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Flow Behavior Modeling of Al-Mg-Si Alloy Based on Machine Learning 

Strategies 

Chen Wenning 

Department of Mechanical Engineering 

The Graduate School 

Jeju National University 

Abstract 

Aluminum (Al) and its alloys play an essential role in various application scenarios and 

occupy a large part of current industrial production and manufacturing. As an aviation alloy, 

the Al-Mg-Si 6xxx series alloys represented by AA6061 alloy are designed with excellent 

mechanical properties, which have been used in many high-strength applications. To 

guarantee the safety of the AA6061 alloy in manufacturing and application processes, the 

alloy's mechanical properties must be studied first. Flow behavior is a fundamental concept 

to describe the mechanical properties of materials, which can evaluate the strength, 

formability, fracture, service life, etc. In order to study the flow behavior of alloys 

quantitatively, constitutive modeling is a way generally adopted. Traditional modeling 

methods, such as phenomenological and physical models, describe flow behavior by 

establishing equations to build the response based on materials' deformation conditions. 
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However, these strategies are used to be inaccurate and complex. 

Machine learning (ML), usually known as artificial intelligence (AI), shads a new light on 

flow behavior modeling as its strong regression ability. By importing the number of 

experimental sample data with enough features to ML for training and learning, the models 

with high accuracy can be established to predict material constitutive behavior. 

In the present work, taking AA6061-T6 alloy as a subject, the description performance under 

different designed deformation conditions of different ML strategies was studied and 

compared. Compression tests under temperatures 300 ℃, 370 ℃, 440 ℃, 510 ℃ and strain 

rates 0.001 s-1, 0.01 s-1, 0.1 s-1, 1 s-1 were conducted on Gleeble-3800 thermal simulator 

respectively. Thermal processing maps were established, and the desired processing regions 

were determined as 300 ℃ and 0.001 s-1, 300 ℃ and 1 s-1, 440~510 ℃, and 0.1~1 s-1. 

ML strategies like multiple linear (MLL), traditional ML nonlinear regression methods 

generalized additive model (GAM), regression tree (RT), random forest (RF), support vector 

regression (SVR), and multilayer perceptron (MLP) were selected to model the received 

flow stress data. After that, the performances of the established regression models were 

evaluated by statistical methods such as correlation coefficient (R), relative error (δ), average 

absolute relative error (AARE), and residual error (RE). Ultimately, the analysis reveals that 

the RT model shows the highest R (0.99995), lowest AARE (0.00708), most 

minor δ distribution, and RE range, namely, the best description and prediction performance. 

Moreover, the performance of the MLP model is slightly worse than the RT model, but the 

model structure is simpler. This work checks the AA6061-T6 alloy constitutive modeling 
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abilities of different ML algorithms, which provides a reference for other materials' modeling 

works that need ML algorithms selection. Moreover, the deformation mechanism was 

analyzed by thermal process map and flow stress curves, providing instruction for Al-Mg-Si 

alloy industrial process. 
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기계 학습 정책 기반 Al-Mg-Si 합금 흐름 동작 모델링 

진문녕 

제주대학교 대학원 기계공학 과 

요약 

알루미늄과 관련된 두랄루민은 여러 가지 응용 상황에서 가장 중요한 역할을 하고 

있으며 현재의 공업 생산과 제조 작업에서 아주 큰 공간을 차지하고 있다. AA6061 

두랄루민을 대표로 된 Al-Mg-Si 6xxx 시리즈의 두랄루민은 항공용 두랄루민으로 

훌륭한 기계적 성능을 가지고 있으므로 많은 고강도 응용 분야에 사용되었다. 제조와 

응용 과정에서 AA6061 두랄루민의 안전성을 확보하기 위해서 반드시 두랄루민 역학 

성능을 미리 연구해 봐야 한다. 유동적 행위는 재료 역학 성능을 설명할 때의 기본적인 

개념으로 볼 수 있으며 재료의 강도, 성형성, 파손, 그리고 사용 수명 등을 평가하는 데 

사용할 수 있다. 기본 구조 모델은 항상 얼로이의 유동적 행위를 정기적으로 연구하는 

데 사용된다. 현상 모델과 물리 모델과 같은 전통적인 모델링 방법은 방정식 구축을 

통해서 유동적인 행위를 설명하고 이를 통해 재료 변형 조건을 기반으로 된 호응을 

구축하겠다. 그러나 이러한 방법들은 보통 정확성이 낮고 복잡하다.  

항상 인공 지능(AI)으로도 불리는 기계 학습(ML)은 아주 강한 회귀 능력으로 인해 

유동적 행위 모델링에 새로운 가능성을 가져온다. 충분한 특징을 가지고 있는 실험 샘플 
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데이터를 ML에 많이 입력하여 훈련 및 학습을 통해 고정밀 모델을 구축하여 재료의 

기본구조 행위를 예측하려고 한다.         

본 연구는 AA6061-T6 얼로이를 대상으로 전개하였으며 다양한 ML 전략이 서로 다른 

디자인 변형 조건에서의 설명 성능을 비교 및 분석하였다. Gleeble-3800 열 

시뮬레이터에서 각각 300 ℃, 370 ℃, 440 ℃, 510 ℃ 및 0.001 s-1, 0.01 s-1, 0.1 s-

1, 1 s-1 응변속율에서의 압축 실험을 실시했다. 열가공 그래프를 구축하고 이상적인 

가공 구역을 300 ℃ 및 0.001 s-1, 300℃ 및 1 s-1, 그리고 440~510 ℃ 및 0.1~1 s-

1로 확정하였다. 

본 연구에서는 다원적 선성(MLL), 전통적인 비선형 회귀 방법 광의 가성모델(GAM), 

회귀 트리(RT), 랜덤 포레스트( RF), 서포트 벡터 회귀(SVR), 그리고 다층적 퍼셉트론 

(MLP) 등과 같은 ML 전략을 이용하여 얻는 유동적인 응력 데이터에 대해 모델링을 

하였다. 다음으로 상관 계수(R), 상대 오차(δ), 평균 절대 상대 오차(AARE), 그리고 

잔차(RE) 등의 통계 방법을 사용하여 구축한 회귀 모델의 성능에 대해 평가하였다. 

결국, 분석 결과에 따라 RT모델이 드러난 가장 높은 상관 계수(R, 0.99995), 가장 낮은 

AARE, 가장 좁은 δ의 분포 그리고 RE구간은 최상의 설명과 예측 성능임을 알 수 있다. 

또한, 또한, MLP 모델의 성능은 RT 모델보다 약간 떨어지지만, 모델 구조는 더 

간단하다. 본 연구는 서로 다른 ML 산법이 AA6061-T6 얼로이에 대한 기본 구조 

능력을 검즈하였다. 이 외에 열가공 그래프와 유동적 응력 곡선을 통해 알루미늄 

마그네슘 실리콘 얼로이의 변형 메커니즘을 분석하였으며 이를 통해 알루미늄 

마그네슘 얼로이의 공업화 생산에 대해 지도적인 방안을 제공하다. 
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1 INTRODUCTION 

1.1 Introduction of Al -Mg-Si 6xxx series Al alloy 

Al and its alloys are regarded as the most economical and practical material in various 

application fields. Al alloys are instructed by strengthening Al as structure material and are 

usually created by adding alloy elements to the Al matrix and applying heat treatment. Based 

on retaining the lightweight, Al and Al alloys receive the characteristics of high specific 

strength, high specific stiffness, and excellent casting and deformation properties, which 

contribute to the application potential as structure material. Consequently, Al alloys are 

widely used in the fields of transportation, aerospace, civil engineering, mechanical 

engineering, electromechanical, and so on. The processing methods of Al can be divided into 

two types: casting processing and deformation processing. Specifically, the casting Al alloys 

are produced by iron mold, sand mold, investment mold, die-casting method, etc., melting 

the gradients in proportion. The first step of producing deformation alloy is casting. After 

that, the received as-casted billet is processed into plastic products by plastic methods like 

tension, extrusion, forge, rolling and so on. There are eight series of Al alloys according to 

different element additions. See Table 1-1. 

Table 1-1 Added elements, characteristics and applications of different series Al alloys. 

Series Added 
elements Characteristics Applications 

1xxx Pure Al 
(>99%) 

High formability, corrasion-
resist Hardware parts, conductor 

2xxx Cu High stiffness, high strength Aviation industry 
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3xxx Mn Excellent antirust 
performance 

Damp environment like auto 
bottom, refrigerator, air-conditioner 

4xxx Si Corrasion-resist, low melt 
point 

Material for weld, forge, 
mechanical parts, architecture 

5xxx Mg High elongation ratio; Low 
density Decorative items, aircraft fuel tank 

6xxx Mg, Si 
Corrasion, oxidation-resist, 
excellent interface and 
process performances 

Valves, pistons, connectors, camera 
parts, aircraft parts 

7xxx Zn High strength, high stiffness, 
high wear resistance 

Aircraft structural components, 
future manufacturing material 

8xxx Beyond the 
above High thermal conductivity Heat dissipation components, bottle 

lips 

As shown in the table, 6xxx Al alloy is also known as Al-Mg-Si alloy, which uses Mg2Si as 

the strengthening phase. Al-Mg-Si Al alloys with different mechanical properties will receive 

by adding different amounts of Mg and Si elements during the casting process. Fig. 1. 1 

displays the phase diagrams of die-cast Al-Mg-Si alloys [1]. The eutectic temperature of the 

alloy is around 550 ℃. The Mg2Si strengthening phase immediately formed with the 

addition of elements (second phase strengthening).  

Moreover, with a large amount of Mg element or a small amount of Si element, AlMg will 

precipitate at low temperatures as a solid-solution strengthening. Due to the atomic size of 

Mg (3.20A) is bigger than Al (2.86A), the solid-solution strengthening effect is very strong. 

In addition, 6xxx alloys belong to heat treatment strengthened Al alloy. The stiffness and 

strength can be optimized by aging hardening treatment However, the aging hardening 

sequence of 6xxx Al alloy is complex and varies with the heat treatment process and alloy 

composition. Still, most of them follow [2]:  

SSSS → solute clusters → GP zones → metastable β" → metastable β', U1, U2, 

and B' → β and Si. 
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Fig.1. 1. Equilibrium phase diagrams of Al–Mg–Si alloys: (a) Al–xMg–2.4Si alloy, (b) Al–
7.5Mg–xSi alloy. 

The characteristics of corrasion-resist, high strength, excellent welding properties, and good 

homogeneity guarantee the alloys’ high market share, especially in engineering applications. 

However, according to the proportion of added elements, 6xxx alloys are divided into 

different types. Table 1-2 shows the different types of 6xxx alloys and their typical 

conditions and applications. 

Table 1-2 Types, conditions and applications of 6xxx Al alloy. 

Name Types Process 
conditions* Applications 

6005 Wire stock, bar, 
extruded tube T1, T5 

Structure components that require 
higher strength than 6063 alloy such as 

TV antenna, ladder,  
6009 
6010 Plate T4, T6 Car body panels 

6061 

Plate O, T4, T6 

Generally used as various industrial 
structure components that require 
certain strength, high corrasion 
resistance, good weldability in 

manufacturing rolling stock, tram, ship, 
tower architecture, lorry, hardware, etc. 

Heavy-gauge 
sheeting O, T451, T651 

Stretching tube O, T4, T6, 
T4510, T4511 

Extrusion line, bar, 
shape, and tube 

T51, T6, T6510, 
T6511 

Tube T6 
Rolled or extruded 

structural shape T6 

Cold processed bar O, H13, T4, 
T541, T6, T651 

Cold processed O, H13, T4, T6, 
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line T89, T913, T94 
Rivet wire T6 

Forged piece F, T6, T652 

6063 

Stretching tube O, T4, T6, T83, 
T831, T832 

Architectural shapes, irrigation pipes, 
extruded materials for vehicles, fences, 
elevators, furniture, platforms, etc., as 

well as decorative components of 
different colors used in light industry 

departments, ships, airplanes, buildings, 
etc. 

Extrusion line, bar, 
shape, and tube 

O, T1, T4, T5, 
T52, T6 

Tube T6 

6066 

Stretching tube O, T4, T42, T6, 
T62 

Forgings and extruded materials for 
welded structures. Extrusion line, bar, 

shape, and tube 

O, T4, T4510, 
T4511, T42, T6, 
T6510, T6511, 

T62 
Forged piece F, T6 

6070 

Extrusion line, bar, 
shape, and tube 

O, T4, 4511, T6, 
T6511, T62, F, 

T6 

Extruded materials and machine parts 
for heavy-duty welded structures and the 
automotive industry, including conduits, 

marine components, cable towers, 
bridges, pipes, etc. Forged piece F, T6 

6101 

Extrusion line, bar, 
shape, and tube 

T6, T61, T63, 
T64, T65, H111 High strength bars, heat dissipation 

devices, conductive materials, high-
strength busbars, etc. for buses. 

Tube T6, T61, T63, 
T64, T65, H111 

Rolled or extruded 
structural shape 

T6, T61, T63, 
T64, T65, H111 

6151 Forged piece F, T6, T652 

Used for machine parts and components, 
forging crankshaft parts, for both high 
strength, good malleability, and good 

corrosion resistance. 

6201 Cold processed 
line T81 Used for high strength conductivity line 

and bar. 

6205 Plate T1, T5 High impact extruded parts, thick plates, 
and pedals. Extruded material T1, T5 

6262 

Stretching tube T2, T6, T62, T9 
High stress threaded mechanical 
components that require higher 

corrasion resistance than 2011 and 2017 
alloy, and with excellent machinability. 

Extrusion line, bar, 
shape, and tube 

T6, T6510, 
T6511, T62 

Cold processed 
line 

T6, T651, T62, 
T9 

Cold processed bar T6, T9 

6351 Extrusion line, bar, 
shape, and tube 

T1, T4, T5, T51, 
T54, T6 

Extruded shapes, transportation 
pipelines for oil, water, etc., and 

extruded structural components for 
vehicles. 

6463 Extrusion line, 
shape, and tube T1, T5, T6, T62 

Automotive decorative parts with bright 
surfaces after anodizing treatment, as 

well as various instruments and building 
shapes. 

6A02 Plate O, T4, T6 Mechanical parts that require high 
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Heavy-gauge 
sheeting 

O, T4, T451, 
T6, T651 

corrosion resistance and high plasticity, 
complex shaped die forgings and 

forgings, aircraft engine parts. Tube, bar, shape O, T4, T4511, 
T6, T6511 

Forged piece F, T6 
*The definition of process conditions refers to [3]. 

1.2 Introduction of AA6061 alloy 

AA6061 is one of the most widely used Al-Mg-Si alloys, a high-quality Al alloy that has 

undergone heat treatment and a pre-stretching process. Except for the applications the Table 

2 shown, the alloy has been adopted in communication, electrical fixtures, aerospace 

Fixtures, and precision machining. Table 1-3 and Table 1-4 show the chemical compositions 

and mechanical properties regulation of AA6061 alloy. 

Table 1-1 The regulation chemical composition of AA6061 alloy (wt. %). 

Cu Mn Mg Zn Cr Ti Si Fe Al 
0.15-0.4 0.15 0.8-1.2 0.25 0.04-0.35 0.15 0.4-0.8 ≤0.7 Balance 

Table 1-2 The regulation mechanical properties of AA6061 alloy (MPa). 

Tensile 
strength 

Compression 
strength 

Elastic 
modulus (GPa) 

Ultimate 
bending strength 

Bending yield 
strength 

205 55.2 68.9 228 103 

In addition to the main alloying elements Mg and Si, other elements can also be added to 

6061 alloys to improve different mechanical properties: the machinability can be improved 

by adding Pb or Bi; Zr and Ti can be used to refine grain and control recrystallization 

structure; the Ti and Fe negative effect on conductivity can be offset by adding a small 

account of Cu; without reducing its corrosion resistance the alloy’s strength can improve 

through adding the amount of Zn or Cu; if there is some Cr or Mn as elements, the negative 
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effect of Fe will be neutralized. 

Due to the broad application prospects, the research of AA6061 alloy has always been one of 

the hotspots in materials science. First, Lu et al. [4] achieved the alloy design of AA6061 

alloy by adjusting the content and proportion of alloying elements to improve its mechanical 

properties and corrosion resistance. Researchers also study the processing technology of 

AA6061 alloy and improve its deformation capacity and plasticity by optimizing process 

parameters such as alloy casting, hot working, and cold working to obtain higher mechanical 

properties [5]. In addition, functional surface modification is a hot topic as well. Researchers 

improve the surface properties of AA6061 alloy, such as corrosion resistance, wear 

resistance, and lubricity, by surface modification techniques such as surface spraying and 

chemical treatment [6]. AA6061 alloy sheet is always adopted as important layers for 

composites because of its friendly cost and excellent mechanical properties. Researchers 

studied the composite properties of AA6061 alloy with fiber-reinforced composite materials 

to obtain higher mechanical properties and strength, such as preparing AA6061 alloy 

composite wheels with higher impact resistance, deformation resistance, and corrosion 

resistance [7], [8]. 

As a maturely studied alloy, a significant part of the research direction of AA6061 alloy is 

about the thermal deformation mechanism, especially on constitutive models during alloy 

deformation, combined with the emerging numerical simulation technology. However, with 

the continuous exploration of methods and techniques, constitutive modeling can be further 

subdivided into many methods. 
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1.3 Research about flow behavior constitutive modeling 

Flow behavior is a standard method to study the mechanical properties of materials, which is 

expressed as the curve made in the coordinate system with stress as the ordinate and strain as 

the abscissa. As basic research for material mechanical properties, flow behavior modeling is 

the foundation for all industries (see Fig.1. 2). 

 

Fig.1. 2. Industry applications of metal flow behavior. 

Flow behavior plays a vital role in engineering applications, as it can be used to evaluate the 

materials’ plasticity and fatigue performance [9], [10]. In the process of material selection 

and design, the materials’ suitability and service life need to be determined based on the 

magnitude and type of flow behavior. In addition, flow behavior is also an essential 

parameter in mechanical processing and manufacturing processes, as it can affect the 

material's processing performance and the dimensional accuracy of the workpiece. 

