally stable.

Proof. By Theorem 3.8, we have

I(V,V ) =�
M
�dT��p−2{�∇trV �2 − �RQ′(V, dT�)dT�, V �}µM

+ (p − 2)�
M
�dT��p−4�∇trV, dT��2µM . (3.9)

Since KQ′ ≤ 0, from (3.9), we get

�RQ′(V, dT�)dT�, V � = q�
a=1
�RQ′(V, dT�(Ea))dT�(Ea), V � = q�

a=1
KQ′(V, dT�(Ea)) ≤ 0.

It means that I(V,V ) ≥ 0. This completes the proof. �
19



Corollary 3.12 Let � ∶ (M,g,F)→ (M ′, g′,F ′) be a (F ,F ′)-harmonic map with com-

pact M . If the transversal sectional curvature of M ′ is non-positive, then � is transver-

sally stable.
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4 The generalized Weitzenböck type formula

Let (M,g,F) and (M ′, g′,F ′) be two foliated Riemannian manifolds and let � ∶
(M,g,F) → (M ′, g′,F ′) be a smooth foliated map. Let ⌦r

B(E) = ⌦r
B(F) ⊗ E be the

space of E–valued basic r–forms, where E = �−1Q′. Let ∇ be the induced connection

on ⌦r
B(E). Then the transversal curvature tensor R on ⌦r

B(E) is given by

R(X,Y )(! ⊗ s) = RQ(X,Y )! ⊗ s + ! ⊗RE(X,Y )s.

Now we define d∇ ∶ ⌦r
B(E)→ ⌦r+1

B (E) by

d∇(! ⊗ s) = dB! ⊗ s + (−1)r! ∧∇s,

and let �∇ be the formal adjoint of d∇. Locally,

d∇ = q�
a=1

✓a ∧∇Ea
, �∇ = − q�

a=1
i(Ea)∇Ea

+ i(♯B), (4.1)

where i(X)(! ⊗ s) = i(X)! ⊗ s for any X ∈ �TM . The Laplacian � on ⌦∗B(E) is

defined by

� = �∇d∇ + d∇�∇.
Moreover, the operators AX and ✓(X) are extended to ⌦r

B(E) as
AX(! ⊗ s) = AX! ⊗ s,

✓(X)(! ⊗ s) = ✓(X)! ⊗ s + (−1)r! ∧∇Xs

for any X ∈ �TM . Hence ✓(X) = (d∇i(X) + i(X)d∇) for any X ∈ �TM and

 ∈ ⌦∗B(E). Trivially,  ∈ ⌦∗B(E) if and only if i(X) = 0 and ✓(X) = 0 for all
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X ∈ �L. Then the generalized Weitzenböck type formula (2.2) is extended to ⌦∗B(E)
as follows ([10]): for any  ∈ ⌦r

B(E),

� = ∇∗tr∇tr +A♯B + F ( ),

where F ( ) = q∑
a,b=1 ✓

a ∧ i(Eb)R(Eb,Ea) . Moreover, we have

1

2
�B � �2 = �� , � − �∇tr �2 − �A♯B , � − �F ( ), �. (4.2)

From (4.2), we get the following theorem.

Theorem 4.1 Let � ∶ (M,g,F) → (M ′, g′,F ′) be a smooth foliated map. Then the

generalized Weitzenböck type formula is given by

1

2
�B �dT��2p−2 =���dT��p−2dT�, �dT��p−2dT�� − �∇tr�dT��p−2dT��2

− �A♯B �dT��p−2dT�, �dT��p−2dT�� − �dT��2p−4�F (dT�), dT��, (4.3)

where

�F (dT�), dT�� =�
a
gQ′(dT�(RicQ(Ea)), dT�(Ea))

−�
a,b

gQ′(RQ′(dT�(Eb), dT�(Ea))dT�(Ea), dT�(Eb)). (4.4)

Proof. Since �dT��p−2dT� ∈ ⌦1
B(E), the proof of (4.3) follows from (4.2) directly. The

equation (4.4) follows from ([Theorem 5.1, 10]). �

Lemma 4.2 Let � ∶ (M,g,F)→ (M ′, g′,F ′) be a (F ,F ′)p-harmonic map. Then

d∇�dT��p−2dT� = dB �dT��p−2 ∧ dT�, �∇�dT��p−2dT� = 0.
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Proof. Note that for any vector fields X, Y in Q ≅ L⊥, we know that

∇XdT�(Y ) −∇Y dT�(X) = dT�([X,Y ]).

