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Abstract

Electrical impedance tomography (EIT) is a noninvasive image reconstruction method.

It reconstructs the cross-sectional conductivity distribution of the domain. EIT is

applied in various areas of applications such as medical, industrial, and geophysical.

However, it suffers from poor spatial resolution due to the ill-posed and non-linear

nature of the problem. Boundary or shape estimation is the alternative approach to

solve this poor resolution problem. In this approach, the number of unknowns to be

estimated is reduced which improves the spatial resolution. The conductivity of the

closed disjoint region of the domain is assumed to be known as prior for the boundary

estimation. In this thesis, for the closed boundary, the complex shape is defined by the

Fourier series coefficients and the shape estimation is done with a heuristic algorithm.

In this work, we have presented three scenarios for the boundary estimation in EIT.

The first study is the estimation of the bladder boundary in the pelvic domain. In

this, the boundary is estimated by a heuristic algorithm gravitational search algorithm

(GSA). The estimation of the bladder using the noninvasive method is necessary for

paraplegia patients. These patients are unable to discharge urine at the right time

due to a weaker sensation for bladder volume. If the urine is not discharged in time,

then the bladder size will increase and affect the neighboring organs and tissues. Size

estimation of the bladder with EIT can clarify the bladder status. The bladder is a

nonuniform structure with a complex shape; therefore, higher-order Fourier series is

needed to represent the true shape. Estimating higher-order Fourier coefficients by

a conventional modified Newton-Raphson (mNR) algorithm does not give the desired

performance. GSA is proposed in this work to estimate the Fourier series coefficients as

it is known for solving optimization problems in high-dimensional search space. Also,

GSA has fast convergence and does not require the computation of Jacobian. Numerical

experiments and phantom studies are performed to estimate the bladder size and it is

compared with the estimated result by mNR.

The second case is the estimation of the defect on the single-layer graphene sheet

by PSOGSA. A PSOGSA is a hybrid algorithm that is the combination of particle

swarm optimization (PSO) and GSA. Recently, graphene has gained a lot of attention
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in the electronic industry due to its unique properties and can overcome the limits

of miniaturization making way for novel devices in the field of electronics. For the

development of new device applications, it is necessary to grow large wafer-sized monolayer

graphene. Among the methods to synthesize large graphene films, chemical vapour

deposition (CVD) is one of the promising and common techniques but defects such as

cracks, holes, or wrinkles are hard to avoid. Electrical impedance tomography (EIT)

can be used to detect those defects on a graphene sheet. The conductivity is assumed to

be known as prior and the geometry of the defect is estimated. These defect geometries

are defined by truncated Fourier series coefficient which can represent the complex

shapes. Numerical and experimental studies are done for graphene characterization

and the results showed that the proposed PSOGSA has good performance in locating

the defects present on a graphene surface.

The third is the open boundary case where the interlayer boundary of the subsurface

is estimated. Subsurface topology estimation is important for the geophysical survey.

The subsurface region can be approximated as piece-wise separate regions with constant

conductivity in each region; therefore, the conductivity estimation problem is transformed

to estimate the shape and location of the layer boundary interface. Each layer interface

boundary is treated as an open boundary that is described using front points. A

DNN model is used to estimate the front points describing the multi-layer interface

boundaries. This DNN model is tuned for hidden layer nodes using PSOGSA. The

PSOGSA tuned DNN model is trained for interlayer boundary reconstruction using

training data that consists of pairs of voltage measurements of the subsurface domain.

The tuned DNN model estimation result is compared with the 7-layer DNN model.

The study on all three cases shows the proposed method has a better estimation result

than the compared method.
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1 Introduction

1.1 Electrical impedance tomography

Electrical impedance tomography (EIT) is a non-destructive, non-invasive imaging

technique (Cheney et al., 1999) which estimates the cross-sectional conductivity

distribution of an object. In EIT, an array of electrodes are attached to the boundary

of the object. A small amplitude alternating current is injected and the resulting

voltages are measured on the surface electrodes. A simple diagram representing injected

current and measured voltage are presented in figure 1.1. The figure also presents the

conductivity distribution of the domain. The conductivity distribution can be estimated

based on the injected current and measured voltages. The conductivity distribution of

the object is computed according to Ohm’s law. A schematic diagram presented in

figure 1.2 shows the complete EIT system with the control and data flow. The EIT

system is mostly divided into two parts, one contains the switch with a multiplexer,

and another contains the analysis part. With the help of a switch and multiplexer

current is supplied and resulting voltages are measured from the surface electrodes.

The other part of the system is the data analysis which gives the estimated result. EIT

is also known as soft field imaging techniques as the electrical quantities are dispersed

inside the object and are affected by the inside objects. The conductivity estimation

by EIT is a non-linear ill-posed problem and suffers from low spatial resolution. There

are various advantages of EIT, such as being portable, non-invasive, non-destructive,

radiation-free, and cheap. Also, EIT can be used for continuous monitoring as it can

be used with a high-speed data acquisition system.

EIT has been studied and implemented in various area of medical, industry, and

geophysical. In medical application, EIT has been implemented in detection and
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Figure 1.1: A domain with 16 electrodes on the surface. A pair of electrodes used as
current source and remaining for voltage measurement in an EIT system

classification of tumors in breast tissue (Mueller et al., 2001; Osterman et al., 2000), and

study of gastric function (Dijkstra et al., 1993). Also, for the continuous monitoring

of a several physiological phenomena, i.e., pulmonary ventilation (Frerichs et al.,

1998), hyperthermia (Moskowitz et al., 1995), perfusion (Frerichs et al., 2002), cardiac

(Isaacson et al., 2006), and respiratory functions (Adler et al., 1997). Various clinical

applications has been applied with EIT such as lung imaging (Brown, 2001; Frerichs,

2000), head imaging (Holder, 1992), and breast imaging (Cherepenin et al., 2001; Choi

et al., 2007; Halter et al., 2008; Ybarra et al., 2007) . Monitoring of various industrial

applications has been done with EIT such as monitoring the multi-phase flow in the

process pipelines (Dickin andWang, 1996; Jones et al., 1993; Khambampati et al., 2012),

mixing in pipes (Pinheiro et al., 1997), flow process (Mann et al., 1997), sedimentation

(Tossavainen et al., 2006), and also estimating air bubbles in pipe flow (Plaskowski

et al., 1995). In geophysical applications, resistivity imaging is estimated rather than

the conductivity for exploring aquifers (Sharma et al., 2020), minerals (Maillol et al.,

1999), ground water (Barker and Moore, 1998), detection of fractures (Spies and Ellis,

1995), faults (Daily et al., 1992), underground pollutant (D’Antona et al., 2002), oil

reservoir monitoring (Stacey et al., 2006), and geological mapping (Meads et al., 2003).

In the field of robotics EIT is used for detecting the pressure on an artificial skin of the
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Figure 1.2: Schematic diagram of an EIT system for estimating a defect on a graphene
sheet sample.

robots (Liu et al., 2020; Park et al., 2019).

The injected current and measured voltage physical relationship is governed by partial

differential equations derived from Maxwell equations. A physical model is used to

describe the boundary condition for those equations. There are many physical models

used in EIT, namely continuum, gap, average-gap, shunt, and complete electrode model

(CEM). Out of these models, CEM is preferred because it considers discreteness, shunt

effect, and contact impedance between the electrode and outer boundary of the object.

It can generate a mathematical model close to the true situation than the other models.

EIT uses a forward and inverse problem for reconstructing an image. Calculation of

the boundary voltages on the electrode surface is done in the forward problem of EIT.

An analytic solution for the Laplace equation is only possible for the simple regular

geometries and not for the complex geometry. However, the numerical method is used

for the complex geometry and EIT utilizes the finite element method (FEM), and

boundary element method (BEM) for solving the Laplace equation (Zienkiewicz and

Taylor, 2000). Out of this, FEM is the preferred method for the numerical calculation

in EIT as BEM involves additional computation of fluxes on the inclusion boundary

and potential on the electrode surface (Khambampati et al., 2012).

In the inverse problem, the internal conductivity distribution is estimated from the

measurement voltage reading and the injected current data. The inverse problem is

non-linear and ill-posed because of the voltage weak relationship with the conductivity
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distribution. This means that a small change in voltage measurement results a huge

change in the conductivity distribution.

1.2 Boundary estimation studies

Due to the ill-posed nature of EIT, it suffers from poor spatial resolution while

estimating the conductivity of the domain(Beretta et al., 2018; Lionheart, 2004).

Boundary or shape estimation is the alternative approach that can eliminate the spatial

resolution problem. In this approach the number of unknowns decreases which improves

the spatial resolution. It incorporates the prior information on the conductivity of each

closed disjoint region of the domain into the solution. The unknowns to be estimated

is the boundary of the anomalies in the domain. The boundary can be used to define

its shape, size, and location. There are various methods used to define the shape of

the anomalies namely the Fourier series method, level set method, front-point method,

B-spline based method, and super-shape method (Gu et al., 2021; Khambampati et al.,

2018; Kim et al., 2007b; Liu et al., 2015, 2019; Soleimani et al., 2006).

There are few studies conducted for the boundary estimation in EIT. Liu et al.

used parametric level set function to define the shape of the anomaly and the image

was reconstructed with EIT where the geometry of the anomaly was estimated (Liu

et al., 2017). Another method used to describe the boundary of the anomaly was

supershape-based in the study conducted by Gu et al. for EIT in (Gu et al., 2021).

They assumed conductivity distribution as piecewise constant distributed and shape

reconstruction was done. Han and Prosperetti used BEM and the boundary voltages

were used to estimate the Fourier series which defined each target in the domain (Han

and Prosperetti, 1999). An organ elliptic boundaries were defined using Fourier series

coefficients and were estimated by the Kalman filter. This method was introduced

by Vauhkonen et al. in 1998 where the author assumed the boundaries of the lungs

were known a priori and the boundary of the heart was estimated. A more general

case was presented by Kolehmainen et al. where the heart and both lungs boundaries

were represented by Fourier series coefficients and the conductivity was assumed to be

known as a priori (Kolehmainen et al., 2001). In this study, the author estimated the
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boundaries with the extended Kalman filter and also with the traditional Gauss-Newton

method. However, the Gauss-Newton method exhibited convergence problems and

the boundaries of the target were self-intersecting when the number of Fourier series

coefficients was high. Even when the initial guess was assumed close to the true

boundaries, the Gauss-Newton method sometimes showed deviation from the true

boundaries. Also, the Gauss-Newton method heavily relies on the calculation of

Jacobian to linearise the non-linear EIT problem.

1.3 Motivation

As stated earlier EIT suffers from poor spatial resolution which fails to estimate

anomalies boundary. The boundary estimation of the region as an alternative method

to overcome the resolution problem. If the conductivity of the domain is piecewise

constant within the same region of the domain, then the shape estimation becomes

the problem. In other words, the boundary of the target becomes the unknown to be

estimated. There are many methods to define the geometry of a target as described in

section 1.2.

The region boundary can be a complex shape which are estimated by an inverse

algorithm. The most widely used inverse problem algorithm is the modified

Newton-Raphson (mNR) algorithm. It is a very robust algorithm and its estimation

result are accurate with fewer iterations. However, in the case of the complex boundary

of the anomalies, mNR tends to produce the intersecting boundaries of the region

(Konki et al., 2020; Li et al., 2005). Also, mNR heavily depends on the initial guess in

the search space and contains the calculation of Jacobian matrix (Brandstatter, 2003)

which is very complex.

An alternative algorithm that is capable to solve complex shapes without the Jacobian

matrix in the EIT domain is required. Such an algorithm is the heuristic algorithm

that can estimate the complex boundary in the EIT domain. Various studies have been

conducted where heuristic algorithms are used in solving complex problems. Mostly

particle swarm optimization (PSO) has been implemented for a non-linear complex

problem, where it provided an optimum solution (Shi and Eberhart, 1999; Simon,
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2013). Ijaz et al. in 2007 has introduced PSO in the EIT domain (Ijaz et al., 2007).

In this PSO estimated the Fourier series coefficient of the target with good accuracy.

However, PSO has a low convergence rate and a high number of iterations is required

to obtain a good solution for a complex estimation problem. Rashedi et al. in 2009

introduced a new heuristic algorithm known as a Gravitational search algorithm (GSA)

and evaluated it against another heuristic algorithm. The GSA outperformed most of

the other algorithms in the standard benchmark functions and also the convergence of

GSA is very fast than other heuristic algorithms (Rashedi et al., 2009).

The introduction of the GSA has inspired us to implement it as an estimation algorithm

for the EIT domain. In this thesis, GSA and PSOGSA are used as estimating algorithm

for estimating anomaly boundary. Three different studies are conducted in this work

and the boundary estimation is done with an algorithm based on GSA. In the first

case, GSA is used for estimating the urine bladder boundary. A second case presents

the estimation of a defect boundary on the graphene sheet with the hybrid PSOGSA

algorithm. The third case is the PSOGSA tuned deep neural network (DNN) which is

used for estimating the subsurface interlayer boundary.

Bladder size estimation

The GSA is used for estimating the bladder boundary and the estimation result is

compared with PSO. This is required for monitoring of the bladder for a paraplegia

patient. A paraplegia patient which has low sensation in the lower part of the body

has urine incontinence as a major problem. This problem is also present in the elderly

person, which patient cannot determine the time to urinate. This problem arises due

to the damage in the neural damage in the sensing area. As a result of this problem,

a person is unable to determine the time to discharge the urine. This problem can

create a very critical situation if the bladder pressure is not released in time. To

avoid this situation there are two methods practiced in the clinic i.e. self-catherization

and continuous monitoring. A self-catherization method involves minor surgery and

prolonged use can lead to infection (Madersbacher, 1999). This problem does not occur

in the continuous monitoring method which utilizes ultrasound technique (Koomen

et al., 2002; Seif et al., 2004). Moreover, this method required a skilled person to
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operate the equipment and continuous monitoring makes patients discomfort as they

are unable to move.

Every organ and/or tissue has different conductivity values and urine has high

conductivity when compared to other parts due to the high concentration of salt in

it (Bayford, 2006; Najarian and Splinter, 2005). Due to different conductivity values

of the organs in the human body, EIT can be used for continuous monitoring of the

bladder. Also, it is a non-invasive method, fast, and portable (Chen et al., 2020; Xu

et al., 2018) making it more suitable for continuous monitoring. When conductivity

distribution is known a priori using data from alternative methods such as MRI or

CT scan (Hu, 1999; Khoo et al., 1997), estimation of bladder boundary becomes the

inverse problem. We can monitor the bladder condition by estimating the bladder size,

i.e. bladder boundary.

Estimating defect geometry on graphene

GSA having a strong exploitation performance suffers from poor exploration

performance during the search process. This performance is improved by combining

GSA with another algorithm. We have used PSOGSA which is the hybrid algorithm

which is combination of GSA and PSO. The exploration performance of PSO is used in

this algorithm which improved the performance of the algorithm. This hybrid algorithm

is used for estimating the defect boundary on the graphene sheet. The background

conductivity of graphene sheet is also estimating along with the defect boundary by

PSOGSA.

For the past few years, graphene has been the focus of the research work due to its

remarkable mechanical, physical, electrical, chemical properties (Bolotin et al., 2008;

Bunch et al., 2007; Schwierz, 2011). Graphene has shown promising results to overcome

the limits of miniaturization for the electric channels in the nanoscale electronics

applications (Fuchs and Goerbig, 2008). Graphene sheets can be fabricated with many

methods such as exfoliation, colloidal suspension, epitaxial growth, and chemical vapour

deposition (Jayasena and Subbiah, 2011; Jin et al., 2010; Pu et al., 2009; Reina et al.,

2009). During fabrication of graphene inhomogeneity such as wrinkles, holes, and cracks

develop (Li et al., 2009; Liang et al., 2011). During sample preparation of a specific size,
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human errors can occur which can affect the electrical property of sample (Vasić et al.,

2016; Zhu et al., 2012). Hence, identifying these defects is very useful in understanding

the properties of the graphene sample. PSOGSA is used as the estimating algorithm for

estimating the defect boundary on the graphene sheet and the background conductivity.

Subsurface interlayer boundary estimation

The DNN model is an emerging algorithm for estimation. The model is trained based

on dataset but is not able to tune with that dataset. We have used PSOGSA to tuned

the DNN model in this work. This tuned DNN model is than used to estimate the

interlayer boundaries of the subsurface. In geology the study of the subsurface is very

important as it helps us to understand the properties and exploration of minerals in

a particular location (Hoover et al., 1995; Kearey et al., 2002; Philp and Crisp, 1982).

The subsurface is composed of soil, rocks, water, etc. in different shapes, and sizes.

The electrical current flow in the soils suggests a relationship between soil strength and

electrical resistivity (Sudha et al., 2009). The content of clay in soil determines the soil

strength and the soil moisture affects the electrical conductivity (Katsube et al., 2003).

Different layers in the subsurface have resistivity contrast making it possible to detect

those layers using ERT or EIT. If the conductivity of the layers is known a priori then

interlayer boundary estimating can be performed. A borehole method can be used to

obtain material conductivity information. It can be used as a priori in estimating the

interlayer subsurface boundaries. A PSOGSA tuned deep neural network (DNN) is

used to estimate the interlayer boundaries of the subsurface. In this thesis, we have

optimized the node’s size of the hidden layers of the DNN model using PSOGSA.