Additionally, with the prosperity of numerical simulation, constitutive models are 
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programmed widely to predict material deformation characteristics. In industrial processes, 

the flow behavior analysis, modeling, simulation, and production consist of a whole procedure 

set, as seen in Fig.1. 3. 

 

Fig.1. 3. Procedure from experimental analysis to production (tensile test as example). 

1.3.1 Flow behavior research method 

It is necessary to utilize some basic experimental methods when studying materials' flow 

behavior. Three methods are mainly adopted: uniaxial compression, tension, and torsion. 

These methods provide researchers thermal deformation behavior of materials under 

different deformation conditions before the optimization design and implementation of all 

kinds of metal forming processes like forging, drawing, extrusion, rolling, and so on [11], 

[12]. When plastic forming researchers work on new material development and classification, 

the relevant formability indicator and materials’ thermal deformation characteristics can be 

established with the help of these methods. The flow stress–true strain data (the essence of 

the model) obtained from the above experiments can be used to analyze practical material 
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deformation behavior, supporting the formulation of processing technology in industrial 

production and exploration of the essence.  

1.3.1.1  Tensile test 

In most cases, the tensile test is utilized to simulate extrusion and tension. The tensile flow 

behavior directly relates to the ultimate pressure during the extrusion, which can evaluate the 

deformation temperature rise effect, the load, and life of die, friction effect, etc. The area 

reduction reflects the true high-temperature plasticity when the material is under simple 

stress conditions. However, some drawbacks exist: 1. Compared with other methods, the 

strain rate of the tensile test is relatively low. The strain range is usually at 10-6 s-1 ~ 10 s-1, 

and the strain rate of 103 s-1 and above only can be achieved in some special tensile 

equipment. When the deformation reaches a certain level, a necking phenomenon will occur. 

The equivalent strain rate increases sharply with the appearance of necking, resulting in the 

abnormal deformation of flow stress. Accordingly, the strain effect on flow stress is hard to 

capture; 2. Due to the necking effect, deformation and softening mechanism, and relationship 

among deformation condition, performance, and microstructure become more challenging to 

study; 3. The strain value under necking is far below the stain under industrial hot processing. 

1.3.1.2  Torsion test 

Compared with other tests, the torsion test is able to guarantee material deformation at an 

extensive strain range and constant strain rate but with no instability. There is no geometrical 
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softening and hydrostatic pressure during deformation. The torsion test is widely adopted in 

measuring the material’s formability and flow stress under large strain deformation 

conditions. Additionally, the material deformation keeps uniform deformation strain rate and 

torsion strain along the axial direction and is limited in specimen gauge dimension range. No 

obvious geometrical deformation exists, namely, no ununiform unstable deformation 

phenomenon like drum and necking. There are also two shortcomings of the torsion test: 1. 

The strain, strain rate, and stress show linear characteristics along the axial direction, which 

leads to difficulty in data explanation; 2. To equipoise the geometrical change resulting from 

the anisotropy and texture change during material torsion, a little axial load is required to add 

at the fixed end. As a consequence, the stress condition will be more complicated. 

1.3.1.3  Compression test 

Compression tests can be divided into isothermal and non-isothermal compression according 

to temperature deformation conditions. Based on strain types, compression can be divided 

into plane strain compression and uniaxial compression. The non-isothermal compression 

test is the closest situation to the actual forging process. However, the flow stress is usually 

higher than the actual value because of the external influence. Plane strain compression suits 

isotropic material and plate hot rolling simulation work. However, because of the external 

influence, the flow stress is usually higher than the true value. Besides, the geometrical 

softening phenomenon and the uncertainty of drum shape and friction condition make this 

test unsuitable for thermal constitutive relationship research. In this work, uniaxial 
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isothermal compression tests were adopted. This kind of test can measure materials’ true 

stress–strain relationship during thermal deformation in a large strain rate range directly, 

whatever strain rate sensitive or insensitive material. However, due to friction between the 

specimen and the anvil, ununiform deformation will occur when the strain exceeds a 

particular value.  

As a consequence, the deformation rate will slow down, and the original uniaxial stress state 

will also become a complex triaxial stress state. Under this condition, side surface cracks 

will grow prematurely because of tensile stress. Fortunately, this problem can be settled by 

improving the surface lubrication condition, and the lateral drum phenomenon can be greatly 

eliminated when the lubrication effect is good. 

1.3.2 Research status of Al alloy thermal deformation flow behavior 

Thermal deformation flow behavior is one of the essential performances of metal materials 

under high temperatures. It is influenced by chemical composition, strain rate, deformation 

degree, temperature, and interior microstructure evolution. No matter whether in metal 

plastic deformation theory research or formulation of a reasonable hot processing process, 

thermal deformation flow behavior matters significantly. The flow stress (σ) of Al and its 

alloys entirely depends on deformation condition (temperature T, strain ε, and strain rate 𝜀𝜀̇ ), 

chemical composition C, and initial microstructure M. The interrelationships of these 

parameters are displayed in Fig.1. 4. and can be expressed by: 

 𝜎𝜎 = 𝑓𝑓(𝑇𝑇, 𝜀𝜀, 𝜀𝜀,̇ 𝐶𝐶,𝑀𝑀) (1-1) 
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Fig.1. 4. Factors and interrelationships affecting the flow stress of metal thermal 
deformation. 

Up to now, various models have been derived to describe the flow behavior of alloys. The 

traditional way uses constitutive equations that comprehensively take influential factors as 

independent variables to predict σ. In general, constitutive equations can be divided into two 

types: physical models and phenomenological models. 

1.3.2.1 Phenomenological model 

Generally, deformation conditions and chemical composition also affect the evolution of 

microstructure. Consequently, the flow behavior of Al alloy is a complex system. In the 

practical deformation process, the chemical composition keeps constant, which can be 

substituted by the material coefficient. Moreover, the microstructure during deformation is 

influenced by the deformation condition. The Eq. (1-1) can be simplified to the following 

equation: 

 𝜎𝜎 = 𝑓𝑓(𝑇𝑇, 𝜀𝜀, 𝜀𝜀,̇ ) = 𝑓𝑓1(𝑇𝑇)𝑓𝑓2(𝜀𝜀)𝑓𝑓3(𝜀𝜀̇) (1-2) 

After years of development, many phenomenological constitutive models and their 
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modifications have been proposed. The following table gives some phenomenological model 

samples people have studied most widely. 

Table 1-3 Phenomenological models adopted most widely. 

Phenomenological 
models Equations 

Modified 
Johnson-Cook 

(MJ-C) 
𝜎𝜎 = (𝐴𝐴1 + 𝐵𝐵1𝜀𝜀 + 𝐵𝐵2𝜀𝜀2)(1 + 𝐶𝐶1 ln 𝜀𝜀̇∗) exp[(𝜆𝜆1 + 𝜆𝜆2 ln 𝜀𝜀̇∗)𝑇𝑇∗] 

Arrhenius-type 
(A-T) 

⎩
⎪⎪
⎨

⎪⎪
⎧ 𝑍𝑍 = 𝜀𝜀̇ exp �

𝑄𝑄
𝑅𝑅𝑅𝑅

�

𝜀𝜀̇ = 𝐴𝐴𝐴𝐴(𝜎𝜎) exp �−
𝑄𝑄
𝑅𝑅𝑅𝑅

�

𝑓𝑓(𝑥𝑥) = �
𝜎𝜎𝑛𝑛1 , 𝛼𝛼𝛼𝛼 < 0.8
𝑥𝑥, 𝛼𝛼𝛼𝛼 > 1.2

[sinh(𝛼𝛼𝛼𝛼)]𝑛𝑛, 𝑓𝑓𝑓𝑓𝑓𝑓 𝑎𝑎𝑎𝑎𝑎𝑎 𝜎𝜎

 

Modified Zerilli-
Armstrong (MZ-

A) 
𝜎𝜎 = (𝐶𝐶1 + 𝐶𝐶2𝜀𝜀𝑛𝑛) exp[(−(𝐶𝐶3 + 𝐶𝐶4𝜀𝜀)𝑇𝑇∗ + (𝐶𝐶5 + 𝐶𝐶6𝑇𝑇∗) ln 𝜀𝜀̇∗] 

Modified Fields-
Backofen (MF-B) 𝜎𝜎 = 𝐶𝐶𝜀𝜀𝑛𝑛𝜀𝜀̇𝑚𝑚 exp(𝑏𝑏𝑏𝑏 + 𝑠𝑠𝑠𝑠) 

Kobayashi-Dodd 𝜎𝜎 = 𝜎𝜎0𝜀𝜀𝑛𝑛𝜀𝜀̇𝑚𝑚(1− 𝛽𝛽∆𝑇𝑇) 

Wang-Jiang 𝜎𝜎 = (𝐴𝐴 + 𝐵𝐵𝜀𝜀𝑛𝑛) �1 − 𝐶𝐶𝐶𝐶 ln �
𝜀𝜀̇
𝜀𝜀0̇
�� 

SK-Paul 
𝜎𝜎 = 𝜎𝜎0𝑒𝑒

𝐴𝐴 ln� 𝜀̇𝜀𝜀̇𝜀0
�−𝑘𝑘(𝑇𝑇−𝑇𝑇𝑎𝑎)

+ �𝐵𝐵𝐵𝐵 + 𝐶𝐶�1 − 𝑒𝑒−𝛽𝛽𝛽𝛽�� �1 −𝐻𝐻 ln �
𝜀𝜀̇
𝜀𝜀0̇
�� (1 − 𝐺𝐺(𝑇𝑇

− 𝑇𝑇𝑎𝑎) 
Modified Hensel-
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Taking AA6061 as an example, Table 1-6 shows the models and their accuracy 

performances in the previous researches. R and AARE were adopted as evaluation indicators. 

Table 1-4 Models and their performances in previous works. 

Models Test types Temperatures 
(℃) 

Strain rates 
(s-1) 

R AARE 
(%) 

MJ-C 
Compression 400, 450, 500, 

550 0.1, 1, 10 0.9916 5.71 [13] 

Tensile Room 
temperature 

0.0004, 0.004, 
0.04, 0.2, 0.4 - 2.34 [14] 

A-T Compression 400, 450, 500, 
550 0.1, 1, 10 0.9982 2.85 [13] 

Compression 400, 450, 500 0.01, 0.1, 1 - 7.33 [15] 
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Compression 350, 390, 430, 
470, 510 0.01, 1 0.991 2.33 [16] 

Modified 
Hensel-Spittel Compression 400, 450, 500, 

550 0.1, 1, 10 0.9862 6.68 [13] 

MF-B Compression 350, 390, 430, 
470, 510 0.01, 1 0.992 2.15 [16] 

1.3.2.2 Physical model 

Unlike phenomenological models, physical models consider microstructures such as 

dislocation density, grain size, grain density, etc. Consequently, physical models have the 

merit of describing internal structural changes. However, to start physical modeling work, 

high solution microscopes like optical microscope (OM), scanning electron microscope 

(SEM), and transmission electron microscope (TEM) are necessary to obtain micro 

information before analysis and modeling. Wang et al. [17] combined the phenomenological 

Arrhenius-type and physical models to study the microstructure evolution of 30CrMnSiNi2A 

alloy. With R 0.972 and AARE 5.753%, the physical model owns a slightly lower accuracy 

than the Arrhenius-type model (R 0.979 and AARE 5.283%). Integrating dynamic atom 

interactions of dislocation and solute, Lin et al. [18] proposed a physical constitutive model 

that fits the flow stress of nickel-based alloy. Wen et al. [19] put forward dislocation-based 

and improved dislocation-based physical models and compared with them. The improved 

model achieves higher AARE and lower R. Considering dislocation density, Zhang et al. [20] 

built a two-stage physical model to study the CrMnSiNi high-strength alloy hardening 

mechanism and tensile properties, and good results were received. Lin and Yang [21] 

conducted early work on intelligence optimization algorithms that optimized physical 

constitutive modeling. By implying the multi-objective optimization for parameter 
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determination, higher precision was received. Furthermore, some physical models were 

created based on phenomenological models by considering microstructures, e.g., Ashtiani 

and Shayanpoor [22] modified the original J-C model by adding grain size into the equation. 

The following table shows the physical model performances from the above kins of literature. 

Table 1-5 Model performances from previous literatures. 

 [17] [18] [19] [20] [21] [22] 

Alloys 30CrMnSiNi2A Nickel-
based 

Ultrahigh 
strength CrMnSiNi Superplastic AA1070 

R 0.972 0.995 0.991 0.96774 - 0.9626 
AARE 
(%) 5.753 4.51 5.814 - - 10.797 

1.3.2.3  Research trend of flow behavior constitutive model 

Generally speaking, phenomenological models have higher accuracy than physical models, 

as can be seen in section 1.3.2.1 and section 1.3.2.2. However, errors exist in both models. 

For phenomenological models, AAREs are around 7% [8, 10]. Even worse, the AARE of one 

physical model is more than 10% [22]. Two strategies were proposed to address the 

accuracy-lose problem: 1. Adopting optimization algorithms (e.g., the gradient descent 

algorithm, genetic algorithm [23], particle swarm algorithm [24], grey wolf algorithm [25] 

and so on) to optimize constitutive equations, namely, optimizing interior material 

parameters of the models [26]; 2. Choosing ML methods to fit and predict the materials’ flow 

behavior [27]–[29]. 

Due to the limit in equation expression, significant errors still exist in the optimization works 

(although large errors can be reduced). On the other hand, the new path opened up by ML 

has profound future significance. The models established through ML with the ability to 
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achieve minimized error in the flow stress data. However, a comprehensive study about ML 

on material flow behavior modeling was rarely reported. So, the work on comprehensive ML 

constitutive modeling is destined to have great significance. 

1.4 Machine learning (ML) 

ML is a subset of AI, belonging to computational science. ML is specialized in analyzing and 

explaining the pattern and structure of the data. Without human interaction, ML algorithms 

are able to finish the tasks of learning, reasoning, and decision-making. Clearly speaking, 

ML is when users input a large amount of data to computers, and then computers analyze the 

data and output data-driven recommendations and decisions according to the import data. 

ML will integrate new information to improve future decisions if there is any modification of 

algorithm recognition. In short, ML is the core of AI and the fundamental approach to 

making computers intelligent. ML involves a broad algorithm knowledge like statistics, 

probability theory, approximation theory, etc. 

1.4.1 Development history 

The Origin of ML can date to the 17th century. The Markov chain and the derivation of the 

least squares method consist of the fundamental and tool for widely used ML. From 1950 to 

2000, ML can be divided into four stages based on research targets and methods. 

1.4.1.1 1955-1965 
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In this stage, people mainly focused on studying the execution ability of systems. The data 

fed back by systems can be detected by changing the machine environment and the 

corresponding performance parameters. For instance, by changing the free space effects of 

the program inside the system, the system will change the self-organization to choose the 

optimal environment to survive. However, the research results, like the chess program 

achieved in this stage, are far from human requirements. 

1.4.1.2 1965-1975 

The main task in this stage was implanting the knowledge of all kinds of fields into systems 

to achieve the goal of using machines to simulate the human learning process. At the same 

time, the logical structure and graph structure were adopted for system description. In this 

period, various symbols are generally utilized as machine languages. However, researchers 

realized that learning is a long process, and machines cannot learn more profound knowledge. 

Hence, bits of knowledges from many scholars were put into the systems. Based on this, a 

certain achievement was made. 

1.4.1.3 1975-1985 

In this period, ML gained rapid growth. Multi-conception learning expanded from single-

conception learning, and different learning methods and strategies were explored. Besides, in 

this stage, ML has been combined with a variety of applications and received big success. 

Simultaneously, the development and research were greatly stimulated by the requirements 



18 

 

of expert systems in knowledge acquisition. After the first expert learning system, automatic 

knowledge acquisition and example, inductive learning systems became the research target 

of machine learning applications. In the 1980s, ML has begun to rise worldwide. 

1.4.1.4 1980s 

This is the newest stage of ML research. ML has become a new subject that integrates 

computational science, automation, mathematics, neurophysiology, biology, psychology, etc. 

ML absorbs diverse learning methods, and integrated learning system research with various 

forms is on the rise. Moreover, a unified view of all kinds of fundamental problems about AI 

and ML is emerging. Machine learning is becoming increasingly widespread, and many have 

been translated into practical benefits. 

1.4.2 Research status of ML 

ML refers to the science of studying how to simulate and realize human being learning 

activity by computers, one of the most cutting-edge and intelligent fields among AI. As the 

approach to realizing AI, ML has been one of the crucial subjects of AI and has gone through 

rapid development. Traditional ML builds learning mechanisms by simulating human beings’ 

learning mechanisms, including Bayesian learning (BL), artificial neural network (ANN), 

DT, RF, SVM, etc.  

1.4.2.1 BL 
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BL stems from British mathematician Bayes, who proved a special case about Bayesian 

theory [30]. BL is one of the early ML research directions. Bayesian statistics was 

established around the 1950s, as an important part of statistics [31]. The Bayesian network 

was proposed by Pearl [32] and has now been one of the most popular research topics. 

Bayesian network is an uncertainty processing model that simulates the causal relationship in 

the human reasoning process. Its network topology is a directed acyclic graph (DAG). 

1.4.2.2 ANN 

As an algorithm with the nonlinear adaptive information process ability, ANN can overcome 

the traditional AI flaws in unstructured information processing, speech recognition, and 

pattern. ANN drew attention in the 1940s (perceptron) [33] and received fast development. 

ANN can be divided into a forward network and a feedback network. 

A feedback network refers to feedback between neurons, which a complete undirected graph 

can represent. The network has no feedback and can be represented by a directed acyclic 

graph. This network realizes the transformation of signal from input space to output space, 

and its information processing ability comes from multiple combinations of simple nonlinear 

functions. In general, forward networks include single-layer perceptron (SLP) [34], MLP 

[35], adaptive linear (AL), backpropagation (BP) [36] and so on. 

A feedback network refers to feedback exists between neurons, which can be represented by 

an undirected complete graph. The information processing of this neural network is a 

transformation of states, which can be processed using dynamic system theory. The stability 
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of the system is closely related to associative memory function. Representative networks 

include Hamming [37], Hopfield [38], and BAM [39]. 