From (4.1), we have

(d∇dT�)(X,Y ) = (∇XdT�)(Y ) − (∇Y dT�)(X) = 0,

that is, d∇dT� = 0. Therefore, we have

d∇�dT��p−2dT� = dB �dT��p−2 ∧ dT� + �dT��p−2d∇dT� = dB �dT��p−2 ∧ dT�.

and

�∇�dT��p−2dT� = − q�
a=1

i(Ea)∇Ea
�dT��p−2dT� + i(♯B)�dT��p−2dT�

= − q�
a=1
(∇Ea

�dT��p−2dT�)(Ea) + i(♯B)�dT��p−2dT�
= − ⌧b,p(�) + �dT��p−2i(♯B)dT�
= − ⌧̃b,p(�).

Since � is a (F ,F ′)p-harmonic map, �∇�dT��p−2dT� = 0 follows from Corollary 3.6. This

completes the proof. �

Lemma 4.3 Let � ∶ (M,g,F)→ (M ′, g′,F ′) be a (F ,F ′)p-harmonic map. Then

�dT���B �dT��p−1 − ��∇d∇�dT��p−2dT�, dT��
+ �d∇i(♯B)dT�, �dT��p−2dT�� − �dT��p−1♯B(�dT��)
≤ −�dT��p−2�F (dT�), dT��.
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Proof. Since � is a (F ,F ′)p-harmonic map, from Theorem 4.1 and Lemma 4.2, we

have

1

2
�B �dT��2p−2 =��∇d∇�dT��p−2dT�, �dT��p−2dT�� − �∇tr�dT��p−2dT��2

− �dT��p−2�d∇i(♯B)dT�, �dT��p−2dT�� + �dT��2p−3♯B(�dT��)
− �dT��2p−4�F (dT�), dT��. (4.5)

By a simple calculation, we have

1

2
�B �dT��2p−2 = �dT��p−1�B �dT��p−1 − �dB �dT��p−1�2. (4.6)

From (4.5) and (4.6), we get

�dT��p−1�B �dT��p−1 =�dB �dT��p−1�2 − �∇tr�dT��p−2dT��2 + ��∇d∇�dT��p−2dT�, �dT��p−2dT��
− �dT��p−2�d∇i(♯B)dT�, �dT��p−2dT�� + �dT��2p−3♯B(�dT��)
− �dT��2p−4�F (dT�), dT��. (4.7)

By the first Kato’s inequality ([2]), we have

�∇tr�dT��p−2dT�� ≥ �dB �dT��p−1�. (4.8)

Therefore, the result follows from (4.7) and (4.8). �
The following conclusion is achieved as the application of the generalized Weitzen-

böck type formula.

Theorem 4.4 Let (M,g,F) be a closed foliated Riemannian manifold of non-negative

transversal Ricci curvature. Let (M ′, g′,F ′) be a foliated Riemannian manifold of non-
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positive transversal sectional curvature. If � ∶ (M,g,F) → (M ′, g′,F ′) is a (F ,F ′)p-
harmonic map, then � is transversally totally geodesic. Furthermore,

(1) If the transversal Ricci curvature of F is positive somewhere, then � is transversally

constant.

(2) If the transversal sectional curvature of F ′ is negative, then � is either transversally

constant or �(M) is a transversally geodesic closed curve.