1.4 Aims and content

This proposed thesis help to develop a novel reconstruction technique with EIT for

estimating the boundaries of the anomalies in a domain. The boundary estimation

is done for two cases, i.e. closed boundary and open boundary. GSA is used as an

inverse problem solver for estimating the bladder boundary. The bladder boundary is

described with Fourier series coefficients which is a closed boundary case. This is the
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first case study of the thesis work. The second case is the estimation of defect location

on graphene sheet using the PSOGSA hybrid heuristic algorithm. This algorithm

combines the characteristic of PSO and GSA algorithms which can estimate the defect

geometry in the highly conductive domain. In both these studies, the boundary is a

closed boundary scenario and the conductivity inside the boundary is assumed to be

uniformly distributed. The open boundary is the interfacial boundary between the

layers of the subsurface. This interlayer boundary is estimated by the DNN model

which is optimized by PSOGSA. A PSOGSA algorithm is used to optimize the number

of nodes in the hidden layers of the model. Statistical parameters are analyzed for all

the cases for the proposed algorithm.

This thesis is divided into 9 chapters with the first chapter giving the introduction

to EIT. It also introduces the application and methodology of the EIT. It introduces

the need for the boundary estimation of the anomalies using prior information. The

related boundary estimation work is presented and the overview of the thesis is stated.

Chapter 2 introduces the governing equation with the mathematical models used in

solving the EIT problem. A complete electrode model is used in this thesis as the

physical model. Finite element formulation based on the mathematical model is briefly

explained. Various data collection methods used in EIT are discussed briefly.

Chapter 3 explains the cost function used in the inverse problem. This chapter enhances

the need for a fast convergence algorithm and is free of Jacobian matrix calculation.

The studies were done on a heuristic algorithm as an inverse problem algorithm is

presented. Also, the development of a neural network with EIT is briefly discussed.

Chapter 4 introduces the heuristic algorithm i.e. gravitational search algorithm and

particle swarm optimization. The formulation of both algorithms is illustrated in the

chapter along with the introduction of a hybrid heuristic algorithm. A hybrid PSOGSA

algorithm is explained with the mathematical formulation. Chapter 5 presents need to

tuned the DNN model hybrid-parameter. Along with the proposed method of tuning.

From chapter 6 to 8 presents the study result of the boundary estimation done in this

study. All 3 chapters present a study conducted on the closed and open boundary

estimation problem. Chapter 6 introduces the bladder boundary formulation along

with the numerical and experimental study. The bladder boundary estimation is done

9



with the GSA in a numerical and phantom study. The hybrid algorithm PSOGSA is

used as the inverse problem solver to estimate the defect geometry on the graphene

sheet as presented in chapter 7. The numerical and experimental study for defect

detection with PSOGSA is presented in this chapter. Chapter 8 presents the result of

analysis of the hyper-parameter tuning. The tuned DNN model is used to estimate the

interlayer boundary of the subsurface and the estimation results are presented along

with the proposed method of tuning the hyper-parameter of the DNN model. Finally,

chapter 9 presents the conclusion of the thesis and future work is envisaged.
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2 Forward problem

EIT is a non-invasive image reconstruction technique that is composed of two steps,

i.e., forward problem and inverse problem. Generally, a conductivity distribution is

reconstructed based on the injected current and the responding voltage measurement

readings from the surface-mounted electrodes of a domain. In the forward problem,

a constant current is injected into the domain, and voltages are computed inside

the domain (Ω) and on the electrode surface (∂Ω) with the current and known

conductivity distribution. In an inverse problem, the reconstruction of an image of

internal properties is done using voltage measurements and the injected current. A

mathematical (physical) model is needed to describe the problem in EIT to derive the

forward problem solution. The physical model is derived from Maxwell’s equation of

electromagnetism for EIT (Cheney et al., 1999). The potential distribution of the

domain and the boundary conditions are discussed as it is necessary to solve the

governing equation. In this study for solving the boundary estimation problem, a

complete electrode model (CEM) is used as a physical model as it is efficient and

accurate when compared to other models (Cheng et al., 1989). The forward problem

is formulated with the help of the finite element method (FEM). The data collection

methods are also discussed later in this chapter.

2.1 Governing equation

Maxwell equations of electromagnetism is used to derive the mathematical model

for EIT. These equations provide a relation between current, voltage measurement,

and conductivity distribution. A partial differential equation derived from Maxwell’s

equation gives the relationship between the internal conductivity σ(x, y) and the
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electrical potential u(x, y) on the domain (Ω ∈ R2) (Somersalo et al., 1992). Let

us consider E as an electrical field, B as magnetic induction, H as magnetic field, J

as current density and D as electric displacement, then the electromagnetic field in the

domain Ω ∈ R2 can be described as

∇× E = −∂B

∂t
Faraday’s Law (2.1)

∇×H = J +
∂D

∂t
Coulomb’s Law (2.2)

Assuming the domain Ω consists of linear and isotropic medium, following holds true.

D = ϵE (2.3)

J = σE (2.4)

B = µH (2.5)

where ϵ, σ, and µ is permittivity, conductivity, and permeability of the medium. If the

injected currents are time harmonic with frequency ω, then we get following

E = Ēeiωt (2.6)

B = B̄eiωt (2.7)

Using equations (2.3) to (2.7) for solving equations (2.1) and (2.2), we get

∇× E = −∂B
∂t = −∂(B̄eiωt)

∂t

= −iωB̄eiωt − eiωt ∂B̄∂t = −iωµH − eiωt ∂B̄∂t

(2.8)

∇×H = J + ∂D
∂t = J + ∂(ϵE)

∂t = J + ϵ∂(Ēeiωt)
∂t

= J + iωϵĒeiωt + ϵeiωt∂Ē
∂t = J + iωϵE + ϵeiωt∂Ē

∂t

(2.9)

A time harmonic current is assumed as an injected current having frequency (ω) and

the medium is conductive, then the current density (J) can be separated into two

components, i.e., ohmic current (Jo = σE) and current source (Js). A simplified
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Maxwell’s equation can be obtained after the oscillatory exponential terms are canceled

and the medium is conductive (Doerstling, 1995; Ola et al., 1993; Somersalo et al., 1992).

We get

∇× E = −ωµH (2.10)

∇×H = (σ + iωϵ)E + Js (2.11)

The electrical field (E) can be expressed as

E = −∇u− ∂A

∂t
(2.12)

where u is electric potential and A is magnetic vector potential.

The effect of magnetic induction which produces an induced electrical field is neglected

after assuming a static conditions for EIT. Also assuming, the capacitive effects( iωϵE)

in equation (2.11) is neglected (Baker, 1989; Barber, 1984). The above equations can

be simplified with these assumptions as

E = −∇u (2.13)

∇×H = σE + Js (2.14)

Also the source current (Js) is zero at a given frequency (ω) in EIT and taking the

divergence on the both side of equation (2.14) and putting the value of equation (2.13)

into (2.14), we get

∇.(∇σu) = 0 (2.15)

where u = u(x, y) for x, y ∈ Ω. The above equation (2.15) represents the governing

equation for EIT. To solve this equation we need to define a boundary conditions.

Boundary conditions are defined with the help of physical models in EIT. The following

section describe the boundary conditions and after that physical model is explained.
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2.2 Boundary conditions

On the domain boundary (∂Ω) the current source (Js) is not zero, then the boundary

can be represented as

∇.σE = −∇.Js (2.16)

Integrating both sides of the above equation over the volume v,

∫
v
∇.σEdv = −

∫
v
∇.Jsdv (2.17)

Implementing the divergence theorem on above equation, we get

∫
s
σE.n⃗dS = −

∫
s
Js.n⃗dS (2.18)

where S is the surface of v, and n⃗ is the unit-normal vector. Since Js = 0 inside the

object whereas E = 0 outside of the object, the above equation (2.18) change the form

to

−σE.n⃗
∣∣∣
inside

= −Js.n⃗
∣∣∣
outside

(2.19)

is valid. Using the equation (2.13) and (2.19) a Neumann-type boundary condition is

obtained and defined as

σ
∂u

∂n⃗
= −Js.n⃗ ≡ jn (2.20)

where jn is the negative normal component of the injected current density Js.

2.3 Mathematical Electrode models

There are different physical models used in EIT such as the continuum model, gap

model, average-gap model, shunt model, and complete electrode model (CEM). A

continuum model assumes the entire surface of the domain as a conductor which

overestimates the conductivity because the effect of electrodes is not considered. A

gap model considers the effect of electrodes in the model overcoming the problem of

the continuum model. The average-gap model is based on the gap model for the

boundary conditions with only one difference. The voltage measured at each electrode
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is considered as the average value of potential on that electrode whereas the gap

model considers voltage values measured at the center of each electrode. Since the

continuum model, gap model, and average-gap model ignore the shunting effect and the

contact impedance, they all overestimate the resistivity distribution inside the domain

(Somersalo et al., 1992). The shunt model takes the potential on the electrode as a

constant for the account of the shunting effect of the electrodes but ignores the contact

impedance that arises due to the electrochemical effect at the electrode surface, it

underestimates the resistivity. The shunting effect of electrodes and contact impedance

between electrode and domain surface is considered in CEM.

2.3.1 Complete electrode model

The CEM consist of a governing equation as defined in equation (2.15) and the boundary

conditions which is defined as

u+ zlσ
∂u

∂v
= Ul, x ∈ el, l = 1, 2, · · · , L (2.21)

∫
el

σ
∂u

∂v
dS = Il, x ∈ el, l = 1, 2, · · · , L (2.22)

σ
∂u

∂v
= 0, x ∈ ∂Ω \

L⋃
l=1

el (2.23)

where zl is the contact impedance between lth electrode and domain surface and Il is

the current applied to the lth electrode. To ensure existence and uniqueness of the

result, two conditions defined by equations (2.24), (2.25) for the injected current and

measured voltages are needed.
L∑
l=1

Il = 0 (2.24)

L∑
l=1

Ul = 0 (2.25)
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(a) (b) (c)

Figure 2.1: Mesh used in this thesis. (a)Graphene sheet mesh, (b)Pelvic mesh, and
(c)Subsurface mesh.

2.4 Numerical Solution

The forward solution for the physical model is needed for solving the conductivity

distribution. As the analytical solution is not feasible for a complex domain, a numerical

method is used to find the solution for the Laplace equation. Numerical methods used

for solving the partial differential equation or Laplace equation are finite difference

method (FDM), finite element method (FEM), and boundary element method (BEM).

FDM is easy to implement but in complicated boundary conditions and geometries,

it is very difficult to implement and also suffers from slow convergence. In BEM only

inhomogeneities boundaries are discretized but it is unfeasible in highly heterogeneous

domains (de Munck et al., 2000; Khambampati et al., 2016). For complex geometries

solving the partial differential equation, FEM is a feasible method (Bagshaw et al.,

2003; Xu et al., 2005).

FEM is used in this work in solving the problem stated above as forward problem

solution provider. The domain (Ω) is discretized into a small elements which are

triangular as shown in figure 2.1. The triangle vertices are called nodes and the

conductivity inside each triangular element are assumed to be constant. The potential

distribution (u) within the domain can be approximate in finite dimension space can

be written as

u =
N∑
i=1

αiϕi (2.26)

where ϕi = ϕi(x, y) is the two-dimensional first-order basis function and potential on

16



the electrodes are approximated as

U =
L−1∑
i=1

βini (2.27)

where n1 = [1,−1, 0, · · · , 0]T , n2 = [1, 0,−1, · · · , 0]T ∈ RL, etc. which ensures that the

equation (2.25) is valid and αi and βi are the coefficients to be determined. Using finite

element formulation a matrix equation is constructed as

Ab = I⃗ (2.28)

where b = (α, β)T ∈ RN+L−1, A ∈ R(N+L−1)×(N+L−1) is a spare block matrix and I⃗ is

the data vector which are defined as

A =

 B C

CT D

 (2.29)

I⃗ =

0⃗

Ï

 (2.30)

where 0⃗ = (0, · · · , 0)T ∈ RN and Ï = (I1 − I2, I1 − I3, · · · , I1 − IL)
T ∈ RN+L−1. Using

the variational form with FEM basis functions ϕi and nj the elements of the space

block matrix A becomes

B(i, j) =

∫
Ω
σ∇ϕi.∇ϕjdΩ+

L∑
l=1

1

zl

∫
el

ϕiϕjdS, i = 1, 2, · · · , N (2.31)

C(i, j) = − 1

zl

∫
el

ϕidS +
1

zj+1

∫
ej+1

ϕidS, i = 1, 2, · · · , N, j = 1, 2, · · · , L− 1 (2.32)

D(i, j) =

{ |el|
zl

i ̸= j

|el|
zl

+
|ej+1|
zj+1

i = j
, i, j = 1, 2, · · · , L− 1 (2.33)

where el is the area of the lth electrode. Solving the above equation (2.28) as b =

A−1I⃗, the approximative solution is obtained for forward problem. The potentials on
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electrodes are calculated with the assist of equation (2.27) as

U1 =
L−1∑
l=1

βl

U2 = −β1

U3 = −β2
...

UL = −βL−1

(2.34)

The matrix form of above equation can be written as

U = Mβ (2.35)

where M ∈ RL×(L−1) is a spare matrix defined as

M =



1 1 1 1

−1

−1

. . .

−1


(2.36)

and β = (β1, β2, · · · , βL−1)
T .

2.5 Current injection method

For shape estimation inside a domain in EIT, the currents are injected through the

electrodes, and voltages are measured. Since the voltmeter has a large input impedance,

the contact impedance that exists between electrode and domain has a negligible effect.

The current injection method can affect the performance of estimation as the sensitivity

is different for each case. There are many current injection methods (Cheng et al.,

1988; Webster, 1990) and the most commonly used in EIT are an adjacent method,

opposite method, and cross method. In EIT, an image is reconstructed with the help

of all the independent injected current patterns. The number of electrodes and current
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patterns used helps to determine the total number of independent current patterns. In

an adjacent method, a current is injected through two adjacent electrodes, and voltage

is measured from all other electrodes as shown in figure 2.2a. This process is repeated

for all the electrodes and the total number of voltage readings makes one frame of data.

For example, a domain with 16 electrodes will have 16×16 = 256 voltage measurement,

here even current-carrying electrodes are used to measure voltages.

In the opposite method, the current is injected through a pair of electrodes which

are physically located opposite of each other in the domain presented in figure 2.2b.

For example, a domain with 16 electrodes will have 16 × 8 = 128 number of voltage

readings. In this, the number of voltage measurements will be half of the adjacent

injection method because the current injection will repeat itself after the 8th injection

pattern which is useless.

The Cross method is the combination of adjacent and opposite methods in which one

electrode is the current reference sink and the current source is applied successively

to the other electrodes. For each current pair, voltages are measured from all the

electrodes.

All the current injection methods discussed in this section are suitable for the system

of a single current source. Also, the selection of the current injection method depends

on the problem for which it is applied. In this thesis opposite method is used for the

current injection and voltages are measured on all electrodes for all the injected sources.

(a) (b)

Figure 2.2: Adjacent and opposite current injection electrode selection for first current
pattern.
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3 Inverse problem

3.1 Introduction

As EIT is composed of a forward problem and inverse problem for the reconstruction

of the image. The forward problem involves the calculation of the boundary voltages

based on the given conductivity distribution and injected current. However, the

inverse problem involves the reconstruction of the image presenting the conductivity

distribution of the domain based on the cost function. The cost function is the error

between the measured voltage and the calculated voltage. It is mathematically defined

as

Φ =
1

2
[V − U ]T [V − U ] (3.1)

where V is the measured voltage on the boundary electrodes and U is the calculated

voltage obtained through FEM formulation. In EIT the inverse problem solver is the

iterative algorithm that updates the estimation result based on the cost function. The

main aim of the algorithm is to achieve a lower-valued cost function per iteration.

3.2 Heuristic algorithm

The conventional inverse problem algorithms such as mNR often show low performance

when solving EIT inverse problems due to the ill-posed nature of the problem. Also,

due to the highly nonlinear nature of the inverse problems, it is very difficult to solve

the inverse problem in realistic conditions. The ill-posedness of the EIT can be reduced

by transforming the conductivity distribution estimation problem into the boundary

estimation problem. But the analytical solution to the EIT boundary estimation

problem is very difficult to achieve. Also, mNR heavily depends on the initial guesses,
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i.e. if the initial guess needs to be close to the true distribution for the very complex

scenario. But mNR tends to produce intersecting boundaries for the complex shape

and can get stuck at local minima.

An algorithm that can bypass or filter out the local minima to achieve an optimum

solution with fast convergence is desired. Heuristic algorithms are algorithms that

have a fast convergence rate. When compared to the traditional inverse algorithm

applied to EIT, these algorithms do not require computation of Jacobian matrix and

also outperform gradient-based method. A heuristic algorithm PSO has been studied

as an inverse problem solver in EIT. In (Kumar et al., 2010) PSO was used to improve

the reconstruction of brain EIT images and in (Ijaz et al., 2007) it was used to estimate

the elliptic region boundary in EIT. PSO demonstrated good estimation for the EIT

experiments however the convergence rate is very low. To overcome the limitation of

PSO, GSA is used in this work as an inverse problem solver. GSA was first introduced

by Rashedi et al. which showed a better performance than PSO in (Rashedi et al.,

2009).