Furthermore, with decades of development, deep learning neural networks (DNN) [40], such 

as convolutional neural networks (CNN) [41] based on image recognition processing and 

recurrent neural networks (RNN) [42] based on language processing have become research 

hotspots in ML in recent years and maintain strong development momentum. 

1.4.2.3 Decision tree (DT) 

DT is a method commonly used in ML. In the late 20th century, J. Ross Quinlan [43] 

introduced Shannon information theory to DT, then created the ID3 algorithm. Many 

improved decision tree algorithms were proposed by ML researchers. After that, on the basis 

of the decision tree pruning method, Quinlan improved the ID3 algorithm to the C4.5 

algorithm, which avoids the overfitting phenomenon to some extent [44]. Throughout, DT 

has been continuously improved, such as the classification and regression tree (CART) 

algorithm from Leo Breiman [45], the supervised learning in quest (SLIQ) algorithm from 

Manish Mehta [46], the rough set-based optimization algorithm proposed by Zhang [47], and 

extreme learning tree-based algorithm proposed by Wang [48]. In recent years, fuzzy 

decision trees have also flourished [49]. Researchers have proposed hierarchical regression 

algorithms [50], constrained hierarchical induction algorithms [51], and functional tree 

algorithms [52], considering the correlation between attributes. These three algorithms are all 

based on decision tree algorithms combined with multiple classifiers. They have conducted 
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some experiments and studies on the possible correlations between attributes, but these 

studies still need to comprehensively explain how the correlation between attributes affects 

decision tree performance. 

1.4.2.4 RF 

RF is a supervised machine learning algorithm. Due to its accuracy, simplicity, and flexibility, 

it has become the most commonly used algorithm. It can be used for classification and 

regression tasks, coupled with its non-linear characteristics, making it highly adaptable to 

various data and situations. RF was first proposed by Ho in 1995 [53]. This year, he 

developed a prediction creation equation created by random data. 2001 Brightman and Cutler 

expanded the algorithm by adding bootstrap aggregating, and the RF was created [54]. 

RF is developed on the basis of DT, which is an algorithm using multi-DT for prediction and 

classification. Although a single DT only has one result and a narrow range of groups, forests 

can ensure more groups and decisions, thus obtaining more accurate results. In addition to 

this, RF adds randomness to the model by finding the best feature in the random feature 

subset. Overall, RF is a model with broad diversity. 

1.4.2.5 SVR 

Support vector machine (SVM) was proposed by V.N. Vapnik et al. in 1964 [55], which has a 

wide application on pattern recognition problems like text classification, face recognition, 

bioinformatics, handwritten character recognition, etc. After years of evolution, a lot of 
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modification SVM algorithms were developed: improved algorithm for skewed data, Platt's 

probabilistic outputs [56], multiple class SVM [57], least square SVM (LS-SVM) [58], 

structured SVM [59], multiple kernel SVM [60], support vector regression (SVR) [61], 

support vector clustering (SVC) [62], Semi-supervised SVM [63] and so on.  

SVR has good sparsity and robustness. Due to the decision boundary being decided by the 

support vector (other sample points do not participate in empirical risk minimization), SVR 

owns excellent sparsity. The structure risk minimization and empirical risk are considered 

when using SVM to optimize problems. Therefore, SVM has good stability. 

1.4.3 Classification of Machine Learning 

According to different classification standards, ML can be classified into different categories. 

The learning method is the most commonly used classification standard, on which ML can 

be divided into supervised, unsupervised, and simi-supervised weak supervised ML 

strategies. Apart from the learning method, model function, model complexity, and learning 

objectives should also be division methods. Fig.1. 5 introduces ML classified by different 

standards. Flow behavior modeling is a typical supervised ML problem as data with labels 

like temperature, strain rate, and strain are imported into algorithms for training, testing and 

validation. 
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Fig.1. 5. ML classified by different classification standards. 

1.4.4 Process of ML 

Data collection, process, and validation are essential steps of ML. In most cases, data for 

training are obtained from experiments or databases. Databases are pretty different for 

different fields. For material mechanics science, multiple complete large-scale databases 

have been established [64], such as MakeItForm, MatMatch, MatWeb, MATDAT, Materials 

Project, AFLOW, etc. Nowadays, due to the advancement of data mining, text mining, 

intention mining and so on are receiving enthusiastic attention from people. Besides, 

learning, validation, and test parts are essential for the accuracy and performance of ML 

algorithms. Cross-validation and many statistical methods are used as evaluation indicators 

for ML, see Fig.1. 6. 
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Fig.1. 6. Data processing and evaluation in ML. 

1.5 Research purpose and significance 

Al-Mg-Si alloy is a commonly used high-strength structural material in aviation, automobile, 

and other industries. In the design and manufacturing process of materials, the prediction and 

control of flow stress are critical, as it directly affects the deformation, strength, and 

durability of the material. Therefore, establishing a flow stress model for Al-Mg-Si alloy is 
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an important research task. 

ML is a method that can automatically learn from data and make predictions, and it has been 

widely used in the field of materials science. The research objective of establishing a flow 

stress model for Al-Mg-Si alloy is to use ML algorithms to learn the flow stress law of the 

alloy from existing experimental data and to establish an accurate prediction model. This 

model can be used to guide the material design and manufacturing process, as well as to 

optimize material properties. 

Specifically, the significance of this research includes the following: 

1. Improving the efficiency and quality of material design and manufacturing: By 

establishing an accurate flow stress model for Al-Mg-Si alloy, more accurate 

predictions and controls can be made in the material design and manufacturing 

process, thereby improving production efficiency and product quality; 

2. Exploring the inherent rules of alloy flow stress: By using machine learning 

algorithms, the inherent rules and characteristics of alloy flow stress can be learned 

from a large amount of experimental data, revealing the relationship between alloy 

flow stress and its deformation conditions; 

3. Enriching the comprehensive research on the modeling of ML-assisted flow 

constitutive models: This research provides a reference for selecting ML algorithms 

for other material modeling and promotes the application of machine learning in 

computational material mechanics; 

4. Promoting the development of materials science: This research uses machine 
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learning algorithms to explore the relationship between material properties, 

providing a new way of thinking and method for the development of materials 

science. 

The present thesis mainly conducts the following research work: 

1. The thermal cylinder compression tests were finished on Gleeble-3800 thermal 

simulator, and the flow stress data were collected to study the constitutive 

relationship of Al-Mg-Si AA6061-T4 alloy; 

2. The DMM-based thermal processing maps were drawn to determine the desired 

deformation conditions under experimental conditions. The power dissipation and 

instability regions were discussed in detail. The ideal processing conditions were 

given in this work; 

3. ML strategies like linear regression algorithms (MLL) and nonlinear regression 

algorithms (GAM, SVR, RT, RF, MLP) were adopted to describe the flow behavior; 

4. To determine the performances of traditional regression methods and ML methods, 

the accuracy of received models was analyzed and compared by statistical methods, 

such as R, δ, AARE, and RE. 
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2 EXPERIMENT PROCEDUR 

2.1 Introduction 

Flow behavior is a primary parameter characterizing the deformation of metals and alloys. 

During the plastic deformation, the flow stress determines the amount of applied load and 

dissipated energy. On the one hand, the magnitude of flow stress is always regarded as the 

basis for process equipment selection. On the other hand, flow stress provides a reference for 

die and process design. Furthermore, in some extent, the change of flow behavior reflects the 

evolution of the material microstructure. Meanwhile, to simulate metal plastic deformation 

process by numerical analysis methods, the functional relationship between flow behavior 

and macro thermodynamic parameters (the media connecting dynamic response and 

thermodynamic parameters) needs to be studied first. All in all, establishing material flow 

behavior during plastic deformation has excellent engineering and academic significance 

[65]–[67]. 

Flow behavior constitutive models are usually built based on test data. Flow stress data are 

collected from thermal simulators at specified temperature range, strain range, and strain rate 

range. In this section, the flow stress–true strain data received through cylinder compression 

tests, and the experiment process are introduced. 

2.2 Material preparation 
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The present work selects the extruded Al-Mg-Si alloy AA6061-T6 produced by Alnan 

Aluminum Inc. as experimental material. T6 means the alloy condition that the alloy is 

treated by solid solution heat treatment and artificial aging. The production standard refers to 

Q/ ALNAN 31-2019. The cylinder sample is Rasategaev-type compression type, with 

geometrical dimensions of Ø10 mm diameter and 15 mm high. Both chemical compositions 

and mechanical properties satisfy standard requirement. Check Table 2-1 and Table 2-2. 

Table 2-1 Chemical compositions of cylinder samples. 

Cu Mn Mg Zn Cr Ti Si Fe Al 
0.33 0.12 0.9 0.05 0.28 0.02 0.68 0.5 Balance 

Table 2-2 Mechanical properties of cylinder samples. 

Tensile strength (MPa) Yield strength (MPa) Elongation (%) Hardness 
373 350 13 90-106 HB 

2.3 Cylinder uniaxial thermal compression test 

Compression tests were conducted on the Gleeble-3800 simulator, and the experiment was 

achieved by putting the samples between two flat anvils for upsetting. Sixteen samples were 

prepared for 16 different deformation conditions: 0.001 s-1 and 300 ℃, 0.001 s-1 and 370 ℃, 

0.001 s-1 and 440 ℃, 0.001 s-1 and 510 ℃, 0.01 s-1 and 300 ℃, 0.01 s-1 and 370 ℃, 0.01 s-1 

and 440 ℃, 0.01 s-1 and 510 ℃, 0.1 s-1 and 300 ℃, 0.1 s-1 and 370 ℃, 0.1 s-1 and 440 ℃, 0.1 

s-1 and 510 ℃, 1 s-1 and 300 ℃, 1 s-1 and 370 ℃, 1 s-1 and 440 ℃, 1 s-1 and 510 ℃. As 

discussed in section 1.3.1.3, drum shape resulting from friction has a significant negative 
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effect on flow stress calibration. Hence, graphite was put at both cylinder bottoms as a 

lubricant. 

The samples were heated to the designated temperatures with a heat rate of 10 ℃/s inside the 

simulator. Following by keeping for 4 minutes at the designed temperatures. After that, the 

samples were compressed until the strain was 0.8. After compression, the samples were 

quenched with water immediately to keep the microstructure constant. The experiment 

details can be seen in Fig.2. 1. 

 

Fig.2. 1. (a) Gleeble-3800 simulator, (b) Visual Work Window, (c) Samples after 
compression, (d) Processing map. 

2.4 OM observation 
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One sample before deformation and one sample after compression at 0.001 s-1 and 510 ℃ 

were cut by a metallographic cutting machine along the axis to check the microstructure of 

the natural planes of the samples. Polishing and etching are two processes required to 

conduct before observation. Three steps from rough to thin were designed in the automatic 

polishing process, see Table 2-3.  

Table 2-3 Automatic polishing process. 

 Step 1 Step 2 Step 3 
Grinding, 
polishing Si2C sand paper SC-JP polishing cloth ZN-JP polishing cloth 

abrasive P400-P2500 3μm MD-W Diamond 
polishing solution 

0.05μm SiO2 polishing 
solution 

Lubricant Water PL-W polishing lubricant - 
Pressure (N) 15 20 15 

Rotation speed Up 80/down 200 Up 80/down 150 Up 80/down 120 
Rotation 
direction Single Single Single 

The initial microstructure was etched by Graff and Sargent’s etchant with a composition of 

3.0 gm CrO3, 0.5 ml HF (concentrated), 15.5 ml HNO3, and 84 ml H2O [68]. Since the 

thermal deformation leads to the performances of intra-grain and grain boundaries tending to 

be consistent, the etching etchant cannot distinguish them. The microstructure, after 

deformation, was etched by hydrofluoric acid corrosion solvent to check the flow lines. The 

solution ratio is HF: H2SO4: H2O = 1:2:17. Finally, the microstructures were observed by 

OLYMPUS PEM3 metallurgical microscope. Meanwhile, the initial microstructure checking 

was enlarged 50x, and the deformation microstructure was enlarged 25x, see Fig.2. 2. 
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Fig.2. 2. Geometrical shape deformation and corresponding pictures. 

As can be checked in Fig.2 .2 (b), equiaxed grain distributed in the internal extruded Al-Mg-

Si alloy uniformly, providing goodly deformation conditions. As shown in Fig.2 .2 (d), 

during upsetting deformation, three areas inside the cylinder can be divided based on the 

deformation degree: Ⅰ. Hard deformation area; Ⅱ. Large deformation area; Ⅲ. Small 

deformation area. It is worth noting that areas Ⅰ and Ⅱ are under the triaxial compressive 

stress condition, while area Ⅲ is under the stress condition of biaxial compression and 

uniaxial tension. Fig.2 .2 (c) displays the area in area Ⅱ, the direction of flow lines is 

consistent with the stress condition of area Ⅱ. The flow lines from up and down spread along 

the transverse midplane. 

2.5 Flow stress of Al-Mg-Si AA6061-T6 alloy 
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The flow stress–true strain data was exported directly from the Gleeble-3800 simulator. 

Following equations are embedded in the simulator, with the function of transferring the 

collected engineering stress (σe)-strain (εe) to the true stress-strain that is needed in the 

analysis: 

 𝜀𝜀 = ln(1 + 𝜀𝜀𝑒𝑒) (2-1) 

 𝜎𝜎 =  𝜎𝜎𝑒𝑒(1 + 𝜀𝜀𝑒𝑒) (2-2) 

Eventually, the received data were plotted to flow stress curves, which are integrated in Fig.2. 

3. 

c  

Fig.2. 3. Flow stress curves under experimental deformation conditions: (a) 𝜀𝜀̇= 0.001 s-1, 
(b) 𝜀𝜀̇= 0.01 s-1, (c) 𝜀𝜀̇= 0.1 s-1, (d) 𝜀𝜀̇= 1 s-1. 

As Fig.2. 3 shows, when the strain rate is the same, flow stress decreases with the increase in 

temperature. This is because when the temperature rises, the activity of atoms is enhanced, 



33 

 

and the movement of dislocations becomes easier, reducing the load required for the 

deformation of AA6061-T6 alloy. Whereas when the temperature keeps the same, flow stress 

increase with the increase of strain rate, revealing the positive strain rate sensitivity 

characteristic. The increase in strain rate leads to a sharp increase in the deformation of the 

alloy at the same time, which requires it to simultaneously increase the number of slip 

dislocations and accelerate its movement speed during deformation, resulting in a rapid 

increase in peak stress. 

As mentioned in section 1.3.2, the variation of flow stress is influenced by a coupling effect 

of temperature, strain rate, strain, chemical composition, and microstructure. The Al alloys’ 

deformation mechanism has been illustrated in many literatures [69]–[71]. In general, Al 

deformation is the comprehensive embodiment of internal dynamic hardening (DH) and 

dynamic softening (DS). Both DH and DS are essentially movements of dislocations. At the 

initial deformation stage, the enormous kinetic energy exerted externally drives the 

generation and movement of a large number of dislocations. The generated dislocations 

interact with each other or are pinned by impurity atoms, resulting in a lot of entanglements, 

which is represented externally as a sharp increase in stress. As seen in Fig.2. 3, deformation 

hardening occurred in all deformation conditions. 

On the micro-scale, DS is mainly results from dynamic recrystallization (DRX) and 

continuous dynamic recovery (DRV). Due to Al alloy’s the high stacking fault energy for Al 

alloy, continuous dynamic recrystallization (CDRX) contributes to the primary 

recrystallization mechanism [23]. Sub-grain boundary continuously absorbs dislocations 
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during the process of thermal deformation, increasing the angle. Finally, the low-angle grain 

boundary becomes the large-angle grain boundary. Namely, sub-grain becomes true grain. 

Unlike the DRX that eliminates sub-grains and dislocations through the movement of large-

angle grain boundaries, the transition from low-angle grain boundaries to large-angle grain 

boundaries also consumes a large amount of dislocation density, leading to the apparent 

softening effect. Only at the critical deformation and a higher deformation temperature will 

DRX occur. Moreover, the time required for DRX decreases with increasing temperature. 

DRV is that dislocations undergo cross slip and climb under the action of thermodynamic 

activation energy, thereby annihilating each other and rearranging. During this process, DRV 

consumes dislocations and causes alloy softening. Generally, CDRX consumes much more 

dislocations than DRV, bringing more obvious softening effects. 

Consequently, DRV needs less energy to carry out, which means DRV happens easier than 

CDRX. On the flow stress curves, the mechanism dominated by dynamic recrystallization 

often exhibits noticeable stress reduction and softening characteristics. Besides, at low strain 

rates, after a sharp increase, the flow stress curve remains in the form of a wavy line at a 

certain stress value, which is also a manifestation of DRX. This is because dislocation 

density increases slowly, dynamic recrystallization cannot balance with work hardening and 

metal work hardening makes the curve rise. When the dislocation density increases enough 

to make dynamic recrystallization dominant, the curve decreases again. This process is cyclic, 

but the amplitude of the fluctuation gradually decreases.  
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Furthermore, it should be aware that DH, DRX, and DRV are not a single process but always 

happen simultaneously. At different stages, the dominant mechanism will change. Based on 

the above statement, Table 2-4 lists the different dominant deformation mechanisms under 

experimental conditions. 

Table 2-4 Dominate deformation mechanisms under experimental conditions. 

   𝜺̇𝜺      T 300 ℃ 370 ℃ 440 ℃ 510 ℃ 

0.001 s-1 DRX DRX DRX DRV 

0.01 s-1 DRX DRX DRV DRV 

0.1 s-1 DRX DRX DRV DRV 

1 s-1 DRX DRX DRX DRX 

Under deformation conditions 300℃ and 0.001 s-1, 300℃ and 0.01 s-1, 300℃ and 0.1 s-1, 

370℃ and 0.001 s-1, and 370℃ and 0.01 s-1, DS beats WH. The obvious peak phenomenon 

shows the typical DRX characteristic. The flow stress curves under deformation conditions 

370℃ and 0.1 s-1, 300℃ and 1 s-1, 370℃ and 1 s-1, 440℃ and 1 s-1, 510℃ and 1 s-1 show 

typical DRX characteristic under low strain rates. At low temperatures, the atoms in the 

material structure are stable, making the alloy hard to deform. As a consequence, more load 

is required for deformation. A large amount of load offers big deformation energy. When the 

strain rate is low, DRX has enough time to realize. Hence obvious softening was achieved. 