Proof. By the hypothesis and (4.4), we know �F (dT�), dT�� ≥ 0. Since � is a (F ,F ′)p-
harmonic map, from Lemma 4.3, we have

�dT���B �dT��p−1 ≤��∇d∇�dT��p−2dT�, dT�� − �d∇i(♯B)dT�, �dT��p−2dT��
+ �dT��p−1♯B(�dT��). (4.9)

Integrating (4.9), we have

�
M
��dT��,�B �dT��p−1�µM ≤�

M
��∇d∇�dT��p−2dT�, dT��µM

−�
M
�d∇i(♯B)dT�, �dT��p−2dT��µM

+�
M
�dT��p−1♯B(�dT��)µM . (4.10)

Since d∇(dT�) = 0, we get

�
M
��∇d∇�dT��p−2dT�, dT��µM = �

M
�d∇�dT��p−2dT�, d∇dT��µM = 0. (4.11)

Since � is a (F ,F ′)p-harmonic map, from Lemma 4.2, we obtain

�
M
�d∇i(♯B)dT�, �dT��p−2dT��µM = �

M
�i(♯B)dT�, �∇�dT��p−2dT��µM = 0. (4.12)
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Now, we choose a bundle-like metric g such that �BB = 0. Then we have

�
M
�dT��p−1♯B(�dT��)µM =1

p �M ♯B(�dT��p)µM

=1
p �M �B, dB �dT��p�µM

=1
p �M ��BB, �dT��p�µM

=0. (4.13)

From (4.10)∼(4.13), we get

�
M
��dT��,�B �dT��p−1�µM ≤ 0. (4.14)

On the other hand, we know that

�
M
��dT��,�B �dT��p−1�µM = �

M
�dB �dT��, dB �dT��p−1�µM

= (p − 1)�
M
�dT��p−2�dB �dT���2µM

≥ 0. (4.15)

Then from (4.14) and (4.15), we get

0 = �
M
��dT��,�B �dT��p−1�µM = (p − 1)�

M
�dT��p−2�dB �dT���2µM , (4.16)

which yields dT� = 0 or dB �dT�� = 0. If dB �dT�� ≠ 0, then dT� = 0, i.e., � is transversally

constant. Trivially, � is transversally totally geodesic. If dT� ≠ 0, then dB �dT�� = 0. It
means that �dT�� is constant. From (4.7), we have

��dT��,�B �dT��p−1� = − �dT��p−2�∇trdT��2 − �d∇i(♯B)dT�, �dT��p−2dT��
− �dT��p−2�F (dT�), dT��. (4.17)
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From (4.16), (4.17) and Lemma 4.2, we get

0 =�
M
�dT���B �dT��p−1µM

= −�
M
�dT��p−2�∇trdT��2µM −�

M
�d∇i(♯B)dT�, �dT��p−2dT��µM

−�
M
�dT��p−2�F (dT�), dT��µM

= −�
M
�dT��p−2�∇trdT��2µM −�

M
�i(♯B)dT�, �∇�dT��p−2dT��µM

−�
M
�dT��p−2�F (dT�), dT��µM

= −�
M
�dT��p−2�∇trdT��2µM −�

M
�dT��p−2�F (dT�), dT��µM . (4.18)

Since �∇trdT��2 ≥ 0 and �F (dT�), dT�� ≥ 0, from (4.18), we have

�∇trdT��2 + �F (dT�), dT�� = 0. (4.19)

Thus, ∇trdT� = 0, i.e., � is transversally totally geodesic.

Furthermore, from (4.4) and (4.19), we get

���������������
gQ′(dT�(RicQ(Ea)), dT�(Ea)) = 0,
gQ′(RQ′(dT�(Ea), dT�(Eb))dT�(Ea), dT�(Eb)) = 0

(4.20)

for any indices a and b. If RicQ is positive at some point, then dT� = 0, i.e., � is

transversally constant, which proves (1). For the statement (2), if the rank of dT� ≥ 2,
then there exists a point x ∈M such that at least two linearly independent vectors at

�(x), say, dT�(E1) and dT�(E2). Since the transversal sectional curvature KQ′ of F ′
is negative,

gQ′(RQ′(dT�(E1), dT�(E2))dT�(E2), dT�(E1)) < 0,
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which contradicts (4.20). Hence the rank of dT� < 2, that is, the rank of dT� is zero

or one everywhere. If the rank of dT� is zero, then � is transversally constant. If the

rank of dT� is one, then �(M) is closed transversally geodesic. �

Corollary 4.5 Let (M,g,F) be a closed foliated Riemannian manifold of non-negative

transversal Ricci curvature. Let (M ′, g′,F ′) be a foliated Riemannian manifold of non-

positive transversal sectional curvature. If � ∶ (M,g,F) → (M ′, g′,F ′) is a (F ,F ′)-
harmonic map, then � is transversally totally geodesic. Furthermore,

(1) If the transversal Ricci curvature of F is positive somewhere, then � is transversally

constant.