A hybrid heuristic algorithm is also known as the advanced heuristic algorithm where

two heuristic algorithms are combined to make a new algorithm. In EIT very few

hybrid heuristic algorithms are used as the inverse problem solver. In Mendoza and

Lope (2012) a hybrid genetic algorithm was used to reconstruct images in EIT. Inspired

by this, we have used the PSOGSA hybrid algorithm for estimating the boundary of

the defects in the graphene sheet. The mathematical formulation of GSA, PSO, and

PSOGSA are presented in chapter 4 and the details of the estimation by GSA and

PSOGSA are illustrated in chapters 5 and 6.

3.3 Neural network

Nowadays due to big data availability, study on the neural network (NN) has increased

and research works are being done to implement it in a variety of fields. A deep

neural network (DNN) is the most researched algorithm in NN. DNN is the advanced

version of NN where the number of hidden layers between the input and output layer

is more than three. Neural Network has been used with EIT as an inverse solver for
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estimating the boundary of the targets (Konki et al., 2020; Park et al., 2021). The NN

is illustrated in chapter 7 along with the training and validating concept of the model.

The hyperparameters of the model are also explained in the chapter. NN requires

tuning of the hyper-parameters before training of the model is conducted. There are

many hyperparameters present in the NN model and tuning is a very time taking task.

The number of nodes in the hidden layer is one of the important hyperparameters of the

NN model and finding the optimum value is very hard. Normally grid search algorithm

is used to estimate the optimum value but it is a very time taking process. To solve

this problem we have used the PSOGSA algorithm in this work to tune the number of

nodes of the hidden layer. The process flow of the PSGOSA for tuning this parameter

of the DNN model is explained in chapter 8 along with the numerical study.
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4 Heuristic algorithm

4.1 Introduction

In high-dimensional search space, a classical optimization algorithm fails to provide a

suitable solution because search space increases the problem size exponentially. Due to

this solving these problems using exact techniques i.e. exhaustive search is not practical.

To overcome this problem, heuristic techniques are studied as an alternative solution.

The “heuristic” is a Greek word which means “to know”, “to find”, “to discover”, or

“to guide a investigation” (Lazar, 2002). In other words, “Heuristics are techniques

which seek good (near-optimal) solutions at a reasonable computational cost without

being able to guarantee either feasibility or optimality, or even in many cases to state

how close to optimality a particularly feasible solution is” (Russell and Norvig, 2002).

Heuristic techniques use knowledge of previously tried solutions to guide the search for

an optimal solution.

Heuristic algorithms are inspired by physical or biological processes. Genetic algorithm,

simulated annealing, artificial immune system, ant colony optimization, and bacterial

foraging algorithm are a few of the popular heuristic algorithms. Different heuristic

algorithms are inspired by different physical or biological processes. Genetic algorithm

is inspired by Darwinian evolution theory (Tang et al., 1996), simulated annealing is

based on the thermodynamic effects (Van Laarhoven and Aarts, 1987), artificial immune

system mimic biological immune systems (Farmer et al., 1986), ant colony optimization

is based on the behavior of ants gathering for food (Dorigo et al., 2006), and bacterial

foraging algorithm is based on search and optimal foraging of bacteria (Kim et al.,

2007a).

Normally, the heuristic algorithms have a stochastic behavior where a search starts from
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a single point and sequentially continues. However, most of the heuristic algorithms

search in a parallel manner where multiple initial points are used to search. These

points are referred to by many names such as particles, agents, or objects, and are the

solution candidates for the problem at hand. For example, swarm-based algorithms

use a collection of particles similar to a natural flock of birds where each particle

executes a series of a particular operations and shares the information with others. This

sharing of information between particles is known as swarm intelligence (Tarasewich

and McMullen, 2002) and this local interaction between particles provides a solution

to a problem without any central controller.

Exploration and exploitation are the two common aspects of the heuristic algorithms

where exploration is the ability to find the optimum solution in the search space and

exploitation is the ability to find optima around a good solution. The algorithm uses

exploration initially to avoid trapping in local minima and exploitation is used at a

later time. For a high-performance search of the algorithm, a suitable tuning of the

trade-off between exploration and exploitation is needed. For realizing the concepts

of exploration and exploitation, the algorithm in each iteration passes through three

steps self-adaptation, cooperation, and competition. The performance of each particle

is improved in each iteration under the self-adaptation step. The information updated is

shared between every particle in a cooperation step and final competition step particles

compete to survive in each iteration. All these three steps are inspired by nature and

help algorithms achieve an optimum solution. In the following sections, we describe

a mathematical formulation of heuristic algorithms (GSA, PSO, PSOGSA) in detail.

The adaptation of the algorithms for estimating in EIT as the inverse problem solver

is also explained.

4.2 Gravitational search algorithm

The gravitational search algorithm (GSA) is an iterative algorithm based on the Newton

law of gravity and motion (Rashedi et al., 2009). The particles in GSA are the solution

candidate and are considered objects whose performance is measured by their masses.

As per the law of gravity, gravitation is the tendency of masses to accelerate toward
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each other with gravitational force. The gravitational force between two particles is

directly proportional to the product of their masses and inversely proportional to the

square of the distance between them (Halliday et al., 2013).

G = gc
M1 ×M2

R2
(4.1)

where G is the gravitational force, gc is the gravitational constant, M1 and M2 are the

masses of the two particles, and R is the distance between the two particles. A particle

accelerate towards the heavier mass particle with an acceleration a depending only on

the gravitational force G and it’s own mass M as defined in the law of Newton’s second

law (Halliday et al., 2013).

a =
G

M
(4.2)

The gravitational force from each particle causes the global movement of all the particles

towards heavier masses. The gravitational constant depends on the actual age of

the universe (Mansouri et al., 1999), i.e. in the algorithm after every iteration, the

gravitational constant value should be decreased and mathematically it is defined as

gc(t) = (gc0, t) (4.3)

where gc0 is gravitational constant during initialization, and t is the iteration time. In

theoretical physics related to gravitational force, masses are differentiated into three

types (active, passive, and inertial mass). Active gravitational mass is a measure of

the strength of the gravitational field due to a particular object. Passive gravitational

mass is a measure of the strength of an object’s interaction with the gravitational

field. Inertial mass is a measure of an object’s resistance to acceleration by a force.

Conceptually these masses are different but the theory of general relativity assumes that

inertial and passive gravitational mass are equivalent also known as the equivalence

principle. Also, a strong equivalent principle assumes that inertial mass and active

gravitational mass are equivalent (Kenyon, 1990).

Each particle is attracted to the other and particle with heavier masses are considered

good solutions and move slower than particles having light mass. As GSA is based
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on Newtonian laws of gravitation and motion, each particle has four specifications

(position, inertial mass, active gravitational mass, and passive gravitational mass).

The position of the particle represents a solution to the problem and its masses

are determined by a fitness function. That is by properly adjusting the inertia and

gravitational masses, the algorithm progresses towards the optimum solution.

Let’s consider a system with N number of particles and define the position of the ith

particle by

Γi = (λ1
i , λ

2
i , · · · , λd

i ), i = (1, 2, · · · , N) (4.4)

where λd
i is the position of ith particle Γi in the dth dimension. The position are

randomly assigned within the problem search space. Based on the law of gravity, the

gravitational force acting on mass i from mass j at a specific time t is defined as

Gd
ij(t) = gc(t)

Mpi(t)×Maj(t)

Rij + ϵ

(
λd
j (t)− λd

i (t)
)

(4.5)

where Mpi is a passive gravitational mass of particle i, Maj is an active gravitational

mass of particle j , gc(t) is gravitational constant at t, ϵ is a small constant, and Rij is

the distance between two particles i and j. The distance between two particle’s position

in dth dimension is expressed as the Euclidean distance, see equation 4.6.

Rij(t) =
∣∣∣∣λi(t), λj(t)

∣∣∣∣
2

(4.6)

Let the total force on an particle i by the other particles in a dimension d be randomly

weighted sum of dth dimension of force.

Gd
i (t) =

N∑
j=1,j ̸=i

randjG
d
ij(t) (4.7)

where randj is a random number [0,1]. Let adi (t) be the acceleration of particle i at

time t, defined by the law of motion as

adi (t) =
Gd

i (t)

Mii(t)
(4.8)
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where Mii is the inertial mass of the ith particle. The new state velocity of a particle

is defined as a sum of the fraction of its current state velocity and current state

acceleration. Hence, the position and velocity of the particle is updated as

vdi (t) = randi × vdi (t− 1) + adi (t− 1) (4.9)

λd
i (t) = λd

i (t− 1) + vdi (t) (4.10)

where randi is a random number [0,1]. The gravitational constant gc(t) is initialized

and reduced with time to control search accuracy.

gc(t) = gc(t0)× e(κ×iter/itermax) (4.11)

where κ is descending coefficient, iter is current iteration, and itermax is maximum

number of iterations. A particle with heavier mass means more efficient particle which

moves slow compared to other particles. Assuming the gravitational and inertia masses

are equal, i.e.

Mai = Mpi = Mii = Mi, i = (1, 2, · · · , N) (4.12)

The mass is updated using equation (4.14) in which fitness function is used. The fitness

function is the cost function which is defined based on the problem.

mi(t) =
Φi − worst(t)

best(t)− worst(t)
(4.13)

Mi(t) =
mi(t)

N∑
j=1

mj(t)

(4.14)

where Φi is the fitness value of the particle i or the cost function of that particle, best(t)

and worst(t) functions are cost function with best and worst values respectively and

defined as

best(t) = min
i∈(1,··· ,N)

Φi (4.15)

worst(t) = max
i∈(1,··· ,N)

Φi (4.16)
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Start

Initialization of
parameters (no. of

particle, total iteration,
gravitational constant)

Random initialization
of particles Γ

Calculate voltage
(U(Γ)) of the particle

Calculate fitness
(Φ) of the particle

Calculate best(t) and
worst(t) (eq. (4.15), (4.16))

Calculate mass (M),
gravitational force (G),
and acceleration (a)

(eq. (4.14),(4.11),(4.8))

Update velocity (v), and
particle (Γ) (eq. (4.9),(4.10))

t < total
iteration ?

Return fitness (Φ)
and solution (Γ)

Stop

no

yes

Figure 4.1: Flowchart for the gravitational search algorithm.

In the EIT problem, a cost function whose value is minimum is used as best(t) and a

function with maximum value is used as worst(t).

Exploration of search space by GSA is required at the beginning stage to avoid

local optimum. Exploration must fade out and exploitation must fade in with later

iterations to find the best solution. To achieve optimum performance of GSA by

controlling exploration and exploitation only Nbest particles will attract the others.

Nbest particles will apply force and later decreased linearly with time. In end, only

one particle will apply force to the others. To adjust Nbest, equation (4.7) need to be

modified as

Gd
i (t) =

N∑
j∈Nbest,j ̸=i

randjG
d
ij(t) (4.17)

where Nbest is the set of first N particles with the best fitness value and has the biggest

mass.

28



Figure 4.1 presents the flowchart of the GSA to estimate the bladder boundary in

the EIT. The solution candidates for estimating the bladder boundary are randomly

initialized within the search space of the pelvic domain. The voltage for every particle

is calculated and each fitness is evaluated. Based on this fitness the best and worst

functions are updated. Later the mass, gravitational force, and acceleration of each

particle are calculated. The velocity is updated for all the particles and the Nbest

particles are updated. After the total iteration is finished the best solution is presented

as the optimum solution for the provided bladder boundary estimation. In this during

every iteration gravitational constant is calculated and it decreased in each iteration.

4.3 Particle Swarm Optimization

Particle swarm optimization (PSO) is based on swarming theory. PSO was introduced

in 1995 by Kennedy and Eberhart which was based on exploiting simple analogues

of social interaction of a bird (Kennedy and Eberhart, 1995). PSO simulates the

choreography of a bird flock and the potential solution is represented as a particle.

PSO is initiated with a population of random solutions and then flown through the

problem space. In each iteration, each particle keeps track of its position in the search

space and the particle with the best fitness value is stored as pbest. A global best

value so far obtained by any particles is also saved as gbest. Each particle’s location is

updated per iteration by changing the velocity towards pbest and gbest location until

the iteration is exhausted.

Let’s consider a PSO with N number of particles and the position of the ith particle

is defined by equation (4.4). The particle velocity and position are updated using

equations (4.18) and (4.10) (Shi et al., 2001).

vdi (t) = w(t− 1)vdi (t− 1) + c1rand1(pbest
d
i − λd

i (t− 1))

+c2rand2(gbest
d − λd

i (t− 1))
(4.18)

where randj are random number [0,1], cj are positive constants, w is the inertia weight.

pbesti and gbest are the best previous position of the ith particle and the best previous

position among all the particles, respectively. The particle is updated using equation
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iteration, weighting factor)
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of particles (Γ)

Calculate voltage (U(Γ))

Calculate fitness, (Φ)

Update pbest(t) and gbest(t)
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gbest, and solution (Γ)

Stop

no

yes

Figure 4.2: PSO flowchart for estimating the coefficient of Fourier series-defining
bladder boundary.

(4.10).

Figure 4.2 presents the flowchart of the PSO algorithm. As previously stated PSO

starts by randomly initializing the particle in the search space. The voltage for each

particle is calculated and the fitness is evaluated using equation (3.1). The pbest and

gbest are selected and the velocity is updated for each particle with equation (4.18).

After updating the velocity the position of the particle is updated such that it moves

towards the global minima. The process is repeated until the iteration is finished. After

all the iteration is evaluated, the gbest particle and the optimum solution are returned

by the algorithm.
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Figure 4.3: PSOGSA flowchart for EIT estimation problem.

4.4 Hybrid PSOGSA algorithm

A hybrid metaheuristic algorithm is the combination of two or more heuristic algorithms

to perform as a single algorithm. There are mainly two types of classification of hybrid

metaheuristic algorithm, i.e. low-level and high-level (Talbi, 2002). In a low-level

metaheuristic algorithm, the internal workings of each combined algorithm have a

direct relationship with each other. However, in the high-level metaheuristic algorithm,

there is no direct relationship between the internal working of each algorithm. The

hybrid PSOGSA algorithm is a population-based metaheuristic algorithm that is a

combination of PSO and GSA. The functionality of PSO and GSA is combined and

run in parallel making it a low-level hybrid metaheuristic algorithm.

Since the PSOGSA is the combination of PSO and GSA algorithm, the particles are

defined using equation (4.4) having d dimensions. In PSOGSA the ability of exploration
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of PSO (gbest) is combined with the exploitation capability of GSA (Mirjalili and

Hashim, 2010). The equation below combines the ability and capability of both

algorithms in the same equation.

vdi (t) = w × vdi (t− 1) + c
′
1 × rand1 × adi (t− 1)

+c
′
2 × rand2 × (gbestd − λd

i (t− 1))
(4.19)

where vdi (t) is the velocity of particle i at time t, c
′
1 and c

′
2 are the weighting factor, w

is weighting function, rand1 and rand2 are the random numbers [0,1], adi (t− 1) is the

acceleration of particle i, and gbest is the best solution so far achieved by algorithm.

Particles in the algorithm are randomly initialized and the forces of each particle

are calculated using equation (4.17). The resultant forces between all particles,

acceleration, and gravitational constant are calculated using equations (4.7), (4.8), and

(4.11), respectively. In each iteration, the best solution is updated and velocities of all

particles are updated using equation (4.19). The position of a particle is updated with

the same equation as GSA i.e. equation (4.10).

Sine the PSOGSA is an iterative algorithm, the velocity and position of all the particles

are updated per iteration. The best particle presenting the best solution so far is

considered as per the fitness of the particles. The fitness is considered for updating the

particles and considering the best solution so far. When the particles are near a good

solution, it tends to move slower than the other particles. PSOGSA uses gbest to save

the best solution found so far and the velocity of each particle is updated according to

the found best solution.

The figure 4.3 presents the pictorial view of how the PSOGSA updates the particles

in each iteration. Initialization of the parameters along with randomly assigning the

particle position in the search space of the problem is the first step of PSOGSA. The

voltage of each particle is calculated based on the position of the EIT and the fitness

value is calculated. Based on this fitness value the best particle and the global best

particles are selected. The velocity, acceleration, and position of the particles are

updated based on this fitness value. The algorithm is iterated again and the position of

the particles is updated. In the end, the algorithm returns the optimum position of the
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best particles which is the optimum solution for the presented problem. The PSOGSA

is used later in chapter 6 to estimate the defect geometry on the graphene sheet with

EIT.
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5 PSOGSA tuned DNN

5.1 Deep neural network

A deep neural network (DNN) is the subset of machine learning which contains more

hidden layers than another neural network. The DNN model is trained to update the

weights of the node in the hidden layers of the model. The training is performed using

the training dataset which contains the input and the output values. While training

the DNN model, the back-propagation process suffers from three main difficulties, They

are as follows

� Vanishing gradient

� Over-fitting

� Computational load

The error calculated at the output layer of the DNN model during training sometimes

does not reaches the first hidden layer. This phenomenon is known as vanishing gradient

as the error has vanished before it reaches all the nodes. The vanishing gradient problem

is solved by using an activation function. RELU is the most widely used activation

function as it transmits error better because it returns 0 for negative input value and

provides positive same value which is in input. RELU function is shown in figure 5.1

expressed as

Θ(x) =

{
x, x > 0

0, x ≤ 0
(5.1)

Over-fitting occurs when a neural network tries to map every features or pattern in

the training data which gives a poor performance on unseen data. Due to this neural
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Figure 5.1: Rectified Linear Unit (RELU) function.

network fails to generalize the features found in the training data. Regularization

(L1, L2), and dropout methods are used to solve the over-fitting problem in a deep

neural network. The concept of dropout is further illustrated in figure 5.2. Randomly

selecting nodes and weights during the training process helps dropout to overcome the

over-fitting problem.