On the contrary, when the strain rate rises, the time is too short to carry out CDRX. 

Consequently, DRV domains. At conditions 440 ℃ and 0.01 s-1, 440 ℃ and 0.1 s-1, 510 ℃ 

and 0.001 s-1, 510 ℃ and 0.01 s-1, 510 ℃ and 0.1 s-1, the flow stress curves show that flow 

stress comes to nearly stable after the increase, which means the WH and DS strike to 
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balance after WH period. This phenomenon is consistent with the plastic deformation 

characteristics dominated by DRV. As the strain increases, the density of dislocations 

increases through proliferation, leading to dislocation entanglements and cellular 

substructures. However, due to the high temperature of thermal deformation, it provides 

thermal activation conditions for the recovery process. The density of dislocations is 

continuously reduced through climbing edge-shaped dislocations, the cross slip of screw-

shaped dislocations, detachment of dislocation nodes, and subsequent offsetting of dissimilar 

dislocations on new slip surfaces. When the growth rate and disappearance rate of 

dislocations reach a balance, hardening does not occur, and the stress-strain curve transitions 

to a steady-state flow stage when it is horizontal. 

Since the kinetic energy of atoms increases at high temperatures, DRV is easier to perform. 

Before CDRX could start, DRV had already consumed the vast majority of deformation 

energy. Therefore, When the strain rate is 1 s-1, the simulator will exert enormous kinetic 

energy on the material in a short period of time, and the alloy has sufficient conditions for 

CDRX. This is also the reason why the alloy tends to lean towards CDRX at the high strain 

rate. The level of strain rate here is defined relative to the conditions of experimental design. 

2.6 Summary of the chapter 

The Gleeble-3800 simulator was utilized to conduct axial thermal compression tests for Al-

Mg-Si AA6061-T6 alloy. The experiment sets, and process are introduced in detail. Besides, 
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the initial and deformation microstructure were observed to guarantee the goodly 

deformation conditions. The deformation mechanism of the alloy was discussed 

comprehensively: As the deformation temperature decreases, and strain rate increases, 

AA6061-T6 alloy will undergo a softening process dominated by CDRX; As the deformation 

temperature increases and strain rate decreases, AA6061-T6 alloy will undergo a softening 

process dominated by DRV. 
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3 THERMAL PROCESSING MAP 

3.1 Introduction of thermal processing map 

Thermal processing map refers to the map characterizing the intrinsic workability of the 

material, which has many applications: 1. Selecting deformation processing parameters and 

improving the material’s workability; 2. Controlling the structure formed in the deformation 

process and analyzing the evolution law and deformation mechanism; 3. Avoiding infections 

by analyzing the plastic instability.  

Based on irreversible thermodynamics theory, physical system simulation, and large 

deformation continuous media mechanics theory, Gegel and Prasad [72] established dynamic 

material modeling (DMM), which is the basis of the DMM-based thermal processing map. 

The salient feature of DMM is that the model combines the energy consumed by material 

plastic deformation and the energy received from the external system (energy from external 

load). As a consequence, the DMM-based thermal processing map is able to explain how the 

plastic deformation of the workpiece dissipates energy from the external environment. 

3.2 Establishment of thermal processing map 

The DMM-based thermal processing map consists of a power dissipation map and an 

instability map. To achieve a wide angle of view, 3D thermal processing maps gain more 
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favors these days [73]–[76]. This section shows the whole process of building the thermal 

processing map for AA6061-T6 alloy. 

3.2.1 Establishment of power dissipation map 

Gegel and Prasad regard the workpiece, die, and equipment as a thermodynamically closed 

system. 

The input energy can be expressed as: 

 𝑃𝑃 = 𝜎𝜎𝜀𝜀̇ (3-1) 

Where P is the input energy, σ is the flow stress (MPa), 𝜀𝜀̇ is the strain rate (s-1). 

P can be dissipated in two terms: 1. Dissipation (G): the energy consumed by a material 

during plastic deformation, most of which is converted into thermal energy, and a small 

portion is stored in the form of crystal defect energy; 2. Dissipation covariance (J): energy 

consumed by structure evolution during material deformation. From the perspective of 

atomic motion, the P can be divided into kinetic energy and potential energy: 1. The kinetic 

energy is related to the motion of atoms, that is, to the motion of dislocations. The 

conversion of kinetic energy is dissipated in the form of thermal energy, thus corresponding 

to dissipation; 2. The potential energy is related to the relative position between atoms, and 

changes in microstructure will inevitably cause changes in atomic potential energy, thus 

corresponding to the dissipation covariance. See Eq. (3-2): 

 𝑃𝑃 = 𝜎𝜎𝜀𝜀̇ = 𝐺𝐺 + 𝐽𝐽 = � 𝜎𝜎 𝑑𝑑𝜀𝜀̇
𝜀̇𝜀

0
+ � 𝜀𝜀 𝑑𝑑𝑑𝑑̇

𝜎𝜎

0
 (3-2) 
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According to the DMM theory, the relationship between flow stress and strain rate can be 

represented by an exponential function form: 

 𝜎𝜎 = 𝐴𝐴𝜀𝜀𝜀̇𝜀,𝑇𝑇
𝑚𝑚  (3-3) 

where A is a material constant, and m refers to the strain rate sensitivity exponent. 

At specified strain and temperature, m controls the power partition between G and J, which 

can be converted from the change rate of G and J: 

 
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

=
𝜀𝜀̇𝜕𝜕𝜕𝜕
𝜎𝜎𝜎𝜎𝜀𝜀̇

= �
𝜕𝜕(ln𝜎𝜎)
𝜕𝜕(ln 𝜀𝜀̇)

�
𝜀𝜀,𝑇𝑇

= 𝑚𝑚 (3-4) 

J reveals the microstructure evolution like DRV, DRX, wedge creaking, etc. Substituting Eq. 

(3-3) into the equation express of J, the specific equation for J can be obtained: 

 𝐽𝐽 = � 𝜀𝜀̇ 𝑑𝑑𝑑𝑑
𝜎𝜎

0
= �

𝑚𝑚
𝑚𝑚 + 1

� 𝜎𝜎𝜀𝜀̇ = �
𝑚𝑚

𝑚𝑚 + 1
�𝑃𝑃 (3-5) 

To maximize work efficiency and performance, consuming maximum input energy to 

activate microevolution is required. Furthermore, the J is hard to measure. With the severe 

nonlinear characteristic, the dissipation covariance with the maximum value (Jmax) was 

adopted to introduce the power dissipation factor (η), which indicates the consumed energy 

proportion by microstructure evolution. When the material is under ideal linear dissipation 

conditions, the m will be 1, and the J reaches Jmax. Now, 

 𝜂𝜂 =
𝐽𝐽

𝐽𝐽𝑚𝑚𝑚𝑚𝑚𝑚
=
� 𝑚𝑚
𝑚𝑚 + 1�𝑃𝑃

� 1
1 + 1�𝑃𝑃

=
2𝑚𝑚
𝑚𝑚 + 1

 (3-6) 

Eight strain points were selected from 0.1 to 0.8 at an interval of 0.1. At each strain, the 

logarithms of stress and strain rate were adopted to plot curves. To describe the nonlinear 

relationship between flow stress and strain rate, a cubic polynomial function was used: 
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 ln𝜎𝜎 = 𝑎𝑎 + 𝑏𝑏 ln 𝜀𝜀̇ + 𝑐𝑐(ln 𝜀𝜀̇)2 + 𝑑𝑑(ln 𝜀𝜀̇)3 (3-7) 

The relationship plots and fitting results are displayed in Fig.3. 1. It is worth noting here that 

the R values of all fitting results are 1, which means the fitting accuracy is perfect, and the 

third polynomial function can be fully trusted. 

 

Fig.3. 1. ln𝜎𝜎 − ln 𝜀𝜀̇ plots and cubic polynomial function fitting results under each strain: 
(a) 0.1; (b) 0.2; (c) 0.3; (d) 0.4; (e) 0.5; (f) 0.6; (g) 0.7; (h) 0.8. 

According to Eq. (3-3), m can be obtained by taking the derivative of ln 𝜀𝜀̇ on both sides of 

the Eq. (3-7): 

 𝑚𝑚 = 𝑏𝑏 + 2𝑐𝑐 ln 𝜀𝜀̇ + 3𝑑𝑑(ln 𝜀𝜀̇)2 (3-8) 
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Different η values under different deformation conditions can be calculated by Eq. (3-6), 

then the received η values were scattered on the 𝜀𝜀̇ − 𝑇𝑇 two-dimensional planar. The specified 

m and η refer to Table 3-1. 

Table 3-1 m values and η values under different conditions. 

η values were connected with each other after dense interpolation, and the contour maps 

were plotted. This contour map is the power dissipation map, as follows: 

ε T 
(℃) 

𝜺̇𝜺 (s-1) 
m η 

0.001 0.01 0.1 1 0.001 0.01 0.1 1 

0.1 

300 0.015841 0.077993 0.068569 0.01243 0.031188 0.1447 0.128339 -0.02517 
370 0.102128 0.082536 0.067133 0.05592 0.185329 0.152486 0.125819 0.105917 
440 0.136112 0.13506 0.129216 0.11858 0.23961 0.237979 0.22886 0.212019 
510 0.546144 0.081482 0.014781 0.34604 0.70646 0.150686 0.029131 0.51416 

0.2 

300 0.080885 0.098797 0.068355 0.01044 0.149664 0.179827 0.127963 -0.0211 
370 0.124238 0.102167 0.076987 0.0487 0.221017 0.185392 0.142968 0.092877 
440 0.168967 0.144243 0.129701 0.12534 0.289087 0.25212 0.22962 0.222759 
510 0.583828 0.073868 0.005132 0.37762 0.737237 0.137574 0.010212 0.548221 

0.3 

300 0.106627 0.116035 0.0755 0.01498 0.192707 0.207942 0.140399 -0.03042 
370 0.143636 0.114616 0.084844 0.05432 0.251192 0.205661 0.156418 0.103043 
440 0.18668 0.151488 0.128561 0.1179 0.314626 0.263116 0.227831 0.210931 
510 0.567955 0.074183 0.009228 0.37309 0.724453 0.138119 0.018286 0.543431 

0.4 

300 0.118722 0.127496 0.082508 0.01624 0.212245 0.226157 0.152439 -0.03302 
370 0.157195 0.126813 0.091158 0.05023 0.271682 0.225083 0.167085 0.095655 
440 0.197968 0.154709 0.129513 0.12238 0.330507 0.267962 0.229325 0.218072 
510 0.552924 0.076887 0.015352 0.36832 0.712107 0.142795 0.03024 0.538354 

0.5 

300 0.124049 0.13427 0.087867 0.01516 0.220718 0.236752 0.161541 -0.03079 
370 0.171686 0.132062 0.095394 0.06168 0.293058 0.233313 0.174172 0.116193 
440 0.198113 0.15743 0.132665 0.12382 0.330709 0.272033 0.234253 0.220356 
510 0.529448 0.082792 0.025826 0.35855 0.692339 0.152924 0.050352 0.527842 

0.6 

300 0.111643 0.142992 0.096721 0.02717 0.200861 0.250206 0.176382 -0.05586 
370 0.183709 0.137463 0.098 0.06532 0.310396 0.241701 0.178507 0.12263 
440 0.196983 0.159105 0.134444 0.123 0.329132 0.27453 0.237022 0.219056 
510 0.478786 0.094913 0.042514 0.32159 0.647539 0.17337 0.08156 0.486671 

0.7 

300 0.111048 0.146697 0.098365 0.03395 0.199897 0.25586 0.179111 -0.07029 
370 0.202395 0.140322 0.097184 0.07298 0.336653 0.24611 0.177151 0.136032 
440 0.22102 0.151827 0.128123 0.14991 0.362026 0.263627 0.227144 0.260733 
510 0.451322 0.10232 0.052662 0.30235 0.621946 0.185644 0.100055 0.464315 

0.8 

300 0.106569 0.145488 0.100425 0.02862 0.192611 0.254019 0.18252 -0.05893 
370 0.210538 0.143333 0.094961 0.06542 0.347842 0.250729 0.17345 0.122806 
440 0.216463 0.148252 0.123941 0.14353 0.355889 0.258222 0.220548 0.25103 
510 0.329434 0.123657 0.088389 0.22363 0.4956 0.220097 0.162422 0.365519 
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Fig.3. 2. Dissipation maps under experimental conditions divided by true strain: (a) 0.1; (b) 
0.2; (c) 0.3; (d) 0.4; (e) 0.5; (f) 0.6; (g) 0.7; (h) 0.8. 

As can be checked in From Fig.3. 2, at strain perspective, as the degree of deformation 

deepens, η generally shows an increasing trend and is applicable to all temperature and strain 

rate states. 

The power dissipation rate is relatively low at deformation conditions like low temperature 

and high strain rate, high temperature, and moderate strain rate. In these situations, the 

majority of deformation system power converts to the deformation kinetic energy and 

deformation heat. The deformation process always keeps high energy dissipation at high 

temperatures and low strain rates (more than 0.5 in most deformation cases). This means 

more than 50% of system energy is consumed by microstructure evolution in these cases. 

The power dissipation will increase with the deformation process going because the 
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temperature and strain rate do not change. As plastic deformation of materials progresses, 

more and more external energy is input into the system as deformation potential energy.  

Moreover, the increase in system temperature caused by material deformation increases the 

driving force of molecular motion, which provides a prerequisite for the triggering and 

propulsion of DRV and CDRX. Since temperature and strain rate are important factors 

affecting the formability of materials, and an increase in temperature and a decrease in strain 

rate can greatly exacerbate material softening, it is crucial to study the effects of strain rate 

and temperature on processing performance. To realize a comprehensive observation of the η 

variation along temperature, strain rate, and strain, respectively, 3D power dissipation maps 

were drawn. 

 

Fig.3. 3. 3D power dissipation maps of AA6061-T6 alloy: (a) along temperature; (b) along 
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strain rate; (3) along strain. 

From the η distribution maps, we can see that η varies significantly with the strain variation, 

temperature, and strain rate and presents a significant nonlinear characteristic. From the 

perspective of temperature (Fig.3. 3(a)), η exhibits different trends with temperature changes 

at different strain rates: 1. At low and high strain rates, η increases with increasing 

deformation temperature, which reveals that at low and high strain rates, the increase in 

temperature has a positive effect on the evolution of the microstructure of AA6061-T6 alloy; 

2. At the moderate strain rate, with the increase in temperature, the η shows a trend of first 

increasing and then decreasing. In general, the power dissipation rate increases with the 

temperature rise, especially from 440 ℃ to 510 ℃. 

In terms of strain rate (Fig.3. 3(b)), the η variation depends on temperature significantly: 1. 

At low temperature, the η decreases with the increase of strain rate. This can be attributed to 

the short time of microstructure changes caused by the increase in deformation rate and the 

insufficient implementation of DRV and CDRX; 2. At moderate temperatures, the η 

decreases slightly but is not apparent; 3. At high temperatures, the η displays a decrease and 

increase combined change condition along the strain rate change. At high temperatures and 

low strain rates, the internal molecular activity of the alloy system is high, and the plastic 

deformation rate is low. The microstructure can evolve sufficiently in this context, resulting 

in a high energy dissipation rate. Under the premise of high molecular activity provided by 

high temperature, in order to maintain a high strain rate external environment, a vast amount 

of kinetic energy is applied to the alloy in a short time, which greatly promotes the evolution 

of the internal microstructure of the material, especially CDRX. 
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3.2.2 Establishment of instability map 

If the entropy increase caused by external loading in the deformation system cannot be fully 

released, it will lead to plastic instability. This phenomenon is mainly manifested as internal 

cracking, void nucleation, local plastic flow, and adiabatic shear bands in the material [77]–

[79]. Ziegler [80] holds the opinion that when the deformation process meets the following 

equation, the deformation condition will be stable: 

 
𝑑𝑑𝑑𝑑
𝑑𝑑𝜀𝜀̇

>
𝑑𝑑𝑑𝑑
𝜀𝜀̇

 (3-9) 

where D is the dissipation function, a material dissipative energy characteristic indicator. 

Meanwhile, D can be regarded as J when the input energy is divided into G and J. On the 

above basis, combining Eq. (3-9) with Eq. (3-8), a dimensionless parameter equation for 

determining flow stability can be obtained: 

 𝜉𝜉(𝜀𝜀̇) =
𝜕𝜕 ln 𝑚𝑚

𝑚𝑚 + 1
𝜕𝜕 ln 𝜀𝜀̇

+ 𝑚𝑚 =
𝑚𝑚′

𝑚𝑚 + 1
+ 𝑚𝑚 =

2𝑐𝑐 + 6𝑑𝑑 ln 𝜀𝜀̇
𝑚𝑚(𝑚𝑚 + 1) + 𝑚𝑚 < 0 (3-10) 

When the 𝜉𝜉(𝜀𝜀̇) is lower than 0, the plastic deformation condition is unstable. The received 

𝜉𝜉(𝜀𝜀̇) values calculated from Eq. (3-10) are listed in Table 3-2.  

Table 3-2 𝜉𝜉(𝜀𝜀̇) values under different conditions. 