(2) If the transversal sectional curvature of F ′ is negative, then � is either transversally

constant or �(M) is a transversally geodesic closed curve.
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5 Liouville type theorem for (F ,F ′)p-harmonic maps

In this chapter, we investigate the Liouville type theorem for (F ,F ′)p-harmonic

maps on foliated Riemannian manifolds. Let µ0 be the infimum of the eigenvalues of

the basic Laplacian �B acting on L2-basic functions on M . Then the following theorem

is obtained.

Theorem 5.1 Let (M,g,F) be a complete foliated Riemannian manifold with co-

closed mean curvature form B and all leaves be compact. Let (M ′, g′,F ′) be a fo-

liated Riemannian manifold with non-positive transversal sectional curvature KQ′. As-

sume that the transversal Ricci curvature RicQ of M satisfies RicQ ≥ −4(p−1)
p2 µ0 for

all x ∈ M and RicQ > −4(p−1)
p2 µ0 at some point x0. Then any (F ,F ′)p-harmonic map

� ∶ (M,g,F)→ (M ′, g′,F ′) of EB,p(�) <∞ is transversally constant.

Proof. Let M be a complete foliated Riemannian manifold such that RicQ ≥ −C for all

x and RicQ > −C at some point x0, where C = 4(p−1)
p2 µ0. Since KQ′ ≤ 0 and RicQ ≥ −C,

from (4.4), we have

�F (dT�), dT�� ≥ q�
a=1

gQ′(dT�(RicQ(Ea)), dT�(Ea)) ≥ −C �dT��2.

Since � is a (F ,F ′)p-harmonic map, from Lemma 4.3, we have

�dT���B �dT��p−1 − ��∇d∇�dT��p−2dT�, dT��
+ �d∇i(♯B)dT�, �dT��p−2dT�� − �dT��p−1♯B(�dT��)
≤ −�dT��p−2�

a
gQ′(dT�(RicQ(Ea)), dT�(Ea)) ≤ C �dT��p. (5.1)
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Let Bl = {y ∈ M �⇢(y) ≤ l}, where ⇢(y) is the distance between leaves through a fixed

point x0 and y. Let !l be the Lipschitz continuous basic function such that

�������������������������������������������������

0 ≤ !l(y) ≤ 1 for any y ∈M
supp!l ⊂ B2l

!l(y) = 1 for any y ∈ Bl

lim
l→∞!l = 1
�d!l� ≤ ↵

l almost everywhere onM,

where ↵ is positive constant ([26]). Therefore, !l� has compact support for any basic

form � ∈ ⌦∗B(F). Multiplying (5.1) by !2
l and integrating by parts, this yields

�
M
�!2

l �dT��,�B �dT��p−1�µM −�
M
�!2

l dT�, �∇d∇�dT��p−2dT��µM

+�
M
�d∇i(♯B)dT�,!2

l �dT��p−2dT��µM −�
M
�!2

l �dT��p−1,♯B(�dT��)�µM

≤ − q�
a=1�M !2

l �dT��p−2gQ′(dT�(RicQ(Ea)), dT�(Ea))µM

≤ C �
M
!2
l �dT��pµM . (5.2)

By Lemma 4.2, we have

�∇(!2
l �dT��p−2dT�) = − q�

a=1
i(Ea)∇Ea

(!2
l �dT��p−2dT�) + i(♯B)(!2

l �dT��p−2dT�)
= − q�

a=1
i(Ea)(Ea(!2

l )�dT��p−2dT� + !2
l ∇Ea

�dT��p−2dT�)
+ !2

l i(♯B)(�dT��p−2dT�)
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= − q�
a=1

i(Ea)(Ea(!2
l )�dT��p−2dT�) − q�

a=1
!2
l i(Ea)∇Ea

�dT��p−2dT�
+ !2

l i(♯B)(�dT��p−2dT�)
= − i(dB!2

l )�dT��p−2dT� + !2
l �∇�dT��p−2dT�

= − 2!li(dB!l)�dT��p−2dT�. (5.3)