Since the DNN model has more than 2 hidden layers, it requires more training data to

avoid vanishing gradient. In using more training data the computational time for nodes’

weights requirement increases geometrically. For better results from the model more

computations are performed which takes a longer time to complete and is not suitable

for the model development. The introduction of high-performance hardware, like GPU,

and algorithms, like batch normalization, has provided aid to the computational load.

5.2 Training of DNN

DNN model is trained using a training dataset that contains input and output data.

The relationship between input and output is learned by the model during the training

process. The node’s weights are updated with an activation function in the training

process. In other words, the node’s weights are updated during training to map the

input and output data relationship.

During training nodes in the hidden layers are activated before it passes the output to

the next layers. The input to the hidden layer is expressed as a vector (X) which is
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Figure 5.2: Dropout concept illustration where nodes are randomly selected and their
outputs are set to zero to present as a deactivate nodes.

provided initially from the input layers. This vector is then combined with the weight

(w) of the node and then the resultant of the product (W×X) is passed to the activation

function (Θ) along with the bias if available. The output from the first hidden layers

can be mathematically expressed as

H1(x) = Θ(W1X) (5.2)

where (H1) is the output vector from the first hidden layer and (W1) is the weight

matrix of nodes in the first hidden layers. An activation function is used to activate the

neurons of the hidden layer in DNN. In other words, the activation function computes

the input values of the layer to the output values. If the neuron is activated then it will

provide input to the next layer’s neurons. In this thesis, we have used rectified linear

unit (RELU) as an activation function.

The set of parameters known as hyper-parameter is not learned by the model during

training (Bergstra et al., 2011). However, these parameters have a major impact during

the training of the model for a more accurate and efficient model. The following section
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(a) Low learning rate (b) High learning rate (c) Optimum learning rate

Figure 5.3: Learning rate illustration.

introduces a few hyper-parameters and methods to optimize them.

5.3 Hyper-parameter

Learning rate, number of hidden layers, number of nodes of different layers, and batch

size are few important hyper-parameters required to be optimized for the better tuned

DNN model. Learning rate defines the step size for the model to reach the accuracy

level or the minimum loss function. If the learning rate is higher the model learns faster

but may miss the minimum loss function. On the other hand, a lower learning rate has

a higher chance to find the minimum loss function. However, it will take more time and

computational resources to reach the minimum loss function. A good learning rate is

a trade-off between minimum loss function with lower epochs and lower computational

resources. The figure 5.3 illustrated the difference between higher, lower, and optimum

learning rates.

The batch size is used to sample down the large training dataset to decrease the

requirement of memory. If the training dataset is too large and it takes a longer time to

train a model, which is solved by using batch size. Batch size helps to train the model

fast by dividing the training dataset which required less computational resources.

The number of hidden layers in the DNN model is a very important hyper-parameter.

The accuracy of the model will increase with more hidden layers but there is a problem

of vanishing gradient during training. In other words, fewer layers will give under fitted

model and a large number of layers will give over-fitted model. The number of nodes

in the hidden layers also affects the accuracy of the model. The number of nodes per

hidden layer traditionally is taken in a way that makes a funnel shape between input
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Figure 5.4: A schematic diagram of the DNN model designed as funnel.

and output layers as shown in figure 5.4. Choosing the right number of nodes per

hidden layer is a very hard and time taking task.

5.4 Hyper-parameter tuning

As stated in the previous section, hyper-parameters are not learned by the model during

the training. However, hyper-parameter tuning is required for optimizing the model

before the training of the model is executed. We need to define how many layers and

nodes are required to build the model before training the model. Different dataset

requires a different set of hyper-parameters to predict with accuracy. Hyper-parameter

tuning is very important as it helps to find the best sets of hyper-parameters for that

particular DNN model for a specific dataset.

Manual attempts to initialize the hyper-parameter to the optimal value do not give

a good-performing model. It is a very hard and almost impossible task to initialize

the hyper-parameters for the complex DNN model. Alternatively, we can use the

grid search method but it is time-consuming and are not suitable for time-bound

predictions (Bergstra et al., 2011). These manual and grid search methods are prone

to biases and suffer from scheduling problems. Bergstra and Bengio in 2012 introduced

the random search algorithm to tune the hyper-parameter of the NN model. This

algorithm randomly picks the combination of the hyper-parameter from the grid of

options to minimize the NN cost function. However, the random search method suffers
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from the fluctuating cost functions and slow convergence rate (Schumer and Steiglitz,

1968). Another optimization algorithm used was Bayesian optimization which was

introduced in (Xia et al., 2017) had improved performance over manual, grid-search,

and random methods. However, it was slow and was under-performing efficiently for

dynamic problems.

The study conducted by Rere et al. showed that the meta-heuristic algorithm can

be used to optimize the hyper-parameter of the CNN. The author used simulated

annealing, different evolution, and harmony search algorithm to tune the CNN model.

The author also showed that the meta-heuristic algorithm does not suffer from the

problems which are faced by the above methods (Rere et al., 2016). Many studies were

conducted to use a genetic algorithm (GA) as the optimizer for hyper-parameter of

ANN model (Di Francescomarino et al., 2018; Wicaksono and Supianto, 2018; Xiao

et al., 2020). Also, hyper-parameter of multi-layer perceptron (MLP) were searched by

GA (Harvey, 2017).

In the deep learning network, the search space of hyper-parameters increases

tremendously when compared to the simple NN. Due to this the training time of the

DNN model is very long (Stamoulis et al., 2018). As the time required to train the DNN

is long, hyper-parameter turning with proper configuration is a major requirement. As

stated earlier the grid-search optimizer can guarantee to find the best configuration

for the hyper-parameter but it is very slow. This problem can be solved by using

meta-heuristic approaches which are capable of finding a near-optimal combination of

hyper-parameters in less time (Ojha et al., 2017). Inspired by this work PSOGSA

a hybrid meta-heuristic algorithm is proposed and used to tune the DNN model

hyper-parameters. PSOGSA is implemented to overcome the issue stated above. The

hyper-parameter is tuned to an optimum value in a reasonable time and computational

resources.

5.5 Tuning with PSOGSA

The most important hyper-parameter which affect the accuracy of the DNN model

and also has a major impact on the time and computational resources needed to train
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Figure 5.5: A schematic diagram of PSOGSA tuned DNN model.

the model is the number of nodes in the layers. The number of nodes has a direct

relationship with the time and computational resources required to train the model. If

the model has a high number of nodes in the layer, it might be more accurate but it

consumes more resources. A large number of nodes can also make the model over-fitted

on the particular dataset used in the training.

In this thesis, we have used PSOGSA to tune the number of nodes in hidden layers

of the DNN model. PSOGSA is used to find the optimum number of nodes for given

hidden layers of the model. A schematic diagram of the proposed method to tune

the hyper-parameter of the model is shown in figure 5.5. In the proposed method we

tune one hyper-parameter for optimum value to achieve a lower cost function of the

model. The node size of hidden layers of the model is tuned with the proposed method.

The model is configured with four hidden layers and each layer’s node is initialized by

PSOGSA based on the model cost function.

The figure 5.6 shows the pictorial view of the hyper-parameter tuning process. The

tuning process is mainly divided into two-part. The first part is the training of the

NN model where nodes’ weights are updated using the dataset. In this process, the

network is iterated to find the optimized node’s weight of every hidden layer which

gives the lower cost function. In the second part of the process, the cost function

values are fed into the PSOGSA algorithm which updates the position of the particle
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Figure 5.6: Hyper-parameter tuning flow-chart.

on this feedback. The PSOGSA then produces the new sets of hyper-parameter which

are used to train the model. During this process, we update the hyper-parameter

to the optimized value which gives the low-cost function for that particular dataset.

involve with the training of the NN and other parts of the process involve updating the

hyper-parameter initialization.

Optimizing node size

In this work, the number of nodes in the hidden layers of the DNN model is tuned with

PSOGSA. The PSOGSA is used to initialize the number of nodes and update it again

based on the cost function returned by the model. The figure 5.7 shows the flow of how

the PSOGSA updates the required number of nodes for the DNN model. The particles

provide the optimum value for configuring the hidden layer node size.

Initially, particles are randomly initialized within the search space and each particle is

passed to the DNN model. The DNN model uses the solution provided by PSOGSA

as the optimum number of nodes in the hidden layers. A model is built with the

initialized hyper-parameters and trained with the training dataset. For every particle

provided by the PSOGSA, the DNN model is trained and the cost function is passed

back to the PSOGSA algorithm after completion of the training of the DNN model.
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Figure 5.7: Flowchart of DNN with PSOGSA tuning the hyper-parameter.

The cost function is used as a fitness of the particles in the PSOGSA and based on

the fitness value, the best particle is selected. The velocity and position for all the

particles are updated and the updated particles are again used by the DNN model for

configuration and trained again. These steps are repeated until the iteration of the

PSOGSA algorithm is finished. The PSOGSA algorithm returns the best fitness value

and the best particle. This particle is the best-optimized value for the hyper-parameter

of the DNN model.
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6 Bladder boundary reconstruction

with GSA

This chapter presents the bladder boundary estimation by GSA. The boundary is

defined by Fourier series coefficients assuming the conductivity inside the bladder is

constant. The contrast of the conductivity between the organ and the surrounding

tissues helps in estimating the bladder boundary. The following section defines how

the bladder is represented and the later section presents the study.

6.1 Boundary representation of the bladder

A pelvis domain (Ω) is assumed to have the smooth boundary (∂Ω) which contains the

bladder and neighboring organ. The Fourier series coefficients are used for describing

the smooth boundary of the bladder and neighboring organ (Kolehmainen et al., 2001).

Bm(s) =

xm(s)

ym(s)

 =

Fϕ∑
f=1

λxm
f ϕx

f (s)

λym
f ϕy

f (s)

 (6.1)

where m = (1, 2, · · · ,M), M is the number of organ in the pelvis domain Ω, Bm(s) is

the boundary of the bladder or the neighboring organ, Fϕ is the order of the truncated

Fourier series and ϕf (s) is the basis function which is periodic and represented as

ϕµ
1 (s) = 1 (6.2)

ϕµ
θ (s) = sin

(
2π

θ

2
s
)
, θ = 2, 4, 6, · · · , Fϕ − 1 (6.3)

ϕµ
θ (s) = cos

(
2π

(θ − 1)

2
s
)
, θ = 1, 3, 5, · · · , Fϕ (6.4)
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Figure 6.1: CT scan image of pelvis (Anjos et al., 2007). The bladder is the center
top oval shape region with side muscles and bones included in two side lobes and circle
represent the rectum.

where s ∈ [0, 1] and µ = x or y. Using the above basis function (6.1), the organ

boundary Bm(s) can be expressed as shape coefficients (Γ) as

Γ = (λµ1
1 , · · · , λµ1

Fϕ
, λµs

1 , · · · , λµs

Fϕ
)T (6.5)

6.2 Results

The conductivity values of the background, bladder, and neighboring organs are known,

then the shape coefficients (Γ) of the bladder boundary can be estimated using the

measured voltages obtained at the surface electrodes of the domain Ω. The cost function

is used for measuring the discrepancy between measured and calculated voltages.

The particles are randomly initialized within the search space of the pelvic domain

Ω. These particles represent the Fourier series coefficients which represent the bladder

boundary. Each particle is used to calculate the voltage based on it. The fitness used

to evaluate the particle for the GSA can be replaced with the cost function. Thus, the

fitness is now defined by equation (3.1) and the GSA related equations are updated.

The equations related to mass, best(t), and worst(t) (eq. (4.13), (4.15), and (4.16)) are
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updated as

mi(t) =
Φi − worst(t)

best(t)− worst(t)
(6.6)

best(t) = min
i∈(1,··· ,N)

Φi (6.7)

worst(t) = max
i∈(1,··· ,N)

Φi (6.8)

Γ(t) = Γ(t− 1) + v(t) (6.9)

where Φi is the cost function of the particle i. The shape coefficient is updated with

the equation (6.9) where v(t) is the velocity of particle defined by equation (4.9). The

flowchart of GSA for estimating the bladder boundary is presented in figure 6.2. From

the figure we can see the steps required by the GSA to optimize the value of the

shape coefficient. After the parameters of GSA are initialized, particles are randomly

initialized. Since a particle defines the shape coefficient it is used to calculate the

conductivity distribution. A voltage is calculated for every particle and the fitness is

evaluated. Based on the fitness evaluation, the velocity of all the particles are updated

and the position of the particles are optimized. In every iteration the fitness is evaluated

again and the particle with lower fitness is selected as the optimum solution. This

optimum solution provides the best optimized Fourier series coefficients which presents

the bladder boundary.

Bladder boundary estimation is done firstly conducted in the numerical simulation for

different test conditions then later on phantom experiments. GSA is used as an inverse

problem solver algorithm to estimate the shape coefficients of the bladder boundary.

For the geometry of the pelvis-shaped domain, a CT scan image is taken as a reference

and the image is presented in figure 6.1. For numerical calculation, finite element

mesh is used which is shaped as a pelvic. A constant current is applied to the surface

electrodes with a magnitude of 1 mA and an opposite current injection method is used.

In this study, 16 electrodes are attached to the surface of the domain. Using these 16

electrodes with opposite current injection method generates 128 independent voltage

readings.

A total of 16 surface electrodes are used and 128 independent voltage readings are
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Figure 6.2: Flowchart for the gravitational search algorithm for estimating the bladder
boundary.

measured from this configuration. As a performance metric root mean square error

(RMSE) of estimated Fourier coefficients is used. The RMSE (Meng et al., 2010) is

defined as

RMSE =

√√√√ 1

N

N∑
i=1

[
(Γt

i − Γi)T (Γt
i − Γi)

(Γt
i)
T (Γt

i)

]
(6.10)

where N is the number of test data, Γt
i is the shape coefficient matrix defining the

actual bladder boundary and Γi is the estimated shape coefficient matrix.

6.2.1 Numerical simulation

For numerical simulation, the EIDORS framework (Adler and Lionheart, 2006) has

been used in Matlab. In the forward problem, FEM is used for simulating the voltage

measurement data based on the shape of the bladder and the neighboring organs and
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(a) (b)

Figure 6.3: Mesh of the pelvic domain for estimating the bladder boundary. (a) Fine
mesh used for the forward problem. (b) Coarse mesh used for inverse problem.

tissues. Two different mesh have been used to avoid inverse crime (Wirgin, 2004).

One for the forward problem with 1714 nodes and 3220 elements and another for the

inverse problem with 455 nodes and 805 elements which are presented in figure 6.3.

Four different targets, i.e., background, bladder, side lobes, and rectum are defined

inside a pelvis domain with each having different conductivity values of 0.0034 S/cm,

0.021 S/cm, 0.056 S/cm, and 0.0012 S/cm, respectively (Gabriel et al., 1996a,b). The

conductivity of the bladder is considered higher than the background region due to

the presence of salt in urine inside the bladder. The rectum is represented by a circle,

the bladder is represented as an oval region and the two side lobes are represented by

a complex shape region. For representing the shape of the bladder, the order of the

Fourier series needed is four (Fϕ = 4). Therefore, the total numbers of shape coefficients

for estimating are 8. The side lobes are considered to include all the extra side muscles,

other inner organs, and bones as shown in figure 6.1. In the numerical simulation, the

generated voltage data are added with a 2% relative noise to account for instrumental

and environmental error (Eyuboglu et al., 1994).

Different cases are performed for the numerical simulation before using the phantom

experimental data. A big bladder size is considered the first case which represents

a bladder filled with the urine to the maximum extent. The other case represents

a smaller bladder size in which the urine is in very low quantity. Two different

scenarios are considered with and without neighboring tissues. At first, a single bladder
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target is considered inside the pelvis domain without neighboring tissues and its shape

coefficients are estimated with GSA and PSO. A total of 20 random initial solutions

are defined in the search space for GSA and PSO estimation. The initial guesses for

numerical simulation as well as for the phantom experiments are chosen randomly

within the search space of the pelvis domain boundary based on the prior information

from the CT scan. The search range for the coefficients is defined individually. The

parameter Rij in equation (4.6) is defined as Euclidean distance between two particles

and parameter gc(t0) in equation (4.11) is a constant value of 100. The convergence

graph of GSA for full bladder case 1 without neighboring tissues is given in figure 6.4.

From the figure, it can be noticed that GSA has good convergence by the 25th iteration.

GSA and PSO are applied for boundary estimation of case 1 where both the methods

are conducted with 75 iteration steps and 20 random initialized solutions.