ε T (℃) 
𝜺̇𝜺 (s-1) 
𝝃𝝃(𝜺̇𝜺) 

0.001 0.01 0.1 1 

0.1 

300 2.743471 0.236248 -0.23742 4.017301 
370 0.000486 -0.01713 -0.02474 -0.01886 
440 0.140987 0.122477 0.097943 0.065189 
510 -0.2698 -1.44996 3.958853 1.241792 

0.2 

300 0.325148 0.068536 -0.30238 4.228365 
370 0.043607 -0.00852 -0.08543 -0.23038 
440 0.079387 0.076605 0.093948 0.128186 
510 -0.27691 -1.75296 12.92328 1.317314 
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0.3 

300 0.261589 0.051024 -0.32977 3.28201 
370 0.044591 -0.00953 -0.08257 -0.20615 
440 0.072592 0.055556 0.064536 0.099256 
510 -0.28112 -1.68265 7.108178 1.297365 

0.4 

300 0.264634 0.057955 -0.32699 3.288806 
370 0.068492 -0.0006 -0.1079 -0.34536 
440 0.060545 0.043761 0.068288 0.129942 
510 -0.28051 -1.55808 4.200763 1.272187 

0.5 

300 0.275689 0.067899 -0.31387 3.690333 
370 0.049867 -0.00995 -0.0801 -0.1793 
440 0.070354 0.052943 0.070355 0.120329 
510 -0.27536 -1.34746 2.404259 1.226688 

0.6 

300 0.415032 0.117091 -0.32226 2.502832 
370 0.044808 -0.01654 -0.07752 -0.14213 
440 0.079582 0.060171 0.068289 0.103827 
510 -0.25844 -0.99795 1.24953 1.115473 

0.7 

300 0.448409 0.125169 -0.33965 2.1201 
370 0.017816 -0.04534 -0.06791 -0.02112 
440 0.000436 -0.00121 0.124459 0.298261 
510 -0.24511 -0.8303 0.920903 1.04943 

0.8 

300 0.471437 0.134984 -0.31385 2.492488 
370 0.01921 -0.05686 -0.10012 -0.07692 
440 -0.00358 -0.00736 0.114643 0.287258 
510 -0.18063 -0.35197 0.355704 0.747597 

Through Spline dense interpolation method, a 100×100 matrix was built. Adopting T as the 

abscissa and ln 𝜀𝜀̇  as the ordinate, the instability maps of AA6061-T6 alloy under 

experimental conditions were plotted, see Fig.3. 4. The regions with 𝜉𝜉(𝜀𝜀̇) values lower than 

0 are regarded as the instability regions. Based on these figures, the hot working maps will 

be established in the next section. 
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Fig.3. 4. Instability maps under experimental conditions divided by true strain: (a) 0.1; (b) 
0.2; (c) 0.3; (d) 0.4; (e) 0.5; (f) 0.6; (g) 0.7; (h) 0.8. 

3.2.3 Establishment of thermal processing map 

The thermal processing map is obtained by superposing the instability map onto the power 

dissipation map and focusing on the instability area, namely, the area 𝜉𝜉(𝜀𝜀̇) < 0 . The 

processing maps of AA6061-T6 alloy under different strains are shown in Fig.3. 5. 

The instability areas and the deformation of instability areas are highly nonlinear. As the 

processing of the deformation, the instability area becomes larger and larger. Furthermore, as 

can be seen in the maps, the deformation conditions (low temperature and high strain rate, 

low temperature and low strain rate, and high temperature and high strain rate) keep stable 
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throughout the whole forming process. The instability region is mainly reflected in the local 

flow, shear bands, and even the formation of cracks caused by uneven energy dissipation 

inside the alloy. The deformation conditions (low temperature and moderate strain rate, 

moderate temperature and high strain rate, and high temperature and moderate strain rate, 

high temperature and low strain rate) keep unstable from the start to the end, which should 

be avoided during thermal processing.  

 

Fig.3. 5. Thermal processing maps under experimental conditions divided by true strain: 
(a) 0.1; (b) 0.2; (c) 0.3; (d) 0.4; (e) 0.5; (f) 0.6; (g) 0.7; (h) 0.8. 

Similarly, the 3D instability maps were established for a deeper study of instability change 

along temperature and strain rate, see Fig.3. 6. 
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Fig.3. 6. 3D thermal processing maps of AA6061-T6 alloy: (a) along temperature; (b) 
along strain rate; (3) along strain. 

From Fig.3. 6(a), we can see that the instability region varies significantly with the change in 

processing temperature. When the deformation temperature is 300 ℃, the unstable 

phenomenon happens at moderate strain rates. When the temperature rises to 370 ℃, the 

instability region increases significantly. Only at low strain rates the deformation is able to 

keep stable. Consequently, a temperature range of 370 ℃ should be avoided during the 

processing. At 440 ℃, the instability area shrinks to a tiny scale. All deformation conditions 

are stable except for the low strain rate and high deformation degree. 440 ℃ seems like the 

most desirable process temperature. At 510 ℃, the deformation of AA6061-T6 alloy cannot 

maintain stability under medium-low strain rates. 
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Fig.3. 6(b) displays the instability region distribution at different strain rates. At the strain 

rate 0.001 s-1, there are discrete instability region distributions, while most instability area 

concentrates on high temperature and medium-high strain deformation conditions. At strain 

rate 0.01 s-1, two main unstable regions exist, one at low and the other at high temperatures. 

At the strain rate of 0.1 s-1, the material undergoes unstable deformation at low and moderate 

temperatures, while a small region at low temperature and strain 0.3 keeps stable. When the 

strain rate is at 1 s-1, the instability area occurs at moderate deformation temperature. 

To sum up, the desirable stable deformation region can be determined as 300 ℃ and 0.001 s-1, 

300 ℃ and 1 s-1, 440~510 ℃ and 0.1~1 s-1. 

3.3 Summary of the chapter 

Based on DMM theory, the power dissipation maps, instability maps, and thermal processing 

maps were plotted for experimental deformation conditions of AA6061-T6 alloy. The 

detailed establishment process is introduced in this chapter. 

The power dissipation and instability region variation along temperature, strain rate, and 

temperature of established maps were explained. Finally, the ideal deformation regions under 

experimental deformation ranges were determined as 300 ℃ and 0.001 s-1, 300 ℃ and 1 s-1, 

440~510 ℃ and 0.1~1 s-1. The work conducted in this chapter can provide instruction for 

AA6061-T6 alloy industrial hot processing. 

  



52 

 

4 LINEAR REGRESSION MODEL 

Linear is a statistical analysis method that uses linear regression analysis in mathematical 

statistics to determine the quantitative interdependence relationship among two or more 

variables [81]. This kind of regression equation is a linear combination of one or more 

regression eco-efficiencies. The regression equation with only one argument is called simple 

linear regression, while the equation with two or more arguments is called multi-linear 

regression. Linear regression is the first type of regression analysis rigorously studied and 

widely used in practical applications. This is because models that rely linearly on their 

unknown parameters are more accessible to fit than models that rely nonlinearly on their 

unknown parameters. The statistical characteristics of the resulting estimates are also easier 

to determine. The least squares approximation is always used to fit linear regression models. 

Besides, other methods like the gradient descent method are adopted widely as well. 

4.1 MLL regression 

As the most straightforward regression algorithm in ML, MLL regression refers to a 

regression question with multiple features. In terms of a sample with n features, the 

regression function can be written as: 

 𝑦𝑦� = 𝑤𝑤0 + 𝑤𝑤1𝑥𝑥1 + 𝑤𝑤2𝑥𝑥2 + ⋯+𝑤𝑤𝑛𝑛𝑥𝑥𝑛𝑛 (4-1) 
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where 𝑦𝑦� is the target variable (label), 𝑤𝑤0 is the intercept, 𝑤𝑤𝑖𝑖 is the regression coefficient, 𝑥𝑥𝑖𝑖 is 

the feature in the sample. The equation can be expressed in the form of matrixes: 

 �

𝑦𝑦�1
𝑦𝑦�2
⋮
𝑦𝑦�𝑚𝑚

� = �

1 𝑥𝑥11 𝑥𝑥12 ⋯ 𝑥𝑥1𝑛𝑛
1 𝑥𝑥21 𝑥𝑥22 … 𝑥𝑥2𝑛𝑛
⋮ ⋮ ⋮ ⋱ ⋮
1 𝑥𝑥𝑚𝑚1 𝑥𝑥𝑚𝑚2 ⋯ 𝑥𝑥𝑚𝑚𝑚𝑚

�× �

𝑤𝑤0
𝑤𝑤1
⋮
𝑤𝑤𝑛𝑛

� (4-2) 

the above equation can be simplified as: 

 𝑦𝑦� = 𝑿𝑿𝑤𝑤 (4-3) 

where X is a matrix with the structure of (m, n+1), w is a column matrix with the structure 

(n+1,1). 

To explain the operation mechanism of the MLL, the loss function should be introduced. 

Here, the maximum likelihood function is adopted to explain the loss function. The error 

between the real label and the predicted label is: 

 𝜖𝜖𝑖𝑖 = 𝑦𝑦𝑖𝑖 − 𝑥𝑥𝑖𝑖𝑤𝑤 (4-4) 

where 𝜖𝜖𝑖𝑖 is the error between 𝑦𝑦𝑖𝑖 and 𝑥𝑥𝑖𝑖𝑤𝑤. 𝑦𝑦𝑖𝑖 is the real label. 𝜖𝜖𝑖𝑖 distribute independently and 

obey (0, σ2) Gaussian distribution: 

 𝑓𝑓(𝑥𝑥) =
1

√2𝜋𝜋𝜎𝜎
exp �

−(𝜖𝜖𝑖𝑖 − 𝜇𝜇)2

2𝜎𝜎2
� (4-5) 

As the errors obey the average value μ=0, the variance as σ2 Gaussian distribution. Hence, 

the above error probability Gaussian distribution is: 

 𝑝𝑝(𝜖𝜖𝑖𝑖) =
1

√2𝜋𝜋𝜎𝜎
exp �

−(𝜖𝜖𝑖𝑖)2

2𝜎𝜎2
� (4-6) 

Substituting Eq. (4-4) to Eq. (4-6), the equation yields to: 

 𝑝𝑝(𝑦𝑦𝑖𝑖|𝑿𝑿𝑖𝑖;𝑤𝑤) =
1

√2𝜋𝜋𝜎𝜎
exp �

−(𝑦𝑦𝑖𝑖 − 𝑿𝑿𝑖𝑖𝑤𝑤)2

2𝜎𝜎2
� (4-7) 
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The smaller the 𝜖𝜖𝑖𝑖, the greater the 𝑝𝑝(𝑦𝑦𝑖𝑖|𝑿𝑿𝑖𝑖;𝑤𝑤), indicating that the predicted value is closer to 

the real value. 

Since the MLL refers to using a hyperplane to fit multiple points, all 𝜖𝜖𝑖𝑖  need to be the 

minimum values. Namely, the product of all probabilities should be maximum, and this 

corresponds to the likelihood function: 

 𝐿𝐿(𝑤𝑤) = �𝑝𝑝(𝑦𝑦𝑖𝑖|𝑥𝑥𝑖𝑖;𝑤𝑤)
𝑚𝑚

𝑖𝑖=1

= �
1

√2𝜋𝜋𝜎𝜎

𝑚𝑚

𝑖𝑖=1

exp �
−(𝑦𝑦𝑖𝑖 − 𝑿𝑿𝑖𝑖𝑤𝑤)2

2𝜎𝜎2
� (4-8) 

Taking the logarithm of both sides, the equation yields to: 

 

log𝐿𝐿(𝑤𝑤)  = log�
1

√2𝜋𝜋𝜎𝜎

𝑚𝑚

𝑖𝑖=1

exp �
−(𝑦𝑦𝑖𝑖 − 𝑿𝑿𝑖𝑖𝑤𝑤)2

2𝜎𝜎2
� 

 =   𝑚𝑚 log
1

√2𝜋𝜋𝜎𝜎
−

1
𝜎𝜎2

∙
1
2
�(𝑦𝑦𝑖𝑖 − 𝑿𝑿𝑖𝑖𝑤𝑤)2
𝑚𝑚

𝑖𝑖=1

 (4-9) 

Because 𝑚𝑚 log 1
√2𝜋𝜋𝜎𝜎

 can be regarded as a constant, the target transforms to solving the 

minimum value of 1
𝜎𝜎2
∙ 1
2
∑ (𝑦𝑦𝑖𝑖 − 𝑿𝑿𝑖𝑖𝑤𝑤)2𝑚𝑚
𝑖𝑖=1 . Therefore, the loss function was received: 

 𝐽𝐽(𝑤𝑤) =
1

2𝑚𝑚
�(𝑦𝑦𝑖𝑖 − 𝑿𝑿𝑖𝑖𝑤𝑤)2
𝑚𝑚

𝑖𝑖=1

 (4-10) 

The loss function is divided by m to average the loss. The loss function measures the 

difference between the real label and the predicted result. In order to obtain better regression 

results, the difference is expected to be as small as possible. As a consequence, solving the 

target function transforms to solve the L2 normal form of 𝑦𝑦 − 𝑿𝑿𝑤𝑤: 

 min  
𝑤𝑤 = ‖𝑦𝑦 − 𝑿𝑿𝑤𝑤‖2

2 (4-11) 

Take the derivative of w from the above equation: 
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𝜕𝜕‖𝑦𝑦 − 𝑿𝑿𝑤𝑤‖2
2

𝜕𝜕𝜕𝜕
=

𝜕𝜕(𝑦𝑦 − 𝑿𝑿𝑤𝑤)𝑇𝑇(𝑦𝑦 − 𝑿𝑿𝑤𝑤)
𝜕𝜕𝜕𝜕

 =
𝜕𝜕(𝑦𝑦𝑇𝑇 − 𝑤𝑤𝑇𝑇𝑿𝑿𝑇𝑇)𝑇𝑇(𝑦𝑦 − 𝑿𝑿𝑤𝑤)

𝜕𝜕𝜕𝜕

 =
𝜕𝜕(𝑦𝑦𝑇𝑇𝑦𝑦 − 𝑤𝑤𝑇𝑇𝑿𝑿𝑇𝑇𝑦𝑦 − 𝑦𝑦𝑇𝑇𝑿𝑿𝑤𝑤 + 𝑤𝑤𝑇𝑇𝑿𝑿𝑇𝑇𝑿𝑿𝑤𝑤)

𝜕𝜕𝜕𝜕
 = 0 − 𝑿𝑿𝑇𝑇𝑦𝑦 − 𝑿𝑿𝑇𝑇𝑦𝑦 + 2𝑿𝑿𝑇𝑇𝑿𝑿𝑤𝑤

 = 𝑿𝑿𝑇𝑇𝑿𝑿𝑤𝑤 − 𝑿𝑿𝑇𝑇𝑦𝑦

 (4-12) 

Make the first derivative of the above equation 0 after taking the derivative, values of w will 

be obtained: 

 
𝑿𝑿𝑇𝑇𝑿𝑿𝑤𝑤 − 𝑿𝑿𝑇𝑇𝑦𝑦 = 0

𝑿𝑿𝑇𝑇𝑿𝑿𝑤𝑤 = 𝑿𝑿𝑇𝑇𝑦𝑦
𝑤𝑤 = (𝑿𝑿𝑇𝑇𝑿𝑿)−1𝑿𝑿𝑇𝑇𝑦𝑦

 (4-13) 

The operation mechanism flow chart of the MLL regression is displayed in Fig.4. 1. 

 

Fig.4. 1. Operation mechanism flow chart of the MLL regression algorithm. 

4.2 Regression verification 
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The flow stress data were imported to a linear regression package with the order of strain 

rate, temperature, strain, and stress for regression work. 4098 data sets were imported and 

randomly disrupted. It is worth to noting that the input data is divided into three groups 

based on the proportion of 8: 1: 1= training: validating: testing. The following chapters still 

follow this classification standard. Finally, the regression model was built, and the 

parameters were obtained: 

 𝑤𝑤 = [0 0.2487 −0.8474 −0.0512]𝑇𝑇 (4-14) 

Strain points from 0.1 to 0.8 at an interval of 0.1 at all experimental deformation conditions 

was selected for regression verification. The predicted flow stress values from the MLL 

regression model were scattered on the flow stress curves plots to make an intuitive 

comparison. The verification results are plotted in Fig.4. 2. 
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Fig.4. 2. Regression verification of the MLL model at different experimental deformation 
conditions, divided by strain: (a) 0.001 s-1, (b) 0.01 s-1, (c) 0.1 s-1, and (d) 1 s-1. 

This model has the typical linear characteristic. However, it is also evident that the MLL 

model does not meet the regression requirement of the AA6061-T6 alloy. Nearly all 

predicted points locate far away from their corresponding flow stress curves, except for a 

few deformation conditions (strain rate 0.1 s-1 and temperature 370 ℃, strain rate 0.1 s-1 and 

temperature 440 ℃). 

It can be concluded that the flow behavior of the Al-Mg-Si AA6061-T6 alloy is highly 

nonlinear. The MLL model based on the pure linear regression theory fails to regress the 

complex flow characteristic of the studied material. Therefore, new regression models need 

to be exploited. 
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5 GAM REGRESSION MODEL 

Although the linear regression model is simple and easy to understand, the function variation 

in research works is nonlinear. Linear regression is likely to fail to meet the actual needs, and 

this problem occurred in the last chapter. The GAM is a free and flexible statistical model 

that extends from the linear regression model, which can be used to detect the impact of 

nonlinear regression. The additive model (AM) was first proposed by Stone [82]. He used 

single smooth functions to estimate every additive term. The dependent variables change 

with the independent variables can be explained in each additive term. The additive concept 

presented by Stone solves the problem of model variance increasing with the number of 

independent variables effectively. To expand the application field of the additive model, 

Hastie and Tibshirani [83] proposed GAM, the model widely adopted nowadays. 

5.1 GAM 

5.1.1 Form of the GAM 

AM changes the linear regression coefficient w to smooth function, then the MLL is 

expanded to: 

 𝐸𝐸(𝑦𝑦|𝑥𝑥) = 𝛼𝛼 + 𝑓𝑓1(𝑥𝑥1) + 𝑓𝑓2(𝑥𝑥2) + ⋯+ 𝑓𝑓𝑝𝑝�𝑥𝑥𝑝𝑝� = 𝛼𝛼 + � 𝑓𝑓𝑗𝑗�𝑥𝑥𝑗𝑗�
𝑝𝑝

𝑗𝑗=1
 (5-1) 

where 𝛼𝛼 is the intercept, fj(xj) is the smooth function. 
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In order to make Eq. (5-1) estimable, the soothing function needs to meet the standardization 

conditions E [fj(xj)] = 0. In GAM, the nonparametric smooth functions like local regression 

smooth function, kernel function, and smooth spline function substitute smooth function give 

the model significant flexibility and powerful nonlinear fitting ability: 

 
𝑔𝑔(𝜇𝜇) = 𝑠𝑠0 + 𝑠𝑠1(𝑥𝑥1) + 𝑠𝑠2(𝑥𝑥2) + ⋯+ 𝑠𝑠𝑝𝑝(𝑥𝑥𝑝𝑝)

𝑛𝑛 = 𝑠𝑠0 + � 𝑠𝑠𝑗𝑗(𝑥𝑥𝑗𝑗)
𝑝𝑝

𝑗𝑗=1

 (5-2) 

where 𝑔𝑔  is the link function, sj is the nonparametric smooth function, n is the linear 

prediction value. The distribution of labels y belongs to the natural exponential family like 

Gamma distribution, Poisson distribution, binomial distribution, etc. In addition, there is no 

need to make any assumption of y on x. Instead, the link function 𝑔𝑔 takes the work of 

connecting additive component n and random component y. 