Since

�i(X)dT��2 =�X♭ ∧ i(X)dT�, dT��
= − �i(X)(X♭ ∧ dT�), dT�� + �X �2�dT��2
= − �X♭ ∧ dT��2 + �X �2�dT��2 (5.4)

for any vector X, we get

�i(X)dT��2 ≤ �X �2�dT��2. (5.5)

From (5.3) and (5.5), we have

��
M
�d∇i(♯B)dT�,!2

l �dT��p−2dT��µM � =��
M
�i(♯B)dT�,−2!li(dB!l)�dT��p−2dT��µM �

≤2�
M
!l�i(♯B)dT���i(dB!l)�dT��p−2dT��µM

≤2�
M
!l�B ��dB!l��dT��pµM

≤2↵
l
max{�B �}�

M
!l�dT��pµM .

If we let l →∞, then

lim
l→∞�M �d∇i(♯B)dT�,!2

l �dT��p−2dT��µM = 0. (5.6)
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At the same time, we have

�
M
�!2

l �dT��p−1,♯B(�dT��)�µM

=1
p
{�

M
♯B(!2

l �dT��p)µM −�
M

2!l�dT��p�B, dB!l�µM}
=1
p
{�

M
�B, dB(!2

l �dT��p)�µM −�
M

2!l�dT��p�B, dB!l�µM}
=1
p
{�

M
��BB,!2

l �dT��p�µM −�
M

2!l�dT��p�B, dB!l�µM}
= − 2

p �M !l�dT��p�B, dB!l�µM .

The last equality in the above follows from �BB = 0. By the Cauchy-Schwarz inequal-

ity, i.e., ��B, dB!l�� ≤ �B ��dB!l�, we get

−↵
l
max{�B �}�

M
!l�dT��pµM ≤ �

M
!l�dT��p�B, dB!l�µM ≤ ↵

l
max{�B �}�

M
!l�dT��pµM .

So by letting l →∞, ∫M !l�dT��p�B, dB!l�µM → 0, which means

lim
l→∞�M �!2

l �dT��p−1,♯B(�dT��)�µM = 0. (5.7)

By the Cauchy-Schwarz inequality, we know that

�
M
�!2

l �dT��,�B �dT��p−1�µM

= �
M
�dB(!2

l �dT��), dB �dT��p−1�µM

= A1

p �M !2
l �dB �dT�� p2 �2µM +A1�

M
��dT�� p2 dB!l,!ldB �dT�� p2 �µM

≥ A1

p �M !2
l �dB �dT�� p2 �2µM −A1�

M
!l�dT�� p2 �dB!l��dB �dT�� p2 �µM , (5.8)
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where A1 = 4(p−1)
p . It is well known ([20]) that for a basic function f on M , we get

from (5.4)

�d∇(fdT�)� = �dBf ∧ dT�� ≤ �dBf ��dT��.

Hence we have

��
M
�!2

l dT�, �∇d∇�dT��p−2dT��µM � = ��
M
�d∇(!2

l dT�), d∇�dT��p−2dT��µM �
≤ �

M
�d∇(!2

l dT�)��d∇�dT��p−2dT��µM

≤ 2�
M
�!ldB!l��dB �dT��p−2��dT��2

≤ A2�
M
!l�dB!l��dT�� p2 �dB �dT�� p2 �, (5.9)

where A2 = 4(p−2)
p . From (5.8) and (5.9), we get

�
M
�!2

l �dT��,�B �dT��p−1�µM −�
M
�!2

l dT�, �∇d∇�dT��p−2dT��µM

≥ −(A1 +A2)�
M
!l�dB!l��dT�� p2 �dB �dT�� p2 �µM + A1

p �M !2
l �dB �dT�� p2 �2µM

≥ (A1 +A2)�
M
("�dB!l�2�dT��p + 1

"
!2
l �dB �dT�� p2 �2)µM + A1

p �M !2
l �dB �dT�� p2 �2µM ,

(5.10)

where " is a positive constant. So by letting l →∞, from (5.2), (5.6), (5.7), (5.10) and

Fatou’s inequality,

C �
M
�dT��pµM ≥ (A1 +A2

"
+ A1

p
)�

M
�dB �dT�� p2 �2µM .