Figure 6.4: Convergence graph of GSA for estimating the bladder boundary in the
pelvic domain

Figure 6.5a shows the reconstruction boundary result for the big bladder case. As it is

noticed, GSA has a better estimation of bladder shape than PSO. Figure 6.5b shows

the reconstructed boundary result for the small bladder case. In the case of a small

bladder, the bladder tissue is located close to the center and the sensitivity is low as

compared to a full bladder case. In a small bladder case (figure 6.5b) the estimated

bladder boundary with GSA is close to the true boundary when compared to PSO.
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(a) (b)

Figure 6.5: A simple numerical case for bladder estimated by GSA and PSO. The axis
units are on a millimeter scale. (a) Big bladder case, and (b) small bladder case in the
pelvic domain.

The normal pelvis domain is a complex structure, which consists of muscles, bones,

and tissues along with the bladder. Thus, numerical simulations are performed with

a more realistic scenario. In this, all the different neighboring organs and tissues are

considered along with the bladder. The simulated voltage data is generated, and shape

coefficients of bladder boundary are estimated with GSA. Different bladder sizes and

shapes were considered in a multi-target scenario for numerical simulation. There are

three cases in the multi-target scenario involving neighboring tissues. The first one

corresponds to a full bladder where the bladder is assumed to be filled with the urine

to the maximum extent. The other two cases represent a smaller bladder size in which

the urine is in very low quantity. Bladder location is slightly different from person to

person and the small bladder is mostly covered up by other neighboring tissues making

it hard to estimate.

The reconstruction result for the full big bladder case considering neighboring tissues

is given in figure 6.6. GSA could estimate the location, size, and shape of the bladder

with good accuracy when compared to PSO. The shape estimated using PSO is different

when compared to the true shape. The RMSE is computed for the estimated bladder

coefficients and is shown in Table 6.1. From the RMSE it is seen that in the case of a

full bladder with neighboring tissues, GSA has lower RMSE than PSO.

Figure 6.7 shows the small bladder case with neighboring tissues. The estimated bladder

boundary with GSA has good accuracy when compared with PSO results. Figure 6.8
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Figure 6.6: Numerical results for shape estimating of a big bladder case (case 1) using
GSA for a multi-target scenario. The axis units are on a millimeter scale.

Table 6.1: Comparison of RMSE for the estimated Fourier coefficients by PSO and
GSA in multi-target numerical scenarios.

Method Case 1 Case 2 Case 3

PSO 0.1159 0.1878 0.2944

GSA 0.0349 0.0464 0.059

shows the estimated result of another case of a small bladder positioned in a different

location. This case has a bladder located more towards the center. Even in this

situation, it can be observed that GSA could estimate the bladder boundary with good

accuracy whereas with PSO the estimated bladder size is very small, and the shape is

quite different from the true shape. As it is noticed from the computed RMSE values

GSA has a very low RMSE of estimated Fourier coefficients when compared to PSO.

Further, the factors affecting the performance such as accuracy and convergence of

GSA to bladder boundary estimation are analyzed. The effect of a different number

of particles or solution and iteration steps are considered by performing numerical

simulation using a single bladder target. Five different particle sizes (5, 10, 20, 75,

100) are considered in estimating the single bladder target. Figure 6.9a shows the

reconstruction result for the bladder boundary using GSA with a different particles
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Figure 6.7: Numerical results for shape estimating of a small bladder case (case 2)
using GSA for a multi-target scenario. The axis units are on a millimeter scale.

Figure 6.8: Numerical results for shape estimating of a small bladder case (case 3) at
a different location using GSA for a multi-target scenario. The axis units are on a
millimeter scale.
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size. With 100 particles, the reconstructed boundary is close to the true target. RMSE

of Fourier coefficients is computed for the single bladder case with a different number

of particles and is plotted in figure 6.9b. By increasing the number of particles, the

accuracy is improved. Also, figure 6.9c is the graph plot between computational time

and the number of particles for the GSA. The graph is linearly increasing, as we increase

the number of particles, the computational time also increases. From figures 6.9a, 6.9b,

and 6.9c we can say that increasing the particle size increases the accuracy of the

estimated results, but it also increases the computational time, therefore, there should

be a trade-off when considering.

(a)

(b) (c)

Figure 6.9: Comparison of estimated numerical results for GSA with a different number
of particles assigned (5, 10,20, 75, 100). (a) True bladder boundary and the estimated
bladder boundary by GSA, (b) Corresponding RMSE of the estimate result by GSA,
and (c) The computational time of algorithm with a different number of particles.
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Figure 6.10: Comparison between GSA estimation result and PSO estimation result
with the different iteration number. GSA#75 is the GSA estimate result with 75
iteration steps, PSO#75 is PSO estimate result with 75 iteration steps, PSO#100 is
PSO estimate result with 100 iteration steps, and PSO#300 is PSO estimate result
with 300 iteration steps.

PSO is also analyzed for the different iteration steps and compared with the GSA result.

The comparison of PSO with different iteration steps is presented in figure 6.10. The

iteration steps were 75, 100, and 300 and the estimation result of PSO was compared

with the GSA estimation result which is estimated in 75 iteration steps. The RMSE for

estimated Fourier coefficients with GSA (75 iteration steps) and PSO with a different

number of iterations is shown in Table 6.2. It can be noticed that GSA has a lower

RMSE than PSO with a higher number of iterations. The estimated result of the PSO

with large iteration steps has good accuracy. However, the GSA can achieve similar

results with a lower number of iterations.

6.2.2 Phantom experiment

For phantom experiments, four different targets are defined inside a pelvis domain

with each having different conductivity values. The conductivity of the bladder and

background are 0.0133S/cm and 0.0043S/cm, (Gabriel et al., 1996a,b) respectively,

and are used as the a priori information. The phantom with 16 electrodes that had the
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Table 6.2: Comparison of RMSE of the estimated result of PSO with different iteration
steps with GSA estimated result with 75 iteration steps.

Method Iteration RMSE

GSA 75 0.0641

PSO

75 0.1170

100 0.1046

300 0.1004

shape of the pelvis cross-sectional of a human body is used for experimental studies. The

bladder, side lobes, and rectum are made from gelatin with different conductivities, and

the background is made from saline water. Gelatin is cut based on the layout from the

CT scan. The size, shape, and location of tissues are the same as those considered in the

numerical simulation. EIT experiment is done with Agilent Precision LCR meter used

for injecting constant current to the electrodes attached to the pelvis shaped domain

and National Instruments PXI-1042Q used for measuring the voltage from the surface

electrodes. A current of 1mA magnitude is applied to the phantom in an opposite

injection pattern and the resulting voltages are measured on the surface electrodes.

Three different cases are considered in the phantom experiments. The first case is a big

bladder case in which the bladder is assumed to be filled with urine and expanded to

the full stretch while the second and third cases are medium and small size bladders,

respectively. The true experimental setup and the corresponding estimated result are

given in figure 6.11. From the figure 6.11b it can be noticed that GSA is successful

in estimating the location and shape of the bladder with an experimental full bladder

case whereas with PSO, the bladder location is estimated but the shape is different.

Figure 6.12 shows the estimated result for medium size bladder along with the real

experimental setup. The estimated result for the bladder boundary by GSA and PSO is

present in figure 6.12b. In the case of medium size bladder, GSA is found to reconstruct

the boundary size and shape close to the true object when compared to PSO.

Figure 6.13 shows the small bladder case, where the bladder is assumed to be filled

with a very less amount of urine, and the bladder size is smaller than in the other

two cases. Figure 6.13a shows the real experimental phantom layout for the small
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(a)

(b)

Figure 6.11: (a) Phantom experiment setup for big bladder (case 1). The red target
is the bladder and yellow target regions are side lobes and rectum. (b) Phantom
experiment estimation result for big bladder cases with GSA and PSO. The axis units
are on a millimeter scale.
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(a)

(b)

Figure 6.12: (a) Phantom experiment setup for medium bladder size (case 2). The red
target is the bladder and yellow target regions are side lobes and rectum. (b) Phantom
experiment estimation results for medium bladder size case with GSA and PSO. The
axis units are on a millimeter scale.
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(a)

(b)

Figure 6.13: (a) Phantom experiment setup for small bladder size (case 3). The red
target is the bladder and yellow target regions are side lobes and rectum. (b) Phantom
experiment estimation results for medium bladder size case with GSA and PSO. The
axis units are on a millimeter scale.
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Table 6.3: Comparison of RMSE for the estimated Fourier coefficients by PSO and
GSA in phantom experiments.

Method Case 1 Case 2 Case 3

PSO 0.1371 0.1074 0.2684

GSA 0.0805 0.0741 0.0606

size bladder case and figure 6.13b shows the estimated result of GSA and PSO. GSA

estimated the small size of the bladder located close to the center of the pelvis with

good accuracy although sensitivity is low for this situation. In the case of PSO, it could

locate the position of the bladder, but the shape cannot be estimated. RMSE of Fourier

coefficients for medium and small size bladder can be seen from Table 6.3 and shows

the superior performance of GSA over PSO. In all three cases, GSA has a very good

estimation result with good accuracy in the reconstructed image than the PSO. The

computational time for phantom experiments using GSA is 1024 seconds and PSO is

1608 seconds (Intel(R) Core (TM) i7-6700 CPU at 3.40GHz, 3.50GB RAM, Windows

7, Matlab).

6.3 Conclusion

A study on shape estimation for the bladder boundary is done by the GSA using the

EIT. A pelvis-shaped domain is considered, where the bladder, side lobes, and rectum

boundaries are assumed to be smooth and described by using a truncated Fourier series.

The coefficients of the Fourier series, which are used to determine the shape and size

of the bladder, are estimated using the GSA algorithm.

Three cases (big, medium, and small) are considered to correspond to different bladder

sizes. From the numerical simulation and phantom studies, it is found that GSA

is successful in estimating the bladder shape and location with good accuracy. The

better performance of GSA can be noticed from the RMSE of the estimated shape

coefficients. Compared with the PSO, GSA has better estimation performance using

the same initial conditions. The particles or solutions are randomly assigned in the

search space in both PSO and GSA. The particles are updated differently in both

algorithms. In PSO, particles are updated using the two best positions, i.e., pbest
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and gbest. However, in GSA, particles are updated based on the overall force of all

particles. When updating the velocity (v) of the solution, PSO uses pbest and gbest

solutions, but, in GSA, the particle’s last position is used. In PSO, pbest contains the

information of all the previous iteration particle best positions. However, in GSA, only

the particle’s previous step position is considered to update, making GSA memoryless

compared with PSO. The distance between particles is considered in GSA, but, in PSO,

it is not considered. Moreover, GSA does not require the computation of Jacobian as

it is a derivative-free algorithm. Different numbers of particles are used to analyze the

estimation results. Using a higher number of particles shows better performance, but

more computational time is required. The RMSE value for GSA has a lower value

compared with PSO in all the cases of numerical study and phantom experiment. The

estimated result of PSO with higher iteration steps is comparable with the estimated

result of GSA with the lower iteration steps. Also, the computing time taken by the

GSA is less than the PSO.
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7 Defect detection in graphene with

PSOGSA

This chapter deals with the study conducted to locate the defect on graphene sheets

with PSOGSA. The defect geometry is defined by the Fourier series coefficients as

defined previously for the bladder boundary (see section 6.1). However, in this case,

the background conductivity of the graphene is also estimated by the PSOGSA. For

defining the background conductivity one Fourier series coefficient is used. The shape

coefficient and the background conductivity are defined as

Γi

σb
i

 = (λ1
i , λ

2
i , · · · , λD

i , λ
b
i) (7.1)

where σb
i is the background conductivity of the graphene sheet and one dimension of the

particle defines the conductivity (λb
i). The update equation of velocity is also modified

to adjust for the background conductivity as

vi(t) = w × vi(t− 1) + c1 × rand× (pbesti −

Γi(t− 1)

σb
i (t− 1)

)
+c2 × rand× (gbest−

Γi(t− 1)

σb
i (t− 1)

)
(7.2)

where vi(t) is the velocity of ith particle at t iteration, w is the weighting function,

ck is a weighting factor, rand is random number [0,1], Γi(t) is the current position

of particle i at iteration t, pbesti is the best particle in that iteration, and gbest is

the best solution till that iteration. After every iteration the shape coefficient and
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(a) (b)

Figure 7.1: Fine and coarse mesh of graphene used in the study. The boundary
electrodes are represented in blue colour attached to the mesh boundary.

the background conductivity is optimized based on the velocity of the particles. The

particles are updated as

Γi(t)

σb
i (t)

 =

Γi(t− 1)

σb
i (t− 1)

+ vi(t) (7.3)

The solutions are updated based on the fitness of each particle and the cost function is

defined as

γ(Γi, σ
b
i ) =

||U(Γi, σ
b
i )− V ||2

2
(7.4)

where U(Γi, σ
b
i ) is the calculated voltage with FEM which depends on the estimated

Fourier series coefficients and the background conductivity of the graphene sheet, and V

is the measured voltage recorded from the electrical impedance system. The flowchart

of PSOGSA for estimating the shape of the defect on the graphene and the background

conductivity is presented in figure 7.2.

7.1 Results

A numerical simulation and experimental studies are presented in this section in which

external defect location and shape on graphene sheet are estimated with PSOGSA. In

this study, the conductivity of the graphene sheet is also estimated along with the defect

details. The same geometry of the graphene sheet has been used for the numerical and
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Start

Initialization of parameters
(no. of particle, total

iteration, weighting factor)

Random initialization
of particles Γ

Calculate voltage U(Γi, σ
b
i )

Evaluate fitness,
γ(Γi, σ

b
i ) (eq. (7.4))

Update pbest(t) and gbest(t)

Update velocity (v), and
particle

[
Γi(t), σ

b
i (t)

]
(eq. (7.2),(7.3))

t < total
iteration ?

Return gbest and
solution

[
Γ, σb

]

Stop

no

yes

Figure 7.2: Flowchart of the PSOGSA algorithm for estimating defect geometry and
the background conductivity of the graphene sheet.

experimental cases and the preparation of the graphene sheet is also described later

in the experimental study section. As GSA has good performance in estimating the

higher-order Fourier series coefficients in the complex problem of EIT, hence it is used

to compare the estimated result from PSOGSA for all the cases. EIDORS (Adler and

Lionheart, 2006) framework is used to compute the forward solution of the EIT in the

Matlab software. To avoid the inverse crime, two separate mesh is used for the forward

and inverse problems which are presented in figure 7.1. A mesh configured with 9648

elements and 5121 nodes is used in the forward problem, while the mesh in the inverse

problem used 2412 elements and 1355 nodes. Both PSOGSA and GSA were configured

with the same search space, and particle size and run for equal iterations. The particles

are updated per iteration and the best solution is updated which has a lower value cost

function.
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The robustness of the proposed algorithm PSOGSA is studied with the help of Monte

Carlo simulation. In this, each run of PSOGSA is assigned with a different set of

particles and a different noise seed. The Monte Carlo simulation is executed only on

numerical study for η = 20 runs for estimating the Fourier series coefficient. The mean

value of the Fourier series coefficient is used as the estimated value from the PSOGSA

algorithm. Mean (λ̄) is one of the statistical parameter analyzed by Monte Carlo

simulation along with mean absolute error (MAE), mean error square (MES), error

standard deviation (Esd), and the mean root mean square error (RMSE). MAE

and RMSE provide the magnitude of estimation error for the corresponding true

value. The dispersion of the error (ei) for estimated parameters is calculated by error

standard deviation (Esd) and the square of the bias of the error is given by MES. The

mathematical definitions of each parameter are defined below as

λ̄ =
1

η

η∑
i=1

λi (7.5)

MES =

(
1

η

η∑
i=1

(λtrue − λi)

)2

=

(
1

η

η∑
i=1

ei

)2

= (E[ei])
2 = (ē)2 (7.6)

MAE =
1

η

η∑
i=1

|λtrue − λi| =
1

η

η∑
i=1

|ei| (7.7)

MSE =
1

η

η∑
i=1

(λtrue − λi)
2 =

1

η

η∑
i=1

e2i = E[e2i ] (7.8)

Esd =

√√√√1

η

η∑
i=1

(ei − ē)2 =
√

E[e2i ]− (E[ei])2 =
√
MSE −MES (7.9)

RMSE =

√
(λ− λt)T (λ− λt)

λT
t λt

(7.10)

RMSE =
1

η

η∑
i=1

RMSEi (7.11)

where λ and λt are the estimated and true values of the respective Fourier series

coefficients, respectively. The statistical parameters for the numerical cases which are

reported which are tabled in a later section that provides the information about the

PSOGSA algorithm regarding stability and accuracy. For the boundary estimation of
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the defect the calculated statistical parameters are λ̄, MAE, MES, and Esd.

7.1.1 Numerical study

There are 16 electrodes attached to the boundary of the graphene sample where each

side has four electrodes. The conductivity of the background and the defect on the

graphene sheet is assumed to be homogeneous and is used as a known priori information

for estimating the Fourier series coefficient. The defects are resistive to the current

flow therefore a very low conductivity value of 5×10−9mS/cm is assumed in numerical

simulations and of the background to be 6.7×104mS/cm, respectively. The background

conductivity of the graphene sheet is also estimated along with the Fourier series

coefficients. A 1% relative white Gaussian noise is added to generated voltage data

to account for instrumental and environmental noise.