5.1.2 Calculation principle of the AM: back-fitting algorithm 

The back-fitting algorithm was first adopted to calculate si for AM. In the initial back-fitting 

algorithm, the residual is selected as the indicator for evaluation. The following equation 

explains the detailed process: 

 

Initialization 𝑓𝑓𝑗𝑗(𝑥𝑥) = 0 ∀𝑥𝑥𝑗𝑗 and ∀𝑗𝑗,𝛼𝛼� = 𝑦𝑦�.
Cycle 𝑗𝑗 = 1, 2, … ,𝑝𝑝, 1, 2, … ,𝑝𝑝, 1, 2, … ,

 𝑟𝑟𝑖𝑖𝑖𝑖 = 𝑦𝑦𝑖𝑖 − 𝛼𝛼� −�𝑓𝑓𝑘𝑘

𝑝𝑝

𝑘𝑘=1
𝑘𝑘≠𝑖𝑖

(𝑋𝑋𝑘𝑘𝑘𝑘), 𝑖𝑖 = 1, … ,𝑛𝑛,

 𝑓𝑓𝑗𝑗�𝑥𝑥𝑗𝑗𝑗𝑗� = 𝑆𝑆�𝑟𝑟𝑗𝑗�𝑥𝑥𝑗𝑗𝑗𝑗�, 𝑖𝑖 = 1, … ,𝑛𝑛,
until the functions 𝑓𝑓𝑗𝑗 converge.

 (5-3) 
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Two modified algorithms were designed based on the back-fitting algorithm: The 

unweighted back-fitting algorithm and the weighted back-fitting algorithm. Instead of 

residual, the unweighted back-fitting algorithm chooses root sum square (RSS) as the 

evaluation indicator: 

 

Initialization 𝑓𝑓𝑖𝑖(𝑥𝑥𝑖𝑖) = 0 ∀𝑥𝑥𝑗𝑗 and ∀𝑗𝑗,𝛼𝛼� = 𝑦𝑦�.
Cycle 𝑗𝑗 = 1, 2, … ,𝑝𝑝, 1, 2, … ,𝑝𝑝, 1, 2, … ,

 𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖 =
1
𝑛𝑛�

𝑦𝑦 − 𝛼𝛼 −�𝑓𝑓𝑘𝑘

𝑝𝑝

𝑘𝑘=1
𝑘𝑘≠𝑖𝑖

(𝑋𝑋𝑘𝑘𝑘𝑘)�

2

 𝑓𝑓𝑗𝑗�𝑥𝑥𝑗𝑗𝑗𝑗� = 𝐸𝐸�𝑅𝑅𝑅𝑅𝑅𝑅𝑗𝑗�𝑥𝑥𝑗𝑗𝑗𝑗�, 𝑖𝑖 = 1, … ,𝑛𝑛,
until the functions 𝑓𝑓𝑗𝑗 converge.

, 𝑖𝑖 = 1, … ,𝑛𝑛, (5-4) 

RSS never increases in any step for smooth functions such as linear regression, univariate 

and bivariate splines, or their combinations, which means that the above algorithms will 

always converge, and the following condition is always regarded as the convergence 

threshold: 

 
∑ ∑ �𝑓𝑓𝑖𝑖𝑚𝑚−1𝑋𝑋𝑖𝑖𝑖𝑖 − 𝑓𝑓𝑗𝑗𝑚𝑚𝑋𝑋𝑖𝑖𝑖𝑖�

2𝑝𝑝
𝑗𝑗=1

𝑛𝑛
𝑖𝑖=1

1 + ∑ ∑ �𝑓𝑓𝑖𝑖𝑚𝑚−1𝑋𝑋𝑖𝑖𝑖𝑖�
2𝑝𝑝

𝑗𝑗=1
𝑛𝑛
𝑖𝑖=1

≤ 𝜀𝜀 (5-5) 

Where m means m-th iteration. ε is the threshold value. At specified regression problems, 

thresholds can be customized to be different magnitudes. 

Numerical instability with weights may cause convergence problems for distributions other 

than the normal distribution. Even when the algorithm converges, individual functions do not 

need to be completely different from each other, and even for the same fitting surface, the 

dependency between covariates can lead to more than one expression appearing. 
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The form of the weighted algorithm is the same as that of the unweighted algorithm, except 

that the smooth function is weighted. The weighted back-fitting algorithm allows for using 

weights in the local scoring process if the data is not a normal distribution. 

5.1.3 Calculation principle of the GAM: local scoring algorithm 

The link function is one of the essential parts of the local scoring algorithm. Once the 

distribution is specified, the corresponding link and adjusted dependent weights are also 

defined. Table 5-1 lists the most typical link functions. 

Table 5-1 Typical link functions in GAM. 

Distribution Link Adjusted dependent (z) Weights (w) 

Normal μ y 1 

Binomial log �
𝜇𝜇

𝑛𝑛 − 𝜇𝜇
� 𝜂𝜂 +

𝑦𝑦 − 𝜇𝜇
𝑛𝑛𝑛𝑛(1 − 𝜇𝜇)

 nμ(1-μ) 

Gamma −
1
𝜇𝜇

 𝜂𝜂 +
𝑦𝑦 − 𝜇𝜇
𝜇𝜇2

 μ2 

Poisson log𝜇𝜇 𝜂𝜂 +
𝑦𝑦 − 𝜇𝜇
𝜇𝜇

 μ 

Inverse Gaussian 1
𝜇𝜇2

 𝜂𝜂 +
2(𝑦𝑦 − 𝜇𝜇)

𝜇𝜇3
 𝜇𝜇3

4
 

Here goes the calculation process: 

 

Initialization 𝑠̂𝑠𝑗𝑗0�𝑥𝑥𝑗𝑗� = 0 ∀𝑥𝑥𝑗𝑗 and ∀𝑗𝑗,𝛼𝛼� = 𝑔𝑔[𝐸𝐸(𝑦𝑦)].
Loop over outer iteration counter 𝑚𝑚.

 𝜂̂𝜂𝑚𝑚−1(𝑿𝑿𝑖𝑖) = 𝛼𝛼� + �𝑠̂𝑠𝑗𝑗𝑚𝑚−1�𝑥𝑥𝑗𝑗𝑗𝑗�
𝑝𝑝

𝑗𝑗=1

,

 𝜇̂𝜇𝑖𝑖 = 𝑔𝑔−1(𝜂̂𝜂𝑚𝑚−1(𝑿𝑿𝑖𝑖)),

 𝑧𝑧𝑖𝑖 = 𝜂̂𝜂𝑚𝑚−1(𝑿𝑿𝑖𝑖) + [𝑦𝑦𝑖𝑖 − 𝜇̂𝜇𝑖𝑖] ∙ �
𝜕𝜕𝜕𝜕
𝜕𝜕𝜂𝜂
�
𝑖𝑖

𝑚𝑚−1

,

 𝑤𝑤𝑖𝑖 = �𝑉𝑉𝑖𝑖𝑚𝑚−1�−1 ∙ ��
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
�
𝑖𝑖

𝑚𝑚−1

�
2

, 𝑖𝑖 = 1, … ,𝑛𝑛.

 (5-6) 
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where 𝑉𝑉𝑖𝑖𝑚𝑚−1 is the variance of y at 𝜇̂𝜇𝑖𝑖. By using a back-fitting algorithm with weight w, an 

additive model is fitted to z to obtain the estimated functions 𝑠𝑠𝑗𝑗𝑚𝑚, j = 1, …, p.  

The iteration will stop until the convergence threshold is reached or the dispersion expanded 

from RSS no longer decreases. Here, the convergence condition is: 

 

∑ 𝑤𝑤𝑖𝑖𝑛𝑛
𝑖𝑖=1 ∑ �𝑠𝑠𝑗𝑗𝑚𝑚−1�𝑥𝑥𝑖𝑖𝑖𝑖� − 𝑠𝑠𝑗𝑗𝑚𝑚�𝑥𝑥𝑖𝑖𝑖𝑖��

2𝑝𝑝
𝑗𝑗=1

∑ 𝑤𝑤𝑖𝑖𝑛𝑛
𝑖𝑖=1 �1 + ∑ �𝑠𝑠𝑗𝑗𝑚𝑚−1�𝑥𝑥𝑖𝑖𝑖𝑖��

2𝑝𝑝
𝑗𝑗=1 �

≤ 𝜀𝜀3 (5-7) 

In the present work, the ε is defined as 10-6. 

Two circles are included in the GAM: the local scoring algorithm as the outer circle and the 

back-fitting algorithm as the interior circle. After receiving the weighted parameters, the 

interior circle keeps running till meeting the convergence condition, or RSS no longer 

decreases. After that, the outer circle calculates a new set of weights based on the estimated 

values from the interior circle. The system keeps operating until it meets the stop conditions. 

The flow chart of GAM is shown in Fig. 5. 1. 
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Fig.5. 1. Operation mechanism flow chart of the GAM regression algorithm. 

5.2 Regression verification 

By inputting the flow stress data into the GAM model for iteration, the GAM regression 

model for AA6061-T6 alloy was finally obtained. The α is determined as 2.8744×10-15. The 

received GAM model was used to predict the flow stress under designed experiment 

deformation conditions, namely, 0.001 s-1~1 s-1 and 300 ℃~510 ℃. Fig.5. 2 compares the 

predicted stress with the stress data received from thermal compression tests. 
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Fig.5. 2. Regression verification of the GAM model at different experimental deformation 
conditions, divided by strain: (a) 0.001 s-1, (b) 0.01 s-1, (c) 0.1 s-1, and (d) 1 s-1. 

The fitting result of the GAM model is much better than the MLL model. At various 

deformation conditions like 370 ℃ and 0.01 s-1, 440 ℃ and 0.01 s-1, 510 ℃ and 0.01 s-1, 

370 ℃ and 0.1 s-1, 370 ℃ and 1 s-1. However, the GAM model loses the most accuracy at 

low-temperature deformation conditions. In deformation conditions 300 ℃ and 0.001 s-1, 

300 ℃ and 0.01 s-1, the established model is cannot predict the flow trends. The predicted 

flow curves will overlap at high temperatures of 440 ° C and 510 ° C. Therefore, this model 

may not be able to distinguish high-temperature flow characteristics. 
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6 SVR MODEL 

SVM is a generalized linear classifier that processes binary data classification based on 

supervised learning. The decision boundary is the maximum-margin hyperplane for solving 

learning samples. The hinge loss is adopted to calculate the empirical risk, and the structure 

risk is optimized by adding a regularizer in the solving system, which endows its sparsity 

and robustness. The SVM can use the kernel method to process nonlinear classification, a 

commonly used kernel learning method [84]. 

6.1 SVM 

6.1.1 Linear separability 

SVM is based on linear separability. In a classification problem, the input data and learning 

objectives are given: 

 
𝑋𝑋 = {𝑥𝑥1, … , 𝑥𝑥𝑁𝑁}, 𝑥𝑥𝑖𝑖 = [𝑥𝑥1, … , 𝑥𝑥𝑛𝑛] ∈ ꭓ
𝑦𝑦 = {𝑦𝑦1, … ,𝑦𝑦𝑁𝑁}, 𝑦𝑦 ∈ {−1,1}  (6-1) 

where X is the input data, y is the learning objective, Xi is the feature space, and y is the 

binary variable: negative and positive classes. When the classification problem meets the 

following condition, we regard the problem as linear separability: if the hyperplane regards 

as a decision boundary that separates the learning objects as a negative class and a positive 
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class exists in the input data feature space and the distances between arbitrary sample points 

and hyperplane greater than or equal to 1: 

 
Decision boundary: 𝑤𝑤𝑇𝑇𝑋𝑋 + 𝑏𝑏 = 0

Point to hypeplane distance: 𝑦𝑦𝑖𝑖(𝑤𝑤𝑇𝑇𝑋𝑋𝑖𝑖 + 𝑏𝑏) ≥ 1
 (5-2) 

where the w is the normal vector of the hyperplane, and the b is the intercept of the 

hyperplane. Therefore, two parallel hyperplanes are constructed as interval boundaries to 

judge the classification of samples: 

 
𝑤𝑤𝑇𝑇𝑥𝑥𝑖𝑖 + 𝑏𝑏 ≥ +1, → 𝑦𝑦𝑖𝑖 = +1
𝑤𝑤𝑇𝑇𝑥𝑥𝑖𝑖 + 𝑏𝑏 ≤ −1, → 𝑦𝑦𝑖𝑖 = −1

 
(6-3) 

All samples below the lower interval boundary belong to the negative class. Relatively, all 

samples above the upper interval boundary belong to the positive class. The distance 

between two interval hyperplanes is defined as margin: 𝑑𝑑 = 2
‖𝑤𝑤‖

. The samples at the 

hyperplanes are defined as support vectors. Then, the optimization problem of the SVM is 

obtained: 

 

max
𝑤𝑤, 𝑏𝑏

2
‖𝑤𝑤‖

 

𝑠𝑠. 𝑡𝑡.𝑦𝑦𝑖𝑖(𝑤𝑤𝑇𝑇𝑥𝑥𝑖𝑖 + 𝑏𝑏) ≥ 1, 𝑖𝑖 = 1,2, … ,𝑚𝑚
 

(6-4) 

In order to maximize the margin, only ‖𝑤𝑤‖−1 needs to maximize, equal to minimize ‖𝑤𝑤‖2. 

Consequently, the equation yields: 

 
min
𝑤𝑤, 𝑏𝑏

1
2
‖𝑤𝑤‖2  

𝑠𝑠. 𝑡𝑡.𝑦𝑦𝑖𝑖(𝑤𝑤𝑇𝑇𝑥𝑥𝑖𝑖 + 𝑏𝑏) ≥ 1, 𝑖𝑖 = 1,2, … ,𝑚𝑚
 (6-5) 

By adding Lagrange multipliers to each constrained condition, the dual problem will be 

obtained: 

 𝐿𝐿(𝑤𝑤, 𝑏𝑏,𝛼𝛼) =
1
2
‖𝑤𝑤‖2 + �𝛼𝛼𝑖𝑖�1 − 𝑦𝑦𝑖𝑖(𝑤𝑤𝑇𝑇𝑥𝑥𝑖𝑖 + 𝑏𝑏)�

𝑚𝑚

𝑖𝑖=1

 (6-6) 
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Take the partial derivative of w and b for the above equation, and set the partial derivative to 

0, then: 

 
𝑤𝑤 = � 𝛼𝛼𝑖𝑖𝑦𝑦𝑖𝑖𝑥𝑥𝑖𝑖

𝑚𝑚

𝑖𝑖=1

0 = � 𝛼𝛼𝑖𝑖𝑦𝑦𝑖𝑖
𝑚𝑚

𝑖𝑖=1

 (6-7) 

Substitute Eq. (6-7) to Eq. (6-6), then: 

 

𝐿𝐿(𝑤𝑤, 𝑏𝑏,𝑎𝑎) =
1
2
� � 𝛼𝛼𝑖𝑖𝛼𝛼𝑗𝑗𝑦𝑦𝑖𝑖𝑦𝑦𝑗𝑗𝑥𝑥𝑖𝑖𝑇𝑇𝑥𝑥𝑗𝑗 + � 𝛼𝛼𝑖𝑖

𝑚𝑚

𝑖𝑖=1

𝑚𝑚

𝑗𝑗=1

𝑚𝑚

𝑖𝑖=1

  −� 𝛼𝛼𝑖𝑖𝑦𝑦𝑖𝑖
𝑚𝑚

𝑖𝑖=1
� 𝛼𝛼𝑗𝑗𝑦𝑦𝑗𝑗

𝑚𝑚

𝑗𝑗=1
𝑥𝑥𝑗𝑗𝑇𝑇𝑥𝑥𝑖𝑖 −� 𝛼𝛼𝑖𝑖𝑦𝑦𝑖𝑖𝑏𝑏

𝑚𝑚

𝑖𝑖=1

 = � 𝛼𝛼𝑖𝑖
𝑚𝑚

𝑖𝑖=1
−

1
2
� � 𝛼𝛼𝑖𝑖𝛼𝛼𝑗𝑗𝑦𝑦𝑖𝑖𝑦𝑦𝑗𝑗𝑥𝑥𝑖𝑖𝑇𝑇𝑥𝑥𝑗𝑗

𝑚𝑚

𝑗𝑗=1

𝑚𝑚

𝑖𝑖=1
−� 𝛼𝛼𝑖𝑖𝑦𝑦𝑖𝑖𝑏𝑏

𝑚𝑚

𝑖𝑖=1

 (6-8) 

The optimal term in the last equation is 0, the dual problem obtained finally: 

 

max𝛼𝛼� 𝛼𝛼𝑖𝑖
𝑚𝑚

𝑖𝑖=1
−

1
2
� � 𝛼𝛼𝑖𝑖𝛼𝛼𝑗𝑗𝑦𝑦𝑖𝑖𝑦𝑦𝑗𝑗𝑥𝑥𝑖𝑖𝑇𝑇𝑥𝑥𝑗𝑗

𝑚𝑚

𝑗𝑗=1

𝑚𝑚

𝑖𝑖=1

𝑠𝑠. 𝑡𝑡.� 𝛼𝛼𝑖𝑖𝑦𝑦𝑖𝑖
𝑚𝑚

𝑖𝑖=1
= 0,

𝛼𝛼𝑖𝑖 ≥ 0, 𝑖𝑖 = 1,2, … ,𝑚𝑚

 (6-9) 