Since EB,p(�) <∞, we know that dB �dT�� p2 ∈ L2. Hence by the Hölder inequality,

�
M
!l�dB!l��dT�� p2 �dB �dT�� p2 �µM ≤ (�

M
�dT��p�dB!l�2µM) 1

2 (�
M
!2
l �dB �dT�� p2 �2µM) 1

2 .
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If we let l →∞, then

lim
l→∞�M !l�dT�� p2 �dB!l��dB �dT�� p2 �µM = 0. (5.11)

From (5.8) and (5.11), we have

lim
l→∞�M �!2

l �dT��,�B �dT��p−1�µM ≥ A1

p �M �dB �dT��
p
2 �2µM . (5.12)

On the other hand, by the Rayleigh quotient theorem, we have

∫M �dB �dT�� p2 , dB �dT�� p2 �µM

∫M �dT��pµM
≥ µ0. (5.13)

From (5.2), (5.6), (5.7), (5.11), (5.12) and (5.13), by l →∞, we get

A1

p
µ0�

M
�dT��pµM ≤ A1

p �M �dB �dT��
p
2 �2µM

≤ − q�
a=1�M �dT��

p−2gQ′(dT�(RicQ(Ea)), dT�(Ea))µM

≤ C �
M
�dT��pµM . (5.14)

Since C = 4(p−1)
p2 µ0 = A1

p µ0, (5.14) implies that

q�
a=1�M �dT��

p−2gQ′(dT�((RicQ +C)(Ea)), dT�(Ea))µM = 0. (5.15)

Since RicQ > −C at some point x0, then dT� = 0 by (5.15). It means that � is transver-

sally constant. �

Corollary 5.2 Let (M,g,F) be a complete foliated Riemannian manifold with co-

closed mean curvature form B and all leaves be compact. Let (M ′, g′,F ′) be a fo-

liated Riemannian manifold with non-positive transversal sectional curvature KQ′. As-

sume that the transversal Ricci curvature RicQ of M satisfies RicQ ≥ −4(p−1)
p2 µ0 for
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all x ∈ M and RicQ > −4(p−1)
p2 µ0 at some point x0. Then any (F ,F ′)q-harmonic map

� ∶ (M,g,F)→ (M ′, g′,F ′) with 2 ≤ q ≤ p of EB,q(�) <∞ is transversally constant.

Proof. For 2 ≤ q ≤ p, we have 4(q−1)
q2 ≥ 4(p−1)

p2 . So the proof is trivial. �
The following corollary can be obtained readily when p = 2.

Corollary 5.3 Let (M,g,F) be a complete foliated Riemannian manifold with coclosed

mean curvature form B and all leaves be compact. Let (M ′, g′,F ′) be a foliated Rie-

mannian manifold with non-positive transversal sectional curvature KQ′. Assume that

the transversal Ricci curvature RicQ of M satisfies RicQ ≥ −µ0 for all x ∈M and RicQ >
−µ0 at some point x0. Then any (F ,F ′)-harmonic map � ∶ (M,g,F)→ (M ′, g′,F ′) of
EB(�) <∞ is transversally constant.

Remark 5.4 Let � ∶ (M,g,F)→ (M ′, g′,F ′) be a smooth foliated map. Then � is said

to be transversally p-harmonic if the transversal p-tension field ⌧b,p(�) of � vanishes. In

general, (F ,F ′)p-harmonic map and transversally p-harmonic map are not equivalent.

However, based on Theorem 3.5, we know that (F ,F ′)p-harmonic map is transversally

p-harmonic map if F is minimal. The Liouville type theorem for the transversally p-

harmonic map is still open for p > 2. When p = 2, the Liouville type theorem for the

transversally harmonic map is proved by X. S. Fu and S. D. Jung in ([6]).

Remark 5.5 Theorem 5.1 can be viewed as the generalization of Theorem 1.4 in ([14])

from Riemannian manifold to foliated Riemannian manifold.
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