A single circular defect on a graphene sheet is considered a test case for estimating the

optimum parameter values for estimating defect boundary and background conductivity

of the square-shaped domain. This case is presented with a circular defect estimated

by PSOGSA, see figure 7.3a. The parameters such as the number of particles, and the

number of iteration is analyzed for both single defect and two defects on the graphene

sheet, however, weighting factors are analyzed only for single defect case. The weighting

factors (C
′
j) different configuration effect on the performance of the PSOGSA algorithm

is initially analyzed. A total of 11 cases of different weighting factors configuration

are used presented in figure 7.3b and the corresponding RMSE, and cost function

are shown in figure 7.3c. Out of 11 cases of weighting factors configuration only 3

cases are preferred which have the lower RMSE and cost function compared to other

configurations. The 7th configuration of weighting factors gives the low RMSE of

an estimated Fourier series coefficients along with a lower cost function. PSOGSA

performance is compared with different iteration levels. By this analysis, we want to

check if there will be any improvement in the performance of the algorithm with more

iterations. Five different cases for the iteration are presented in the figure 7.3d. We

can see that in almost all cases the cost function converged before 20th iteration and

there is no future improvement further. Thus, it is a waste of computational resources

to run the PSOGSA algorithm beyond 25th iteration.
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(a) (b)

(c) (d)

(e)

Figure 7.3: Numerical case of single defect on graphene sheet for parameter
optimization. (a) True defect location along with the estimated result from PSOGSA.
(b) Weighting factors (C

′
j) combination, (c) RMSE and cost function value for different

cases of weighting factor combination, (d) cost function value for a different level of
iteration, (e) RMSE and cost function with a different number of particles in PSOGSA.
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(a) (b)

Figure 7.4: Numerical case of two defects on the graphene sheet for parameter
optimization. (a) True defect location along with the estimated result from PSOGSA.
The black circle represents the true position of the defect. The estimated location of a
defect by PSOGSA is represented by a blue circle. (b) Corresponding RMSE and cost
function with a different number of particles in PSOGSA.

The impact of a different number of particles on the PSOGSA algorithm estimation is

also analyzed. The number of particles is initialized in the range of 20 and 350 with

14 different values. As the number of particles is increased the cost function decreases

but the RMSE values are fluctuating after the number of particles is increased beyond

40. The cost function is lower for 5 cases where the number of particles is from 100

to 200, in which RMSE of the Fourier series coefficients is low for 175 particles. The

comparison of the cost function and the RMSE with a different number of particles for

the single defect case is presented in figure 7.3e.

A single defect in the graphene sheet is defined with six Fourier series coefficients which

represent a simple shape, i.e., circular and ellipse. Two defects on the graphene sheet are

considered to analyze the proposed algorithm for the estimation of the defect boundary.

The two defects needed 12 coefficients to define their simple geometry. As the unknowns

to be estimated by the proposed algorithm have also doubled in number, we need to

increase the number of particles of PSOGSA to achieve the lower cost function. For this

two defects scenario, presented in figure 7.4a, we have analyzed the proposed algorithm

with a different number of particles. Now the number of particles is in the range of 300

to 1000. The algorithm configured with 600 and 900 particles have shown good result

with lower RMSE and cost function. The RMSE of Fourier series coefficient and cost
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(a) (b)

(c) (d)

(e) (f)

Figure 7.5: Numerical results for cases 1-6 with a single defect on graphene surface by
PSOGSA and GSA. The black circle represents the true position of the defect. The
estimated location of the defect by PSOGSA and GSA is represented by a blue circle
and red circle, respectively.
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(a) (b)

(c)

Figure 7.6: Numerical results for cases 7-9 with two defects on graphene surface by
PSOGSA and GSA. The black circle represents the true position of the defect. The
estimated location of a defect by PSOGSA and GSA is represented by a blue circle and
red circle, respectively.

function for the corresponding number of particles are presented in figure 7.4b. From

the figure, we can see that the PSOGSA algorithm configured with 600 particles has a

lower cost function and a similar RMSE of Fourier series coefficient when compared to

PSOGSA with 900 particles. Since the algorithm configured with the lower number of

particles required less computational resources, PSOGSA configured with 600 particles

is used to estimate the two defects on the graphene sheet.

A total of 6 cases of a single defect on a graphene sheet are analyzed for estimation of the

defect boundary with PSOGSA. In the first case, the defect is located in the lower right

corner which is presented in figure 7.5a. In the figure, we can see that the PSOGSA

algorithm has estimated the defect location and boundary with good accuracy when

compared with the estimation by the GSA. Similarly in the second case, the defect is
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Table 7.1: Statistical parameter for numerical case 1 (figure 7.5a): mean λ̄, mean
absolute errorMAE, mean error squaredMES, mean square errorMSE, and standard
deviation Esd of Fourier series coefficient λi estimated using PSOGSA

Fourier
Coef.

True
value

λ̄ MAE MES MSE Esd GSA

λ1 2.0000 2.0377 0.3417 0.0014 0.1428 0.3760 2.3034

λ2 0.5000 0.5100 0.3399 0.0001 0.1377 0.3710 0.4763

λ3 0.3000 0.2662 0.2235 0.0011 0.0519 0.2254 0.1734

λ4 0.0100 0.0270 0.0238 0.0002 0.0008 0.0240 0.0443

λ5 0.0100 0.0324 0.0292 0.0005 0.0012 0.0273 0.0161

λ6 0.1000 0.1590 0.0788 0.0034 0.0074 0.0628 0.1550

Table 7.2: Statistical parameter for numerical case 2 (figure 7.5b): mean λ̄, mean
absolute errorMAE, mean error squaredMES, mean square errorMSE, and standard
deviation Esd of Fourier series coefficient λi estimated using PSOGSA

Fourier
Coef.

True
value

λ̄ MAE MES MSE Esd GSA

λ1 2.0000 2.0424 0.3969 0.0018 0.1784 0.4202 2.2882

λ2 2.0000 1.9974 0.3271 0.0000 0.1355 0.3681 1.8128

λ3 0.1000 0.1954 0.1496 0.0091 0.0400 0.1759 0.1850

λ4 0.1000 0.2040 0.1951 0.0108 0.0567 0.2143 0.1748

λ5 0.3000 0.1527 0.2297 0.0217 0.0592 0.1937 0.0540

λ6 0.2500 0.3090 0.2089 0.0035 0.0496 0.2147 0.2753
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Table 7.3: Statistical parameter for numerical case 3 (figure 7.5c): mean λ̄, mean
absolute errorMAE, mean error squaredMES, mean square errorMSE, and standard
deviation Esd of Fourier series coefficient λi estimated using PSOGSA

Fourier
Coef.

True
value

λ̄ MAE MES MSE Esd GSA

λ1 1.2500 1.1949 0.2325 0.0030 0.0588 0.2361 1.0010

λ2 0.2500 0.1948 0.1597 0.0030 0.0273 0.1558 0.1035

λ3 0.1000 0.1671 0.0978 0.0045 0.0090 0.0668 0.1365

λ4 0.0000 0.0449 0.0471 0.0020 0.0026 0.0236 0.0085

λ5 0.0000 0.0424 0.0445 0.0018 0.0025 0.0256 0.0452

λ6 0.1000 0.0734 0.0794 0.0007 0.0066 0.0767 0.0822

located in the top right corner, however, the defect width is very thin when compared

to the first case. The second case is presented in figure 7.5b which also contains the

estimation done by PSOGSA and GSA algorithm. In this case, the estimation of GSA

deviated from the true defect location towards the graphene sheet boundary. However,

we can see that the defect location estimated by PSOGSA is in close agreement with

the true location of the defect. But both algorithms failed to estimate the shape of

the defect. In case 3 the single defect is a small size defect when compared with the

previous two cases. In this scenario, the defect is located on the lower part of the

graphene sheet between 14th and 15th electrodes. This small size defect is harder to

estimate but PSOGSA has estimated with a low error which can be seen in the figure

7.5c along with the estimation result from the GSA. In these three cases, defects are

defined with 6 Fourier series coefficients due to which the shapes are ellipses.

To evaluate the performance of PSOGSA for more complex shapes, defects were defined

with more shape coefficients. Eight Fourier coefficients were used to define a single

defect on a graphene sheet and were estimated. Cases 4, 5, and 6 of single defect with

higher Fourier series coefficients are analyzed which are presented in figures 7.5d, 7.5e,

7.5f. We can see that PSOGSA could estimate the defect geometry with good accuracy

than GSA. However, when the defect on the graphene sheet is very thin as in figure

7.5f PSOGSA estimated result has the intersecting boundaries along with GSA. Even

if the boundaries are intersecting PSOGSA presents the estimated result with close
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Table 7.4: Statistical parameter for numerical case 4 (figure 7.5d): mean λ̄, mean
absolute errorMAE, mean error squaredMES, mean square errorMSE, and standard
deviation Esd of Fourier series coefficient λi estimated using PSOGSA

Fourier
Coef.

True
value

λ̄ MAE MES MSE Esd GSA

λ1 0.3000 0.2335 0.2432 0.0044 0.0615 0.2388 0.1320

λ2 0.5000 0.4344 0.2741 0.0043 0.0773 0.2702 0.5420

λ3 0.2000 0.1970 0.1568 0.0000 0.0274 0.1655 0.1891

λ4 0.3000 0.1998 0.1770 0.0100 0.0385 0.1688 0.2957

λ5 0.2000 0.1606 0.1768 0.0016 0.0324 0.1756 0.0976

λ6 0.1000 0.0855 0.0940 0.0002 0.0091 0.0942 0.0569

λ7 0.0200 0.0741 0.0754 0.0029 0.0102 0.0854 0.1280

λ8 0.1000 0.1499 0.0909 0.0025 0.0084 0.0766 0.1352

resemblance to the true shape.

All the single defect cases are estimated by the PSOGSA algorithm with a low error

than the GSA algorithm. The statistical parameters for the numerical cases of the

single defect are reported in the tables 7.1-7.6. Case 6 has the highest error standard

deviation (0.6160) and case 1 achieved the lower error standard deviation (0.0240).

Case 6 has a higher standard deviation error in almost all the coefficients due to the

complex shape. In this case, the boundary overlaps with each other representing an

arc that is very hard to estimate with PSOGSA and also with GSA. Even though the

error is high in this case, still, PSOGSA estimated the location of the defect with good

accuracy.

From the 6 cases of single defect, we can say that the PSOGSA has good performance

over the GSA algorithm with the same parameter configurations. The RMSE of the

estimated Fourier series coefficients from PSOGSA and GSA is presented in table 7.7.

The table of RMSE for Fourier series coefficients shows that PSOGSA has a lower

RMSE value which suggests better estimation performance.

Two defects on the graphene sheet cases were also studied and the performance of the

PSOGSA was evaluated against GSA. Three different cases are presented for this study.

Case 7 is the simplest two defects case study where one defect is on the top left and
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Table 7.5: Statistical parameter for numerical case 5 (figure 7.5e): mean λ̄, mean
absolute errorMAE, mean error squaredMES, mean square errorMSE, and standard
deviation Esd of Fourier series coefficient λi estimated using PSOGSA

Fourier
Coef.

True
value

λ̄ MAE MES MSE Esd GSA

λ1 2.0000 2.0168 0.3204 0.0003 0.1370 0.3698 1.5766

λ2 2.0000 2.0798 0.3052 0.0064 0.1146 0.3290 2.3546

λ3 0.2400 0.3119 0.2126 0.0052 0.0483 0.2077 0.3752

λ4 0.0000 0.0388 0.0407 0.0015 0.0039 0.0493 0.0301

λ5 0.0000 0.0524 0.0550 0.0027 0.0055 0.0529 0.0735

λ6 0.1500 0.1661 0.0717 0.0003 0.0059 0.0748 0.1045

λ7 0.0500 0.0537 0.0504 0.0000 0.0028 0.0523 0.0837

λ8 0.0000 0.0436 0.0458 0.0019 0.0044 0.0498 0.0173

Table 7.6: Statistical parameter for numerical case 6 (figure 7.5f): mean λ̄, mean
absolute errorMAE, mean error squaredMES, mean square errorMSE, and standard
deviation Esd of Fourier series coefficient λi estimated using PSOGSA

Fourier
Coef.

True
value

λ̄ MAE MES MSE Esd GSA

λ1 0.5000 0.4536 0.3665 0.0022 0.1645 0.4029 0.2893

λ2 1.5000 1.5728 0.5735 0.0053 0.3848 0.6160 1.0723

λ3 0.3000 0.1919 0.2535 0.0117 0.0640 0.2287 0.3251

λ4 0.1000 0.1265 0.0951 0.0007 0.0092 0.0923 0.0254

λ5 0.3000 0.2613 0.2090 0.0015 0.0481 0.2160 0.2226

λ6 0.1000 0.1697 0.1032 0.0049 0.0099 0.0713 0.1500

λ7 0.0100 0.0945 0.0957 0.0071 0.0136 0.0806 0.1359

λ8 0.1000 0.1812 0.0978 0.0066 0.0091 0.0505 0.1044

Table 7.7: RMSE of the estimated Fourier series coefficients by PSOGSA and GSA for
single defect cases.

Algorithm Case 1 Case 2 Case 3 Case 4 Case 5 Case 6

PSOGSA 0.040 0.0757 0.0958 0.2212 0.0475 0.1214

GSA 0.1611 0.2496 0.2303 0.3231 0.2030 0.3085
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Table 7.8: Statistical parameter for numerical case 7 (figure 7.6a): mean λ̄, mean
absolute errorMAE, mean error squaredMES, mean square errorMSE, and standard
deviation Esd of Fourier series coefficient λi estimated using PSOGSA

Fourier
Coef.

True
value

λ̄ MAE MES MSE Esd GSA

λ1 0.5000 0.5328 0.2860 0.0011 0.0988 0.3125 0.6321

λ2 1.9000 2.0224 0.3173 0.0150 0.1178 0.3207 2.1183

λ3 0.0000 0.1695 0.1695 0.0287 0.0338 0.0712 0.1763

λ4 0.1000 0.1454 0.1162 0.0021 0.0166 0.1207 0.2676

λ5 0.1000 0.0966 0.0961 0.0000 0.0093 0.0965 0.1388

λ6 0.3000 0.1760 0.1348 0.0154 0.0238 0.0920 0.4312

λ7 2.2000 2.2452 0.3452 0.0020 0.1309 0.3590 2.3727

λ8 0.4000 0.4801 0.2586 0.0064 0.0807 0.2725 0.7868

λ9 0.0000 0.0901 0.0901 0.0081 0.0158 0.0878 0.0885

λ10 0.1000 0.1010 0.0903 0.0000 0.0085 0.0924 0.1402

λ11 0.1000 0.0813 0.0853 0.0003 0.0081 0.0879 0.0608

λ12 0.3000 0.2699 0.2298 0.0009 0.0557 0.2341 0.3202

another one is on the bottom right corner respectively. The estimation of the defect

boundary by PSOGSA is in close agreement with the true geometry when compared

with the estimation result from the GSA which is presented in figure 7.6a. Another two

defects scenario on the graphene sheet is labeled as case 8 in which both defects are on

the side side of the graphene, i.e., the left side which is seen in the figure 7.6b. In this

case, the GSA estimated the defect location with poor accuracy when compared with

PSOGSA. We can see that the PSOGSA has estimated both defect locations on the

graphene sheet with good accuracy than GSA. In both these cases, i.e. cases 7 and 8,

each defect is defined with 6 Fourier series coefficients. To include a complex-shaped

defect in case 9 one defect is defined with 6 coefficients but another defect is defined

with 8 coefficients. In this case, there are now 14 coefficients to be estimated by the

algorithm. The true defect geometry along with the estimated geometry by PSOGSA

and GSA are presented in figure 7.6c. From the figure, we can see that the PSOGSA

could estimate the location of the defect with good accuracy than the GSA. But the

complex shape of the defect was not estimated with good accuracy. In all cases of
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Table 7.9: Statistical parameter for numerical case 8 (figure 7.6b): mean λ̄, mean
absolute errorMAE, mean error squaredMES, mean square errorMSE, and standard
deviation Esd of Fourier series coefficient λi estimated using PSOGSA

Fourier
Coef.

True
value

λ̄ MAE MES MSE Esd GSA

λ1 0.5000 0.5361 0.2474 0.0013 0.0868 0.2924 0.2311

λ2 1.9000 2.0901 0.3471 0.0361 0.1334 0.3119 2.0321

λ3 0.1000 0.1803 0.0903 0.0064 0.0083 0.0427 0.1965

λ4 0.1000 0.1257 0.1206 0.0007 0.0176 0.1301 0.1284

λ5 0.1000 0.1082 0.0897 0.0001 0.0088 0.0932 0.1228

λ6 0.3000 0.1927 0.1488 0.0115 0.0276 0.1267 0.3139

λ7 0.5000 0.4933 0.3100 0.0000 0.1036 0.3218 0.3538

λ8 0.5000 0.5504 0.2739 0.0025 0.0898 0.2954 0.7949

λ9 0.1000 0.0888 0.0908 0.0001 0.0085 0.0917 0.0426

λ10 0.1000 0.1940 0.1523 0.0088 0.0264 0.1326 0.1406

λ11 0.1000 0.0976 0.0883 0.0000 0.0085 0.0922 0.0182

λ12 0.3000 0.2750 0.2046 0.0006 0.0498 0.2218 0.0483

two defects scenarios (cases 7, 8, and 9), PSOGSA could estimate the geometry of the

defect with good accuracy but GSA failed to estimate the defect location and shape.