Taking the derivative of 𝛼𝛼 from the above equation, the final model will be obtained by 

solving w and b: 

 𝑓𝑓(𝑥𝑥) = 𝑤𝑤𝑇𝑇𝑥𝑥 + 𝑏𝑏 = �𝛼𝛼𝑖𝑖𝑦𝑦𝑖𝑖𝑥𝑥𝑖𝑖𝑇𝑇𝑥𝑥 + 𝑏𝑏
𝑚𝑚

𝑖𝑖=1

 (6-10) 

Because Eq. (6-5) is an optimization problem with inequality constraint, the optimization 

needs to satisfy the Karush-Kuhn-Tucker (KKT) condition: 

 �
𝛼𝛼𝑖𝑖 ≥ 0  
𝑦𝑦𝑖𝑖(𝑤𝑤𝑇𝑇𝑥𝑥𝑖𝑖 + 𝑏𝑏) − 1 ≥ 0, 𝑖𝑖 = 1, 2, … ,𝑚𝑚
𝛼𝛼𝑖𝑖(𝑦𝑦𝑖𝑖(𝑤𝑤𝑇𝑇𝑥𝑥𝑖𝑖 + 𝑏𝑏) − 1) = 0, 𝑖𝑖 = 1, 2, … ,𝑚𝑚

 (6-11) 

Sequential minimal optimization (SMO) is used to solve Eq. (6-9), a quadratic programming 

problem. The α can be obtained after iteration. For arbitrary support (xs,ys), there is 
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𝑦𝑦𝑠𝑠�∑ 𝛼𝛼𝑖𝑖𝑦𝑦𝑖𝑖𝑥𝑥𝑖𝑖𝑇𝑇𝑥𝑥𝑠𝑠 + 𝑏𝑏𝑖𝑖∈𝑆𝑆 � = 1, 𝑆𝑆 = {𝑖𝑖|𝛼𝛼𝑖𝑖 > 0, 𝑖𝑖 = 1, 2, … ,𝑚𝑚}. b can be received by calculating 

the average value of all support vectors: 

 𝑏𝑏 =
1

|𝑆𝑆|��
1
𝑦𝑦𝑠𝑠
−�𝛼𝛼𝑖𝑖𝑦𝑦𝑖𝑖𝑥𝑥𝑖𝑖𝑇𝑇𝑥𝑥𝑠𝑠

𝑠𝑠∈𝑆𝑆

�
𝑠𝑠∈𝑆𝑆

 (6-12) 

Meanwhile, kernel functions are usually adopted in SVM, and then the corresponding model 

can be written as: 

 𝑓𝑓(𝑥𝑥) = 𝑤𝑤𝑇𝑇∅(𝑥𝑥) + 𝑏𝑏 (6-13) 

The original objective function will be: 

 
min
𝑤𝑤, 𝑏𝑏

1
2
‖𝑤𝑤‖2  

𝑠𝑠. 𝑡𝑡.𝑦𝑦𝑖𝑖(𝑤𝑤𝑇𝑇∅(𝑥𝑥𝑖𝑖) + 𝑏𝑏) ≥ 1, 𝑖𝑖 = 1,2, … ,𝑚𝑚
 (6-14) 

The dual function: 

 

max𝛼𝛼� 𝛼𝛼𝑖𝑖
𝑚𝑚

𝑖𝑖=1
−

1
2
� � 𝛼𝛼𝑖𝑖𝛼𝛼𝑗𝑗𝑦𝑦𝑖𝑖𝑦𝑦𝑗𝑗∅(𝑥𝑥𝑖𝑖)𝑇𝑇∅�𝑥𝑥𝑗𝑗�

𝑚𝑚

𝑗𝑗=1

𝑚𝑚

𝑖𝑖=1

𝑠𝑠. 𝑡𝑡.� 𝛼𝛼𝑖𝑖𝑦𝑦𝑖𝑖
𝑚𝑚

𝑖𝑖=1
= 0,

𝛼𝛼𝑖𝑖 ≥ 0, 𝑖𝑖 = 1,2, … ,𝑚𝑚

 (6-15) 

6.1.2 Loss function 

The form of the SVM introduced above is on the basis that all samples are divided correctly, 

with the equation form 𝑦𝑦𝑖𝑖(𝑤𝑤𝑇𝑇𝑥𝑥𝑖𝑖 + 𝑏𝑏) ≥ 1, called hard margin. However, the problems in 

most cases are not linearly separable. The use of hyperplanes as the boundary will bring 

classification loss. That is, some support vectors fall on the wrong side of the decision 

boundary. At this time, the soft margin is introduced. When maximizing the margin, the soft 

margin needs to guarantee that the sample number should be as small as possible. Now, the 

optimization function is: 
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 min
𝑤𝑤, 𝑏𝑏

1
2
‖𝑤𝑤‖2 + 𝐶𝐶�𝑙𝑙0/1(𝑦𝑦𝑖𝑖(𝑤𝑤𝑇𝑇𝑥𝑥𝑖𝑖 + 𝑏𝑏) − 1)

𝑚𝑚

𝑖𝑖=1

 (6-16) 

where 𝐶𝐶 > 0 is a constant, 𝑙𝑙0/1 is the 0/1 loss function: 

 𝑙𝑙0/1(𝑧𝑧) = �1, 𝑧𝑧 < 0
0, 𝑧𝑧 ≥ 0 (6-17) 

When C is infinite, Eq. (6-16) degenerates to hard margin SVM. When C is a finite value, 

Eq. (6-16) allows some samples do not meet the requirement. 

Where 𝑙𝑙0/1 is nonconvex and noncontinuous, which is hard to solve, loss functions such as 

exponential loss, logistic loss, and hinge loss are developed. In SVM, the hinge loss function 

is utilized: 

 𝑙𝑙ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝑧𝑧) = max(0,1− 𝑧𝑧) (6-18) 

Substituting Eq. (6-18) to Eq. (6-16): 

 min
𝑤𝑤, 𝑏𝑏

1
2
‖𝑤𝑤‖2 + 𝐶𝐶�max�0, 1 − 𝑦𝑦𝑖𝑖(𝑤𝑤𝑇𝑇𝑥𝑥𝑖𝑖 + 𝑏𝑏)�

𝑚𝑚

𝑖𝑖=1

 (6-19) 

Introducing slack variables 𝜉𝜉𝑖𝑖 = max�0, 1 − 𝑦𝑦𝑖𝑖(𝑤𝑤𝑇𝑇𝑥𝑥𝑖𝑖 + 𝑏𝑏)� ≥ 0, Eq. (6-19) yields to: 

 
min
𝑤𝑤, 𝑏𝑏

1
2
‖𝑤𝑤‖2 + 𝐶𝐶�  𝜉𝜉𝑖𝑖

𝑚𝑚

𝑖𝑖=1
 

𝑠𝑠. 𝑡𝑡.𝑦𝑦𝑖𝑖(𝑤𝑤𝑇𝑇𝑥𝑥𝑖𝑖) ≥ 1 −  𝜉𝜉𝑖𝑖 ,  𝜉𝜉𝑖𝑖 ≥ 0, 𝑖𝑖 = 1,2, … ,𝑚𝑚
 (6-20) 

Applying Lagrange multiplier method: 

 𝐿𝐿(𝑤𝑤, 𝑏𝑏,𝛼𝛼, 𝜉𝜉, 𝜇𝜇) =
1
2
‖𝑤𝑤‖2 + 𝐶𝐶�𝜉𝜉𝑖𝑖

𝑚𝑚

𝑖𝑖=1

+ �𝛼𝛼𝑖𝑖�1 − 𝜉𝜉𝑖𝑖 − 𝑦𝑦𝑖𝑖(𝑤𝑤𝑇𝑇𝑥𝑥𝑖𝑖 + 𝑏𝑏)�
𝑚𝑚

𝑖𝑖=1

−�𝜇𝜇𝑖𝑖𝜉𝜉𝑖𝑖

𝑚𝑚

𝑖𝑖=1

 (6-21) 

where 𝛼𝛼𝑖𝑖 ≥ 0, 𝜇𝜇𝑖𝑖 ≥ 0 are Lagrange multipliers. 

Applying partial derivative of 𝑤𝑤, 𝑏𝑏, 𝜉𝜉𝑖𝑖 to 0: 
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𝑤𝑤 = �𝛼𝛼𝑖𝑖𝑦𝑦𝑖𝑖𝑥𝑥𝑖𝑖

𝑚𝑚

𝑖𝑖−1

,

0 = �𝛼𝛼𝑖𝑖𝑦𝑦𝑖𝑖

𝑚𝑚

𝑖𝑖=1

,

𝐶𝐶 = 𝛼𝛼𝑖𝑖 + 𝜇𝜇𝑖𝑖

 (6-22) 

Substituting Eq. (6-22) to Eq. (6-21), the dual problem of the SVR will be obtained: 

 

max𝛼𝛼� 𝛼𝛼𝑖𝑖
𝑚𝑚

𝑖𝑖=1
−

1
2
� � 𝛼𝛼𝑖𝑖𝛼𝛼𝑗𝑗𝑦𝑦𝑖𝑖𝑦𝑦𝑗𝑗𝑥𝑥𝑖𝑖𝑇𝑇𝑥𝑥𝑗𝑗

𝑚𝑚

𝑗𝑗=1

𝑚𝑚

𝑖𝑖=1

𝑠𝑠. 𝑡𝑡.� 𝛼𝛼𝑖𝑖𝑦𝑦𝑖𝑖
𝑚𝑚

𝑖𝑖=1
= 0,

0 ≤ 𝛼𝛼𝑖𝑖 ≤ 𝐶𝐶, 𝑖𝑖 = 1,2, … ,𝑚𝑚

 (6-23) 

For soft margin SVM, there is KKT condition requirement: 

 

⎩
⎨

⎧
𝛼𝛼𝑖𝑖 ≥ 0, 𝜇𝜇𝑖𝑖 ≥ 0,
𝑦𝑦𝑖𝑖(𝑤𝑤𝑇𝑇𝑥𝑥𝑖𝑖 + 𝑏𝑏) − 1 + 𝜉𝜉𝑖𝑖 ≥ 0,
𝛼𝛼𝑖𝑖(𝑦𝑦𝑖𝑖(𝑤𝑤𝑇𝑇𝑥𝑥𝑖𝑖 + 𝑏𝑏) − 1 + 𝜉𝜉𝑖𝑖) = 0,
𝜉𝜉𝑖𝑖 ≥ 0, 𝜇𝜇𝑖𝑖𝜉𝜉𝑖𝑖 = 0.

 (6-24) 

6.2 SVR 

SVR was proposed as a branch of SVM. As explained in Fig.6. 1, SVM aims to find the 

largest margin from samples to the hyperplane. On the contrary, the SVR tries to find the 

smallest margin between the hyperplane and the samples. In other words, the two algorithms 

differ in defining objective and loss function. 
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Fig.6. 1. The difference between SVM and SVR. 

Unlike the traditional regression model that calculates the loss by outputting the difference 

between the model output f(x) and the real value y, the SVR allows the error value 𝜖𝜖 between 

f(x) and y. When the error between the f(x) and y is over 𝜖𝜖 , the loss will be countered. 

Consequently, the SVR problem can be written as follows: 

 min
𝑤𝑤, 𝑏𝑏

1
2
‖𝑤𝑤‖2 + 𝐶𝐶�𝑙𝑙𝜖𝜖(𝑓𝑓(𝑥𝑥𝑖𝑖) − 𝑦𝑦𝑖𝑖)

𝑚𝑚

𝑖𝑖=1

 (6-25) 

C is the regularization constant, 𝑙𝑙𝜖𝜖 is: 

 𝑙𝑙𝜖𝜖(𝑧𝑧) = � 0, 𝑖𝑖𝑖𝑖 |𝑧𝑧| < 𝜖𝜖,
|𝑧𝑧| − 𝜖𝜖, 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 (6-26) 

Introducing slack variable 𝜉𝜉𝑖𝑖 and 𝜉𝜉𝑖𝑖, Eq. (6-25) can be written as: 

 

min𝑤𝑤,𝑏𝑏,𝜉𝜉𝑖𝑖,𝜉𝜉�𝑖𝑖 =
1
2
‖𝑤𝑤‖2 + 𝐶𝐶� �𝜉𝜉𝑖𝑖 + 𝜉𝜉𝑖𝑖�

𝑚𝑚

𝑖𝑖=1
𝑠𝑠. 𝑡𝑡.𝑓𝑓(𝑥𝑥𝑖𝑖) − 𝑦𝑦𝑖𝑖 ≤ 𝜖𝜖 + 𝜉𝜉𝑖𝑖,
𝑦𝑦𝑖𝑖 − 𝑓𝑓(𝑥𝑥𝑖𝑖) ≤ 𝜖𝜖 + 𝜉𝜉𝑖𝑖 ,
𝜉𝜉𝑖𝑖 ≥ 0, 𝜉𝜉𝑖𝑖 ≥ 0, 𝑖𝑖 = 1,2, … ,𝑚𝑚

 (6-27) 

Introducing Lagrange multipliers 𝜇𝜇𝑖𝑖 ≥ 0, 𝜇̂𝜇𝑖𝑖 ≥ 0,𝛼𝛼 ≥ 0,𝛼𝛼� ≥ 0, the Lagrange function will 

be obtained: 
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𝐿𝐿�𝑤𝑤, 𝑏𝑏,𝛼𝛼,𝛼𝛼�, 𝜉𝜉, 𝜉𝜉,𝜇𝜇, 𝜇̂𝜇� =
1
2
‖𝑤𝑤‖2 + 𝐶𝐶��𝜉𝜉𝑖𝑖 + 𝜉𝜉𝑖𝑖�

𝑚𝑚

𝑖𝑖=1

−�𝜇𝜇𝑖𝑖𝜉𝜉𝑖𝑖 −
𝑚𝑚

𝑖𝑖=1

  �𝜇̂𝜇𝑖𝑖𝜉𝜉𝑖𝑖

𝑚𝑚

𝑖𝑖=1

+ �𝛼𝛼𝑖𝑖(𝑓𝑓(𝑥𝑥𝑖𝑖) − 𝑦𝑦𝑖𝑖 − 𝜖𝜖 − 𝜉𝜉𝑖𝑖)
𝑚𝑚

𝑖𝑖=1

+

  �𝛼𝛼�𝑖𝑖�𝑦𝑦𝑖𝑖 − 𝑓𝑓(𝑥𝑥𝑖𝑖) − 𝜖𝜖 − 𝜉𝜉𝑖𝑖�
𝑚𝑚

𝑖𝑖=1

 (6-28) 

Taking partial derivatives of the above equation: 

 

𝑤𝑤 = � (𝛼𝛼�𝑖𝑖 − 𝛼𝛼𝑖𝑖)𝑥𝑥𝑖𝑖
𝑚𝑚

𝑖𝑖=1
,

0 = � (𝛼𝛼�𝑖𝑖 − 𝛼𝛼𝑖𝑖)
𝑚𝑚

𝑖𝑖=1
,

𝐶𝐶 = 𝛼𝛼𝑖𝑖 + 𝜇𝜇𝑖𝑖 ,
𝐶𝐶 = 𝛼𝛼�𝑖𝑖 + 𝜇̂𝜇𝑖𝑖.

 (6-29) 

Substituting Eq. (6-29) into Eq. (6-28), the dual problem of SVR is received: 

 

max𝛼𝛼,𝛼𝛼� � 𝑦𝑦𝑖𝑖(𝛼𝛼�𝑖𝑖 − 𝛼𝛼𝑖𝑖) − 𝜖𝜖(𝛼𝛼�𝑖𝑖 + 𝛼𝛼𝑖𝑖)
𝑚𝑚

𝑖𝑖=1

−
1
2
� � (𝛼𝛼�𝑖𝑖 − 𝛼𝛼𝑖𝑖)�𝛼𝛼�𝑗𝑗 − 𝛼𝛼𝑗𝑗�𝑥𝑥𝑖𝑖𝑇𝑇𝑥𝑥𝑗𝑗

𝑚𝑚

𝑗𝑗=1

𝑚𝑚

𝑖𝑖=1

𝑠𝑠. 𝑡𝑡.� (𝛼𝛼�𝑖𝑖 − 𝛼𝛼𝑖𝑖)
𝑚𝑚

𝑖𝑖=1
= 0,

0 ≤ 𝛼𝛼�𝑖𝑖 ,𝛼𝛼𝑖𝑖 ≤ 𝐶𝐶.

 (6-30) 

The solution of SVR is: 

 𝑓𝑓(𝑥𝑥) = � (𝛼𝛼�𝑖𝑖 − 𝛼𝛼𝑖𝑖)𝑥𝑥𝑖𝑖𝑇𝑇𝑥𝑥 + 𝑏𝑏
𝑚𝑚

𝑖𝑖=1
 (6-31) 

The samples that meet 𝛼𝛼�𝑖𝑖 − 𝛼𝛼𝑖𝑖 ≠ 0 are support vectors of SVR, which locate outside 𝜖𝜖 band. 

In this case, support vectors are merely a part of the training samples. This keeps the sparsity 

of the solution. From KKT, each sample has (𝐶𝐶 − 𝛼𝛼𝑖𝑖)𝜉𝜉𝑖𝑖 = 0 and 𝛼𝛼𝑖𝑖(𝑓𝑓(𝑥𝑥𝑖𝑖) − 𝑦𝑦𝑖𝑖 − 𝜖𝜖 − 𝜉𝜉𝑖𝑖) =

0. Therefore, when 𝛼𝛼𝑖𝑖 is obtained, if 0 < 𝛼𝛼𝑖𝑖 < 𝐶𝐶, there must be 𝜉𝜉𝑖𝑖 = 0, then 

 𝑏𝑏 = 𝑦𝑦𝑖𝑖 + 𝜖𝜖 −� �𝛼𝛼�𝑗𝑗 − 𝛼𝛼𝑗𝑗�𝑥𝑥𝑗𝑗𝑇𝑇𝑥𝑥𝑖𝑖
𝑚𝑚

𝑗𝑗=1
 (6-32) 
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Like the solution process of SVM, an approach with more robustness is adopted: choosing to 

multiply or all samples meet the condition 0 < 𝛼𝛼𝑖𝑖 < 𝐶𝐶  to calculate b, then taking their 

average value. 