Table 7.8, 7.9, and 7.10 presents the statistical parameters for the two defects cases.

The standard deviation of error from the table shows PSOGSA estimated with good

accuracy even though the unknowns has increased. This was achieved by configuring

the PSOGSA with optimum parameter value especially by increasing the number of

particles from 250 to 600. Table 7.11 shows each defect error by both algorithms for

the two defects cases. From the table, we can see that in two defects cases PSOGSA

has estimated each defect with good accuracy than the estimation done by GSA. But

for case 9, the RMSE value of both estimated defects by PSOGSA is higher than GSA.

However, if we look at the estimated boundary of the defects in figure 7.6c we can see

that the estimated shape of the defect with PSOGSA has a low error. The accumulated

RMSE for all the coefficients estimated by PSOGSA for cases 7, 8, and 9 are 0.0939,

0.1601, and 0.2889 respectively. Also, the RMSE for the estimated result from GSA

for those particular cases is 0.1917, 0.2484, and 0.1603 respectively.
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Table 7.10: Statistical parameter for numerical case 9 (figure 7.6c): mean λ̄, mean
absolute errorMAE, mean error squaredMES, mean square errorMSE, and standard
deviation Esd of Fourier series coefficient λi estimated using PSOGSA

Fourier
Coef.

True
value

λ̄ MAE MES MSE Esd GSA

λ1 0.5000 0.4304 0.2595 0.0048 0.0789 0.2721 0.4187

λ2 1.9000 1.8440 0.2939 0.0031 0.1030 0.3159 2.0373

λ3 0.0000 0.1311 0.1311 0.0172 0.0246 0.0864 0.0929

λ4 0.1000 0.1220 0.1125 0.0005 0.0162 0.1253 0.2633

λ5 0.1000 0.0871 0.0829 0.0002 0.0078 0.0872 0.0638

λ6 0.3000 0.2582 0.1691 0.0017 0.0315 0.1725 0.2452

λ7 2.0000 2.0075 0.3275 0.0001 0.1381 0.3716 2.3562

λ8 0.5000 0.6092 0.4100 0.0119 0.2491 0.4870 0.4586

λ9 0.2400 0.2524 0.2085 0.0002 0.0479 0.2186 0.1505

λ10 0.0000 0.0758 0.0758 0.0057 0.0080 0.0480 0.0974

λ11 0.0000 0.0658 0.0658 0.0043 0.0065 0.0469 0.0221

λ12 0.1500 0.1492 0.0762 0.0000 0.0070 0.0834 0.1516

λ13 0.0500 0.0563 0.0457 0.0000 0.0023 0.0474 0.0805

λ14 0.0000 0.0510 0.0510 0.0026 0.0055 0.0534 0.0249

Table 7.11: RMSE of the estimated Fourier series coefficients by PSOGSA and GSA
for two defects cases.

Algorithm
Case 7 Case 8 Case 9

Defect 1 Defect 2 Defect 1 Defect 2 Defect 1 Defect 2

PSOGSA 0.1252 0.0591 0.0740 0.3936 0.2544 0.3069

GSA 0.1898 0.1932 0.1590 0.5438 0.1280 0.1849
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Figure 7.7: Standard deviation error of the estimated Fourier series coefficients of the
all 9 numerical cases.

Thus, in all 9 numerical cases, PSOGSA estimated the defect on the graphene sheet with

good accuracy when compared to GSA. The statistical parameters of PSOGSA shown

in table 7.1 - table 7.10 show that the performance of PSOGSA is better than that of

GSA for most of the cases. The standard deviation error of the estimated Fourier series

coefficients for all the 9 numerical cases is plotted. From the graph, we can see that

the error is a little high for the coefficients defining the defect location when compared

to others as shown in figure 7.7. Along with the unknown location of the defects in the

graphene sheet, the background conductivity is also estimated. The true value of the

background is set to 6.7 × 104mS/cm and both algorithms estimated the background

conductivity of the graphene sheet. The estimated background conductivity of the

graphene sheet by PSOGSA is presented along with the estimated result.
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Figure 7.8: Electrode coated graphene sample used for the experimental study.

7.1.2 Experimental study

The EIT system setup used for the experiment consists of a constant current source

(Agilent 4284A precision LCR meter) and a data acquisition system (NI PXI-1042Q)

to measure the resultant voltage readings.

Preparation of graphene sample

In this section, a graphene sample on the SiO2 substrate preparation is explained. A

CVD processed graphene sample was purchased from Graphene Square Inc. For a

mechanical supporter during the transfer process poly (methyl-methacrylate) PMMA

(950 PMMA A4) was spin-coated at 300 RPM for 30 seconds on graphene synthesized

copper foil and annealed on a hot plate at 100◦C for 5 minutes. After the supporter is

coated, the sample was put into an ammonium persulfate solution to remove the copper

foil. PMMA/Graphene was cleaned with deionized water and was later transferred to

SiO2/Si wafer, which is the target substrate used for the experiment, after which PMMA

was dissolved using acetone.

A graphene sample of size 2.5 × 2.5 cm is used in this study. A total of 16 copper

electrodes are coated on the graphene sample using the sputtering method with a mask

which is designed with the electrode location and shape. Each side of the graphene
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(b)

Figure 7.9: Experimental study for case 1 with defect identification on graphene of size
2.5 × 2.5cm. (a) Graphene with a single defect. (b) Experimental result for defect
location on the graphene sheet. The estimated location of the defect by PSOGSA and
GSA is represented by a blue circle and red circle, respectively.
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sample has 4 electrodes placed equidistantly and are separated by a gap of 0.5 cm

as shown in figure 7.8. A gold wire, connecting the EIT measurement system to the

graphene sample, was attached to the electrodes with the help of silver paste. A current

of the constant amplitude of 0.1 mA is injected into the graphene sheet using a crossed

injection pattern. For 16 electrode setup, a total of 128 voltage measurement reading

is obtained from the boundary electrodes.

Result

As a first experimental case a single defect, created with a pointed knife, on the surface

of a graphene sheet is presented in figure 7.9a where we can see the defect is located

near 7th electrode. For estimating this single defect scenario, PSOGSA is configured

with 450 particles and iterated for 25 iterations.

Figure 7.10a presents a true scenario where two defects are present on a graphene sheet.

In this scenario, one defect is located on the lower right side of the graphene sheet near

the 7th electrode and the second defect is located on the top side of the sample near 3rd

electrode. Both defects are made with a pointed knife on the surface of the graphene

sheet. The presence of two defects has increased the number of unknown parameters

to be estimated. As the number of unknowns is increased, thus the number of particles

in the algorithm is increased to 750 for better estimation results.

Figure 7.9b shows the estimated result of the single defect location by PSOGSA and

GSA together with the true location. We can see that the estimated location of the

single defect by PSOGSA is in close agreement with the true location whereas the

estimated location by GSA is far away from the true location. The estimated location

of defects for the second experiment case of two defects on graphene is presented in

figure 7.10b. In this, we can see that the PSOGSA has estimated the location of both

defects successfully with good accuracy whereas GSA could only estimate one defect

location with good accuracy but failed to estimate the 2nd defect on graphene. Also,

the background conductivity of graphene is estimated for both experimental cases along

with defect location. The estimated background conductivity of the graphene sheet can

be seen in table 7.12.

From both the numerical and experimental studies, we see that the PSOGSA performed
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Figure 7.10: Experimental study for case 2 with defects identification on graphene of
size 2.5 × 2.5cm. (a) Graphene with two defects. (b) Experimental result for defect
location on the graphene sheet. The estimated location of a defect by PSOGSA and
GSA is represented by a blue circle and red circle, respectively.

Table 7.12: Estimated conductivity (mS/cm) of graphene sheet by PSOGSA and GSA

Case PSOGSA GSA

Single defect 62464.28 65795.49

Two defects 66846.33 61000.00
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better in all the scenarios when compared with GSA. The estimated conductivity values

by PSOGSA are presented in the color bar of all the estimated results. In all the cases,

PSOGSA has a very good estimation result with good accuracy for estimating the

Fourier series coefficients describing the geometry of the defect along with background

conductivity of graphene sheet than GSA.

7.2 Conclusion

In this study, estimation of the defect boundary along with the background conductivity

of graphene is done by PSOGSA. The performance of the proposed algorithm for EIT

is analyzed with different numerical cases for a single defect and two defects. Monte

Carlo simulation is used for analyzing the statistical parameters which also verifies the

robustness of the proposed algorithm. The effect of different parameter configurations

(weighting factors, particle size, and total iteration) on PSOGSA is analyzed. Based on

this analysis the initial conditions of PSOGSA are configured for better performance

and the iteration size is configured to 25 steps. The number of unknowns to be estimated

by PSOGSA is directly linked with the particle size. Thus, for the two defects scenario,

a higher particle size is required.

Nine different cases are considered in the numerical study to estimate the location of the

defects and the background conductivity of the graphene sheet. The estimation error is

measured with RMSE for both algorithms for all the cases. In the two defects numerical

cases, GSA failed to estimate the defect location and its shape. Whereas, PSOGSA

has a more accurate estimation than the other algorithm. In the experimental study

proposed algorithm has estimated defects with good accuracy whereas GSA failed to

estimate the defect location. The better estimation result is obtained from the PSOGSA

as it has the exploration capability of PSO, which makes it better than GSA.
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8 Interlayer boundary estimation by

PSOGSA-DNN

This chapter presents the estimation of the interlayer of the subsurface. The

two different boundaries are used to separate the layers of the subsurface. Both

boundaries are estimated by using a DNN which is tuned by PSOGSA. Firstly the

hyperparameter of DNN is tuned by PSOGSA. The number of nodes in the hidden layers

is tuned by PSOGSA. After the DNN is tuned, the model is used for estimating the

interlayer boundaries of the subsurface. The following section defines the mathematical

representation of the interlayer boundary and the later section presents the study.

8.1 Interlayer boundary representation

When the conductivity values of the subsurface are known a priori then the shape and

location of the interlayer boundary become the unknown to be estimated. Considering

the subsurface is layered, the open boundary between the two layers was approximated

as discrete front points Bγ(γ = 1, 2, · · · ,Γ) located on the boundary (Khambampati

et al., 2013; Kim et al., 2007b). Here defines the total number of front points, which

describes the interlayer boundary. The front point location is given by

Bγ = (xγ , yγ), γ = 1, 2, · · · ,Γ (8.1)

where xγ is the reference point located on the surface of the domain as shown in the

figure 8.1. The front point is defined as the vertical distance from the reference point
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Figure 8.1: Interlayer boundary parameterized with the discrete front points.

(, 0) located on the surface of the domain and the unknown parameter is

y = (y1, y2, · · · , yΓ)T (8.2)

8.2 Results

In this work, the interlayer boundary’s front points inside the subsurface domain

are estimated by the DNN model. It estimates the shape, size, and location of the

interlayer boundary, which maps the non-linear relationship. In this, we assume that

the internal conductivity of the layer is constant and is known prior with the help

of the borehole method. The interlayer boundary of the subsurface is described by

the front points method. The dataset is used to train and validate the model which

contains measured voltages and related interlayer boundary front points. To estimate

the interlayer boundary front points by the DNN model, we define the input layer

neurons as surface voltage measurements and the output layer neurons as front points.

The hidden layers are used to extract the features from the training dataset, which

is used to map the relationship between input and output data. This relationship

mapping is done using a mapping function (H) defined as

Hθ(V ) =

m∑
k=0

W kV k = W T (V ) (8.3)
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where W is the weight of the node, V is the measurement voltage reading, and m is

the total number of data samples. The DNN model is trained to learn the weights (W )

of the nodes of the hidden layers. The training of the model for learning weights is

done by minimizing the cost function which expresses the sum of the errors between

the estimated output of the DNN model and the desired output. The least-square cost

function is minimized to determine the weights of the node, which is expressed as

θ = argθmin

m∑
k=1

∥ H(V k)− ykγ ∥2 (8.4)

θt+1 = θt −
α√
v̂t + ϵ

m̂t (8.5)

where α is the learning rate of the training. The DNN model updates the weights of

each node which minimizes the cost function. The update of the weights is executed

using Adam’s optimization algorithm, see equation (8.5) (Kingma and Ba, 2014). The

weights θ are updated using equation (8.5). The weights, θ, are updated by the DNN

model during training which uses the training dataset. The trained DNN model is

evaluated with unseen validation data.

Dataset preparation

DNN model is designed, trained, and evaluated for estimating the interlayer boundary

front points inside the subsurface domain. Before the training of the model,

prepossessing of the data sample is necessary. The model learns from the dataset and

is heavily depends on data samples (Holzinger, 2019). If the dataset is not optimized,

it is very hard to train the DNN model for optimized estimation. Data samples in the

dataset should not be repeating and the bad data samples should be removed. In this

work, the uniqueness of data sample is considered and is optimized before it is used to

train the model. The dataset contains the measured voltage reading as input and the

front points as output. The input voltage is normalized before it is used in the training,

testing, or estimating the output by the DNN model. As the input data sample are

different from each other, the range of it may be also different. It will make training

of the model very difficult and model may not find the global minima due to it. To
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(a) (b)

Figure 8.2: A sample of the input voltage reading from the dataset. (a) Normal voltage
reading, (b) Normalized voltage reading.

increase the effectiveness of the learning rate, normalization is done. In this work we

have used the Min-Max normalization method. In this method, the data is scaled in

the range of [0, 1] or [−1, 1] (Bhanja and Das, 2018). The input value v of the voltage

V is converted to normalized voltage vnorm of the range [vmax, vmin] defined as

vnorm =
(vmax − vmin)× (v −minV )

maxV −minV
(8.6)

where minV and maxV are the minimum and maximum values of the voltage V in

the data set. We have used scikit library to normalized the input data samples of

the dataset (Pedregosa et al., 2011). The voltage reading samples of the dataset is

presented in the figure 8.2. From the figure we can see that the information of the

voltage is not changed, however the magnitude is change to the range of [−1, 1].

Numerical study

The domain used for the study has a size of 10m in-depth and 20m in width. A

total of 16 surface electrodes are attached to the domain, illustrated in figure 8.3.

These electrodes are located on top of the subsurface domain representing a surface

electrode placed 1m apart. An adjacent current pattern is used in this study which

generates 256 independent voltage readings. EIT forward problem is solved using the

finite element method to compute the boundary voltages for the resistivity profile with

multi-layer boundaries represented using front points. The three layers in the subsurface

domain are assumed as alluvium, clay, and argillite. The conductivity of those layers
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Figure 8.3: Subsurface mesh used for the calculation of the voltage based on the
boundaries of the interlayer.

Figure 8.4: Training scheme of the deep neural network model for estimating the front
points of interlayer boundaries. The number represents the number of nodes for each
layer.

are 0.0013S/m, 0.01S/m, and 0.04S/m, respectively (Katsube et al., 2004; McNeill,

1980). The three layers are separated by two interlayer boundaries that have different

shapes and thicknesses. Each layer boundary is represented using five front points with

linear interpolation. The interlayer boundaries are considered noncrossing boundaries,

and layers are considered piecewise with constant conductivity. The bottom layer is

considered argillite, the middle layer is clay and the top layer is alluvium. A continuous

amplitude current of 1Amp is injected into the domain, and the surface voltage is

measured across all surface electrodes. EIDORS is used for FEM numerical calculation

which generates voltage measurement reading based on the corresponding interlayer

boundaries front-points of the subsurface domain. These voltage measurement readings

and the corresponding front points make a dataset (training and validating). The

training dataset is used to train the DNN model for learning the relationship between

measured voltage reading and the interlayer boundary front points. The testing dataset

is used to validate the training of the DNN model.
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In this work, the input node is 256 and the output node is 10. The DNN model is

designed in such a way that the number of nodes decreases in a sequential manner

known as funneling. The number of nodes in the hidden layers is 256, 128, 64,

32, and 16. The one training dataset sample consists of 256 independent boundary

voltage measurements as input, and the corresponding output consists of 10 front

points reading corresponding to the interlayer boundaries. The training scheme for

the model is illustrated in figure 8.4. Tensorflow (Abadi et al., 2016) library in python

is used to implement the DNN algorithm with mean square error (MSE) as loss function

and Adam optimization algorithm for optimization on a workstation configured with

Intel(R) Core(TM) i7-6700 CPU @ 3.40GHz, 8GB RAM, NVIDIA GeForce GT730

GPU, Windows 10. The model is trained on a dataset of 15120 samples with 164

epochs and a batch size of 100. The learning rate used during the training of the DNN

model is 1e−3. A validation dataset is used to validate the training process, and it

contains 3780 separate data samples. This DNN model is used for comparing with

the PSOGSA tuned DNN model. The model learns the weight of the nodes from the

dataset but the hyperparameter such as the number of nodes in the hidden layer is not

learned. The optimum value of the hyperparameter makes the DNN model optimized

for the presented problem. Optimizing the hyperparameter manually is not a suitable

solution which was explained in section 5.4.

Analysis of PSOGSA for tuning DNN

The PSOGSA algorithm is analyzed with different particle size for this study. Seven

different particle sizes are configured to PSOGSA which will provide the optimized

node size of the hidden layers of the DNN model. Particle sizes range from 5 to 125

and the fitness for each are evaluated. Figure 8.5a shows the different particles size

used for PSOGSA for determining the node size of the hidden layers. As the particle

size increases, the execution time also increases. The ratio by which the execution time

increases is linear for lower particle size whereas it increases exponentially for higher

size as shown in figure 8.5b. The fitness of different particle size is compared and

presented in figure 8.5c. From the figure, we can see that 85 particle size has the lowest

error when compared with others.
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(c)

Figure 8.5: Analysis of PSOGSA with different number of particle size to tune DNN
model. (a) Different particle size. (b)Per iteration execution time. (c) Fitness of
PSOGSA.

Figure 8.6 presents the optimized value for the node size to be used in hidden layers of

the DNN model. Each value is the optimum node size for the hidden layers provided by

the PSOGSA algorithm with a different particle size. The node size estimated by the

PSOGSA with 85 particles have estimated the optimum node size. The optimum node

size of the hidden layers are 227, 237, 246, 243, and 159 respectively. This optimized

DNN model is trained with the same database as described previously.

Analysis of tuned DNN

The PSOGSA tuned DNN model is further optimized by analyzing other

hyperparameters (batch size, learning rate, and activation functions). Initially, the

different batch size is configured and the DNN model is trained for each configuration.

The error of the predicted output of the DNN model is measured with MSE and the

accuracy is measured with RMSE. The training loss and RMSE for the different batch

size is presented in figure 8.8. This figure also presents the validation loss and RMSE

of the DNN model for the validation dataset.
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Figure 8.6

Figure 8.7: Optimum node size for hidden layer of the DNN model estimated by
PSOGSA.

The training and validation loss for the batch size of 25 has the lowest loss of the

trained DNN model but the validation loss is high, thus the model is not generalized.

The training loss for the batch size 100 and the validation loss is similar. Thus the

model is more generalized for the unseen dataset and is used for the estimating of the

interlayer boundaries of the subsurface.

With the configuration of the batch size of 100, the DNN model is trained with the

different learning rates. Four different learning rates are analyzed and the corresponding

loss and RMSE of training and validation are presented in figure 8.9. From the figure,

we can see that the learning rate of 1e−3 gives the lowest possible loss for the DNN

model. This learning rate is used in the DNN model for further analysis.

Next, the activation function analysis is conducted. Two activation function is used

for this part. Tanh and RELU are configured to the hidden layers in a different

configuration. The combination of the RELU and Tanh activation function gives the

model a great improvement in the estimation (Li et al., 2020). Tanh takes any real

value as input and outputs values in the range [−1, 1]. The larger input value has the
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Figure 8.8: Training and validation loss and RMSE the PSOGSA tuned DNN model
with different batch size

Figure 8.9: Training and validation loss and RMSE the model PSOGSA tuned DNN
model with different learning rate.
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output value close to 1, whereas the smaller input has the output close to -1. Tanh

activation is mathematically defined as

Θ(x) =
(ex − e−x)

(ex + e−x)
(8.7)

The different configuration of the activation function along with the training and

validation loss and RMSE of the DNN model is presented in figure 8.10. The related

training and validation loss and RMSE is also plotted in this figure. A total of 28

different configuration of the activation function is analyzed. The second configuration

of the activation function gives the lower MSE of training and validation for the DNN

model whereas some configuration shows over fitted model which is seen in the figure.

The best configuration of the activation function is RELU, RELU, RELU, RELU, and

Tanh for the five hidden layers.

Boundary estimation

These all parameters are used for training the DNN model to estimate the subsurface

interlayer boundaries. The estimation result of the tuned DNN model is compared

with the 7-layer funnel shaped DNN model which was described previously. RMSE (see

equation (6.10)) and Pearson correlation coefficient (PCC) are evaluated the accuracy

of the estimated boundary by the models. RMSE is also used for checking the error

between estimated front-points with the actual front-points of the interlayer. Also, the

Pearson correlation coefcient (PCC) (Lee Rodgers and Nicewander, 1988) is used to

find the correlation between the estimated front points and the true front points that

represent interlayer boundaries. PCC is defned as

r =

∑N
i=1(yi − y)

∑N
i=1(y

t
i − yt)√∑N

i=1(yi − y)2
∑N

i=1(y
t
i − yt)2

(8.8)

where y and y is the estimated and mean of estimated front points, yt and yt is the

true value and mean of true value of the front points respectively, and N is the total

number of front points.

A total of 7 numerical cases are analyzed for this work where the PSOGSA tuned DNN
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(b)

Figure 8.10: (a) Different activation function configuration for the hidden layers. (b)
Training and validation loss and RMSE the model for the same.

estimation is compared with untuned funnel shaped DNN. In these cases, rocks are

added to the subsurface domain which is not present in the training dataset. These

rocks act as anomalies and are randomly generated for each case, considered noise in

the dataset, representing a more realistic scenario. We tried to consider all types of

rocks in the study that are found in the subsurface domain. The conductivity of these

rocks are considered within a range of 2e−4S/m to 2e−7S/m (McNeill, 1980).

The first two cases of the interlayer boundary represent the linear boundary case. Case

1 is presented in figure 8.11 which shows the true conductivity distribution of the

subsurface along with the estimated boundaries of the subsurface by the DNN and

PSOGSA tuned DNN. From the figure, we can see that the PSOGSA tuned DNN

model estimated both interlayer boundaries with good accuracy. Case 2 estimation is

also the reflecting the same accuracy of the PSOGSA tuned DNN over the other model.

Case 3 presented in figure 8.13a shows the linear and non-linear boundaries scenario.
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(a) (b)

Figure 8.11: Numerical results with case 1 for interlayer boundary estimation of
subsurface. (a) True conductivity profile. (b) Reconstructed boundaries using PSOGSA
tuned DNN and DNN model.

(a) (b)

Figure 8.12: Numerical results with case 2 for interlayer boundary estimation of
subsurface. (a) True conductivity profile. (b) Reconstructed boundaries using PSOGSA
tuned DNN and DNN model.

The estimation result by both DNN and PSOGSA tuned DNN is presented in figure

8.13b which shows that the estimated boundaries by DNN have deviated from the

true shape. However, the estimation by the PSOGSA tuned DNN model has to close

resemblance to the true shape and location of the interlayer boundaries.

Case 4 presents the equally distributed subsurface layers whose true conductivity

distribution is presented in the figure 8.14a. From the figure, we can see that the

rocks are more in the bottom layers. The DNN model failed to estimate the shape

of both boundaries, however, PSOGSA tuned DNN model could estimate boundaries

close to the true shape which is presented in figure 8.14b. Case 5 presents another case

where the bottom layer is thicker than the other two layers. In which PSOGSA tuned

DNN could estimate the boundary shape and location close to the true boundaries

when compared with DNN as shown in figure 8.15.

Case 6, and 7 show a scenario of the interlayer subsurface where the lower layer is
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(a) (b)

Figure 8.13: Numerical results with case 3 for interlayer boundary estimation of
subsurface. (a) True conductivity profile. (b) Reconstructed boundaries using PSOGSA
tuned DNN and DNN model.

(a) (b)

Figure 8.14: Numerical results with case 4 for interlayer boundary estimation of
subsurface. (a) True conductivity profile. (b) Reconstructed boundaries using PSOGSA
tuned DNN and DNN model.

(a) (b)

Figure 8.15: Numerical results with case 5 for interlayer boundary estimation of
subsurface. (a) True conductivity profile. (b) Reconstructed boundaries using PSOGSA
tuned DNN and DNN model.
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(a) (b)

Figure 8.16: Numerical results with case 6 for interlayer boundary estimation of
subsurface. (a) True conductivity profile. (b) Reconstructed boundaries using PSOGSA
tuned DNN and DNN model.

very small when compared to other layers. The true conductivity distribution of these

cases are presented in figures 8.16a and 8.17a. In cases 6 and 7 the middle layer is

bigger than the other layers and most of the rocks are concentrated on it. In both cases

PSOGSA tuned DNN estimated the upper boundary shape and location close to the

true boundary when compared with the DNN model. However, the lower boundary in

both cases the model estimation result were similar which can be seen in figure 8.16b

and 8.17b.

From these cases, the estimation of the interlayer boundaries front-point by PSOGSA

tuned DNN model has done better estimation than that of DNN model. In the complex

scenario of the non-linear boundaries, both the models produced a similar result as

shown by the figures. The RMSE and PCC of all the cases are tabulated in table

8.1. From the table, we can see that PSOGSA tuned DNN model has lower RMSE for

most of the cases presented in the studies. Hence, the estimation done by PSOGSA

tuned DNN model is more accurate to the true boundary. The RMSE and PCC of the

estimated interlayer boundaries of the subsurface by DNN and PSOGSA-tuned DNN

is presented in the figure 8.18.

The trained DNN model for estimating the front points of open interlayer boundaries in

the subsurface domain has very good accuracy with the true scenario. However, there

are limitations to this approach. The number of layers in the subsurface is assumed

to be known a priori. The conductivity distribution is assumed to be uniform within

each layer and the value of the conductivity of the layer is known beforehand also.

The training of the DNN model takes time, but once the model is trained estimation
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(a) (b)

Figure 8.17: Numerical results with case 7 for interlayer boundary estimation of
subsurface. (a) True conductivity profile. (b) Reconstructed boundaries using PSOGSA
tuned DNN and DNN model.

(a) (b)

Figure 8.18: RMSE and PCC for the estimated front points by PSOGSA-tuned DNN
and DNN model.

of inter-layer boundaries is done in a few seconds. Also, the PSOGSA tuning of

the hyper-parameters consumes more resources than training the DNN model only.

The tuned model works very well for the opened interlayer boundary but with some

limitations. Both the models are not trained for the closed interlayer boundaries and

the horizontal opened boundaries. Also, layer boundaries need to be end to end and

do not intersect with each other.

8.3 Conclusion

In this work, we have tuned the DNN model using PSOGSA. PSOGSA is used for

optimizing the number of nodes in the hidden layers of the DNN model. The DNN

model is used for estimating the interlayer boundaries of the subsurface using electrical

impedance tomography. The conductivity inside the subsurface is assumed to be known,

and the DNN model estimates the interlayer boundary. The layers an opened and
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Table 8.1: Comparision of RMSE and PCC for the estimated front points by PSOGSA
tuned DNN and DNN model for interlayer boundaries in subsurface domain.

Cases
RMSE Correlation coefficient

DNN PSOGSA-DNN DNN PSOGSA-DNN

1 0.0415 0.0570 0.9990 0.9985

2 0.0675 0.0409 0.9973 0.9994

3 0.3060 0.1093 0.7528 0.9813

4 0.1142 0.1216 0.9534 0.9414

5 0.2886 0.2540 0.8164 0.8555

6 0.2607 0.2561 0.9604 0.9371

7 0.1724 0.1753 0.9728 0.9616

are present across the domain. This DNN model is not trained for the closed and/or

horizontal interlayer boundaries. Discrete front points describe the interlayer boundary.

An inverse problem of estimating the interlayer boundary front points is done with a

DNN model.

PSOGSA was initially analyzed for various particle size configurations and the

optimized parameter for hidden layers is used for training the DNN model. The DNN

model is trained using the pair of boundary voltage readings and the corresponding

front points. The measured voltage readings are used as an input, and interlayer

boundary front points are used as output, making the dataset. The dataset is divided

into 2 parts, i.e., training and validation, containing non-repeated data samples. A

noisy measured boundary voltage is fed to a trained DNN model to estimate the

corresponding interlayer boundary front points.

The interlayer boundaries for subsurface estimation are done with PSOGSA-tuned

DNN model, and the performance of the proposed model is compared against 7 layer

funnel-shaped DNN model. The training of both models is done with the same

configuration. The PSOGSA-tuned DNN model is 7 layer model and the estimation

done by it was better than that of funnel-shaped DNN model.
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9 Conclusion

In this study, estimation of the boundary of an anomaly inside the domain has been

done. A gravitational search algorithm (GSA) is used as a reconstruction algorithm as

it has the advantages of strong exploitation performance and fast convergence speed.

In the boundary estimation approach, the conductivity of the regions is known are

prior information. The conductivity distribution inside the domain is assumed to be

homogeneous. The boundary to be estimated is of two types, i.e. open and close

boundary.

The closed boundary of the anomaly is defined by the coefficients of the truncated

Fourier series. In this, the boundary is assumed to be closed and smooth. The

bladder boundary in the pelvic domain and the defect boundary on the graphene

sheet domain is defined using the Fourier series coefficients. The bladder boundary

is estimated by GSA and the algorithm performance is compared with the particle

swarm optimization (PSO) algorithm. A different scenario of bladder size is used in

the study for both numerical simulation and phantom studies. The RMSE of the

estimated coefficients is measured for the accuracy of GSA. From the RMSE we see

that the GSA estimation result is more accurate than that of the PSO in all the cases

of numerical study and phantom experiment of the bladder. The GSA was found to

have a poor exploration performance during the search process due to the unavailability

diversity information. This information is available with PSO during the optimization

process. Hence, to enhance the performance of GSA, the algorithm was combined with

PSO to make a new hybrid algorithm known as PSOGSA. The performance of the

proposed algorithm PSOGSA is analyzed for the estimation of the defect(s) boundary

on the graphene sheet. The Fourier series coefficients which define the defect geometry

on the graphene sheet are estimated along with the background conductivity. Monte
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Carlo simulation is used for analyzing those statistical parameters which also verifies

the robustness of the proposed algorithm PSOGSA. The effect of different parameter

configurations on PSOGSA is analyzed and based on this initial conditions of PSOGSA

are configured. Nine different cases are considered in the numerical study to estimate

the location of the defects and the background conductivity of the graphene sheet.

For the experimental study, the graphene sheet is prepared with equally spaced copper

electrodes. A graphene sheet with a single defect and two defects are studied. In both

the experimental study PSOGSA have estimated defect geometry with good accuracy.

We have used PSOGSA to tune the hyperparameter of the DNN model which is not

learned during the model training. In this work, PSOGSA is used for optimizing the

node size of the hidden layer in the DNN model. This optimized DNN model is trained

to estimate the interlayer boundaries of the subsurface domain which are defined by

the discrete front points. The interlayer boundaries for subsurface estimation are done

with PSOGSA tuned DNN model, and the estimation result of the proposed model is

compared against funneled shaped DNN model. The training of both models is done

with the same configuration and the same training dataset. The PSOGSA-tuned DNN

model estimation is better than that of the funnel-shaped DNN model. The presented

work is focused on two-dimensional boundary estimation. The work on bladder and

graphene is conducted in the control experimental environment which can be future

expanded. The bladder boundary estimation in is future need to be studied in the living

being. The estimation of defect boundary on graphene is studied on the single-layer

graphene sample which can be future expanded to the multilayer graphene wafers. The

subsurface interlayer boundary work is a numerical study that future work on the in-situ

site. This boundary estimation using EIT can be future expanded to other tomography

techniques.
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Summary

Electrical impedance tomography (EIT) is a noninvasive imaging technique. It

reconstructs the cross-sectional image of the internal conductivity distribution of

an electrically conducting object. In EIT an array of electrodes are attached to

the boundary of the domain under study. A constant current is applied from the

external current source through the electrodes and the excited voltages are measured

on the surface of the electrode. Using this current-voltage relationship the internal

conductivity distribution is reconstructed. Reconstruction of internal conductivity

distribution from EIT suffers from poor spatial resolution. This is due to an ill-posed

and highly non-linear problem. If the internal conductivity values of the disjoint region

are known prior then estimating the boundary of the anomaly inside the object becomes

the problem. This approach is known as boundary estimation or shape estimation.

In this work, gravitational search algorithm (GSA) based optimization is used to

estimate the boundary of the anomaly in the object. When the boundary of the anomaly

is closed and smooth, it can be defined by the Fourier series coefficient. The boundary

of the bladder is closed and smooth, thus defined by Fourier series coefficients. GSA

estimated the bladder boundary with the good accuracy to the true shape and size.

However, GSA tends to stuck in the local minima as it has poor exploration ability. The

exploration capability of GSA is increased after it was combined with particle swarm

optimization (PSO) algorithm. This new hybrid algorithm is used for estimating the

defect boundary on the graphene sheet. This algorithm also estimated the background

conductivity of the graphene sheet along with Fourier series coefficients which defines

the defect boundary. The PSOGSA is also used for tuning the hyper-parameter of the

DNN model, where the node size of the hidden layers in the model used optimized. The

tuned DNN model is used for the estimation of the interlayer boundary. The interlayer
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boundary of the subsurface is assumed to be open boundary scenario and was defined

by the Front point method. The PSOGSA tuned DNN model was trained to estimate

those front points.

The present work is on the 2-D boundary estimation. Fourier series and Front point

methods are used to define the close and open boundary of the anomaly, respectively.

GSA based optimization algorithm are used for estimating the anomaly boundary in

the domain. These work can be future expanded to the 3-D estimation problem and

also towards other tomography techniques.
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