Similarly, the model can be transformed into the following equation after introducing the 

kernel trick: 

 𝑓𝑓(𝑥𝑥) = � �𝛼𝛼�𝑗𝑗 − 𝛼𝛼𝑗𝑗�∅(𝑥𝑥𝑖𝑖)𝑇𝑇∅(𝑥𝑥𝑖𝑖) + 𝑏𝑏
𝑚𝑚

𝑖𝑖=1
 (6-33) 

The SVR flow operation mechanism chart is illustrated in Fig.6. 2. 

 

Fig.6. 2. Operation mechanism flow chart of the SVR algorithm. 

6.3 Regression verification 
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The experimental flow data were imported into the SVR regression model for training. The 

Gaussian function was selected as the kernel function and the maximum iteration was set as 

1000000. In order to eliminate the amount of dimensional quantity between different data 

and facilitate data comparison and joint processing before the training, the input data were 

standardized. The standardization follows the following equation: 

 𝑋𝑋 =
𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 − 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑋𝑋)

𝑠𝑠𝑠𝑠𝑠𝑠(𝑋𝑋)
 (6-34) 

where X is the processed data for training, Xinput is the import experimental data. 

Ultimately, the SVM model was received after 77 iterations. The α values are listed in Table 

6-1. The α value is -0.831394 and the bias b is 0.9011. 

Table 6-1 α values in SVM model. 

 α1i α2i α3i α4i α5i α6i α7i 

1 0.0725382 -0.088496 -0.085379 -0.834394 0.8343938 0.6773392 -0.834394 
2 -0.509712 -0.30096 -0.054197 0.8343938 0.3036914 0.5838901 -0.074411 
3 -0.699148 -0.094739 -0.182132 0.8343938 0.6768462 0.4148462 -0.296469 
4 -0.52481 -0.380653 -0.834394 0.1926026 0.8343938 0.6612647 -0.069821 
5 -0.556462 -0.284181 -0.428086 0.0373544 0.8343938 0.3004168 -0.69187 
6 -0.449626 -0.132842 -0.038492 0.0884715 -0.093255 0.4339955 -0.257135 
7 -0.834394 -0.834394 -0.812447 0.8343938 0.1037369 0.0133007 -0.834394 
8 -0.611876 -0.174221 -0.250048 0.8343938 0.8343938 0.8343938  
9 -0.155883 -0.081201 -0.508321 0.0442538 0.8343938 0.8343938  

10 -0.733562 -0.078088 -0.332931 0.8188501 0.5054829 -0.069398  

Moreover, 201 support vectors were obtained during the iteration, see Table 6-2. The support 

vectors finally obtained are: 𝑤𝑤1 = 3.3928756,𝑤𝑤2 = −0.755554, and 𝑤𝑤3 = 1.2354467. 

Table 6-2 Support vectors of the SVM model. 

w1 w2 w3 
-0.353574 -0.353574 -0.012988 -1.5954 0.9241379 0.9241379 -1.724346 -1.719544 -1.448208 
-0.353574 -0.353574 3.3928756 -1.5954 0.9241379 -1.5954 -1.14009 -1.712118 -1.726772 
-0.353574 -0.353574 3.3928756 -1.5954 0.9241379 -1.5954 -0.704448 -0.724498 -1.702069 
-0.353574 -0.353574 3.3928756 -1.5954 0.9241379 -1.5954 -0.080787 -0.435093 -1.677267 
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-0.353574 -0.353574 3.3928756 -1.5954 0.9241379 -1.5954 0.3550039 0.505845 -0.549251 
-0.353574 -0.353574 3.3928756 -1.5954 0.9241379 -1.5954 0.6321812 0.5824289 -0.433855 
-0.353574 -0.353574 3.3928756 -1.5954 0.9241379 -1.5954 1.5827723 1.7411382 -0.238608 
-0.353574 -0.353574 3.3928756 -1.5954 0.9241379 -1.5954 1.7215838 1.7459896 0.5508449 
-0.353574 -0.012988 3.3928756 -0.755554 -1.5954 -1.5954 -1.724247 -1.735633 0.6510921 
-0.353574 -0.012988 3.3928756 -0.755554 -1.5954 -1.5954 -1.694643 -1.710782 0.7011909 
-0.353574 -0.012988 3.3928756 -0.755554 -1.5954 -1.5954 -0.684597 -0.867963 1.6728711 
-0.353574 -0.012988 3.3928756 -0.755554 -1.5954 -1.5954 -0.565835 -0.818656 1.6979205 
-0.353574 -0.012988 3.3928756 -0.755554 -1.5954 -1.5954 -0.239103 -0.669745 1.7230689 
-0.353574 -0.012988 3.3928756 -0.755554 -1.5954 -0.755554 0.3450534 -0.62034 -1.672762 
-0.353574 -0.012988 3.3928756 -0.755554 -1.5954 -0.755554 0.6224783 -0.545884 -1.650435 
-0.353574 -0.012988 3.3928756 -0.755554 -1.5954 -0.755554 1.7313857 -0.496528 -1.533604 
-0.353574 -0.012988 3.3928756 -0.755554 -1.5954 -0.755554 1.7412867 0.3460435 -0.662023 
-0.353574 -0.012988 3.3928756 0.084292 -1.5954 -0.755554 -1.724247 0.4648055 -0.353806 
-0.353574 -0.012988 3.3928756 0.084292 -1.5954 -0.755554 -0.625241 0.5840131 -0.048213 
-0.353574 -0.012988 3.3928756 0.084292 -1.5954 -0.755554 -0.308954 1.6090594 1.1844072 
-0.353574 -0.012988 3.3928756 0.084292 -1.5954 -0.755554 0.4441125 1.6847522 1.2354467 
-0.353574 -0.012988 

 
0.084292 -1.5954 

 
0.572825 1.7335639 

 

-0.353574 -0.012988 
 

0.084292 -0.755554 
 

1.7414847 -0.496479 
 

The constructed SVM model was adopted to predict the flow stress under experimental 

conditions, and the predicted values were compared with the experiment flow behavior, as 

seen in Fig.6. 3. 
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Fig.6. 3. Regression verification of the SVR model at different experimental deformation 
conditions, divided by strain: (a) 0.001 s-1, (b) 0.01 s-1, (c) 0.1 s-1, and (d) 1 s-1. 

Based on the observation on the plots, the SVM model can predict the deformation behavior 

of aluminum alloys under most experimental conditions. The model is able to describe the 

flow behavior change along the strain. However, some large differences occur in the 

conditions of 300 ℃ and 0.01 s-1, and 370 ℃ and 0.01 s-1. In general, the SVM model is 

sufficient to fit and predict the flow behavior of the AA6061-T6 alloy under deformation 

conditions 300~510 ℃ and strain rate 0.001~1 s-1. 
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7 RT MODEL 

Before explaining the operation algorithm of RT, it is better to introduce DT first, which is 

because RT is derived from DT. DT is a typical supervised machine learning classification 

algorithm, and meanwhile, it is a non-parametric model. The DT is a tree structure where 

each internal node represents a judgment on an attribute, each branch represents the output of 

a judgment result, and finally, each leaf node represents a classification result. Decisions can 

be divided into ID3, C4.5, and CART according to different generation algorithms 

(classification error, entropy, and Gini index) [85]. Besides, the regression work only can be 

processed on the CART algorithm. Fig. 7.1 illustrates the clear classification. 

 

Fig.7. 1. Types of DT. 
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In the case of DT classification, no domain knowledge or parameter setting is required, so it 

is suitable for exploratory knowledge discovery. In addition, most other classification 

methods need data normalization processing. While for the DT, data normalization is not 

necessary. In addition, the DT can be visualized to see the final tree form. However, 

overfitting may occur for the DT results. Through tree pruning methods or setting reasonable 

tree depth and the number of leaf nodes can avoid overfitting. 

7.1 DT 

The decision function of classification model of DT can be formulated to: 

 𝑦𝑦(𝑥𝑥𝑛𝑛) = � 𝑐𝑐𝑚𝑚 ∙Ⅱ{𝑥𝑥𝑛𝑛 ∈ 𝑅𝑅𝑚𝑚}
𝑀𝑀

𝑚𝑚=1

 (7-1) 

where y is the mapping function, x is the sample point, c is the class, and R is the sample 

space. 

We assume that the DT is a binary tree. According to different classification standards, 

different sample spaces can be divided into two different categories, see Fig.7. 2. 
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Fig.7. 2. Classification of a binary tree. 

From Fig.7. 2, when a particular class accounts for the majority of the space, we divide the 

space into the class. In a mathematic form: 

 𝑐𝑐𝑚𝑚 = max
𝑘𝑘 � Ⅱ{𝑡𝑡𝑛𝑛 = 𝑘𝑘}

𝑥𝑥𝑛𝑛∈𝑅𝑅𝑚𝑚

 (7-2) 

where k is the class after classification, t is the sample point. For binary classification, k=1, 2. 

At the same time, the posterior probability of the class can be output as well: 

 

𝑝𝑝𝑘𝑘𝑚𝑚 =
1

|𝑅𝑅𝑚𝑚| � Ⅱ{𝑡𝑡𝑛𝑛 = 𝑘𝑘}
𝑥𝑥𝑛𝑛∈𝑅𝑅𝑚𝑚

𝑝𝑝(𝐶𝐶𝑘𝑘|𝐱𝐱) = � 𝑝𝑝𝑘𝑘𝑚𝑚 ∙Ⅱ{𝐱𝐱 ∈ 𝑅𝑅𝑚𝑚}
𝑀𝑀

𝑚𝑚=1

 (7-3) 

Where p is the class posterior probability. As a top-down greedy heuristic search algorithm, 

decision trees need to find the best classification feature for each classification. This is to say, 

the classification needs to meet the following condition: 

 
𝑅𝑅−(𝑗𝑗, 𝑠𝑠) = {𝑥𝑥𝑖𝑖 ∈ 𝑅𝑅|𝑥𝑥𝑖𝑖(𝑗𝑗) ≤ 𝑠𝑠}
𝑅𝑅+(𝑗𝑗, 𝑠𝑠) = {𝑥𝑥𝑖𝑖 ∈ 𝑅𝑅|𝑥𝑥𝑖𝑖(𝑗𝑗) > 𝑠𝑠} (7-4) 
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where j is the classification feature, s is the threshold. To determine the best classification 

feature, the effects (loss) of before and after classification need to be evaluated first. 

Different DT types have different evaluation functions: 

 

⎩
⎪
⎨

⎪
⎧

Classification error: 1 − max𝑘𝑘 𝑝𝑝𝑘𝑘𝑚𝑚 ID3

Entropy: −� 𝑝𝑝𝑘𝑘𝑚𝑚 ln 𝑝𝑝𝑘𝑘𝑚𝑚
𝑘𝑘

C4.5

Gini index: 1 −� (𝑝𝑝𝑘𝑘𝑚𝑚)2
𝑘𝑘

CART

 (7-5) 

Then, the loss can be calculated and the minimum loss can be found: 

 
𝐿𝐿(𝑗𝑗, 𝑠𝑠) = �𝑝𝑝𝑅𝑅𝑚𝑚− ∙ 𝐸𝐸(𝑅𝑅𝑚𝑚− ) + 𝑝𝑝𝑅𝑅𝑚𝑚+ ∙ 𝐸𝐸(𝑅𝑅𝑚𝑚+ )� − 𝐸𝐸(𝑅𝑅𝑚𝑚)

(𝑗𝑗∗, 𝑠𝑠∗) = arg min
(𝑗𝑗, 𝑠𝑠) 𝐿𝐿(𝑗𝑗, 𝑠𝑠) 

 (7-6) 

where L is the loss function, 𝑝𝑝𝑅𝑅𝑚𝑚−  and 𝑝𝑝𝑅𝑅𝑚𝑚+  are the posterior probabilities after binary 

classification, 𝐸𝐸(𝑅𝑅𝑚𝑚− ) and 𝐸𝐸(𝑅𝑅𝑚𝑚+ ) are sample spaces after binary classification, 𝐸𝐸(𝑅𝑅𝑚𝑚) is the 

space before the classification. 

7.2 RT 

The miasmatical expression of RT also can be written in the Eq. (7-1) form. Fig.7. 3 shows 

the graphical RT three times regression growing. 
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Fig.7. 3. Regression process of RT (three times growing). 

The difference between DT and RT is the definition of the loss function. In RT, the variance 

is used as the evaluation indicator: 

 
𝐿𝐿(𝑐𝑐𝑚𝑚) = arg min

𝑐𝑐𝑚𝑚 � (𝑡𝑡𝑛𝑛 − 𝑐𝑐𝑚𝑚)2
𝑥𝑥𝑛𝑛∈𝑅𝑅𝑚𝑚

 = ave(𝑡𝑡𝑛𝑛|𝑥𝑥𝑛𝑛 ∈ 𝑅𝑅𝑚𝑚)
 (7-7) 

Then, for each decision space: 

 𝐸𝐸(𝑅𝑅𝑚𝑚) = � (𝑡𝑡𝑛𝑛 − 𝑐𝑐𝑚𝑚)2
𝑥𝑥𝑛𝑛∈𝑅𝑅𝑚𝑚

= � �𝑡𝑡𝑛𝑛 − ave(𝑡𝑡𝑛𝑛|𝑥𝑥𝑛𝑛 ∈ 𝑅𝑅𝑚𝑚)�2

𝑥𝑥𝑛𝑛∈𝑅𝑅𝑚𝑚

 (7-8) 

The Eq. (7-6) also applies here. The operation flow chart of DT (RT) is displayed in Fig. 7.4. 
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Fig.7. 4. Operation mechanism flow chart of DT (RT). 

7.3 Regression verification 

The received experimental flow stress data were imported to the RT. The split time was 

controlled to determine the best tree depth to check the error change. The split number was 

set from 1 to 100, and the MSE was considered as the error evaluation standard, see Fig.7. 5. 

The equation of MSE is [86]: 

𝑀𝑀𝑀𝑀𝑀𝑀 =
1
𝑛𝑛
�(𝑝𝑝 − 𝑦𝑦)2
𝑛𝑛

𝑖𝑖=1

 (9-22) 
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where p is the final predicted values. y is the expected output data. where n is the number of 

the test data. 

 

Fig.7. 5. The MSE variation with the split times. 

The MSE shows a down trend along the split times. The decrease rate is highest in the initial 

stage and then gradually slows down as the number of splits increases. However, the MSE 

has always shown a decreasing trend. This is attributed to the fact that as the depth of the RT 

deepens, the model's classification of features becomes more refined, and the model's fitting 

ability also becomes more robust. In order to avoid overfitting caused by the boundless split 

of the RT, the split is terminated 100 times. At this point, the MSE of RT is 0.31864, which is 

a relatively low value to announce the regression reliability of the established RT model. 

Eventually, an RT with 100 branch nodes and 101 leaf nodes was built. Fig.7. 6 displays the 

structure of the RT model (Triangles represent branch nodes, and points represent leaf nodes). 
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Fig.7. 6. The structure of the RT model. 

The parameters of the RT model are listed in Table 7-1. The values marked by red color are 

parameters of leaf nodes. Additionally, in each branch node, the left branch represents 

categories that are less than this value, and the right branch represents categories that are 

greater than or equal to this value. Each leaf node corresponds to a specific numerical value. 

Table 7-1 The parameters of the RT model. 

1 2 3 4 5 6 7 8 9 
-1.17548 1.68994 -0.183281 -0.709349 -1.27375 -1.52128 -1.64009 1.88647 1.82372  

-0.335631 0.364187 -0.236281 0.181935 -1.01623 -1.41239 -1.57081 1.78028   
-0.183281 -0.48969 -0.905289 -0.303261 -1.15492 1.72785 1.68225   
-0.183281 -0.4419 0.628642 0.795745 -0.857839 -1.36289 1.64605    

1.68994 -0.837294 -1.25227 -0.531058 1.59303 1.54563    
0.504215 0.0144604 -0.607765 -0.115292 -1.07581 1.51247    
0.504215 0.713617 0.209757 0.478939 -0.937022 1.48155     

1.46178 1.27512 1.14223 1.40059 1.44582     
-1.17472 2.97651 -1.42578 1.34343 1.2971     
0.439212 2.949 -1.054 -0.39237 1.26914     
-0.434449 2.91232 -0.781379 1.23295 1.14697     
-0.376949 2.87323 -0.409647 1.1838 1.11918     
-0.64982 2.83144 -0.013139 0.300549 

 
    

-0.559523 2.78689 0.474558 1.08619 
 

    
-0.549251 2.74293 0.927948 1.05338 

 
    

0.149881 2.69903 1.49804 1.02154 
 

     
-1.46187 -1.62031 2.28615 

 
     

-0.847938 -1.33313 2.25362 
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-0.095416 -1.00638 2.21842 

 
     

0.983863 -0.639993 2.1792 
 

     
-1.12836 -0.263707 2.14643 

 
     

0.383246 0.201613 2.10877 
 

     
-1.00328 0.69676 2.06614 

 
     

0.366068 1.34037 2.0263 
 

     
-1.23412 -1.45044 1.9861 

 
     

-0.075638 -0.781304 1.94446 
 

     
-1.03747 -0.087544 1.90341 

 
     

-0.118831 0.853888 1.86455 
 

     
-1.14395 -1.31613 1.82252 

 
     

-0.004104 -0.709473 1.78834 
 

     
-0.593632 -0.106529 1.75735 

 
     

0.928071 0.916215 1.72848 
 

      
-1.48175 0.306524 

 
      

-0.996403 0.268798 
 

      
-0.551155 0.234577 

 
      

-0.572207 0.203464 
 

      
-1.3617 0.174527 

 
      

-0.841676 0.145197 
 

      
-0.277247 0.112707 

 
      

0.173099 0.0837158 
 

      
-0.300887 0.0575 

 
      

-0.321291 0.0329769 
 

      
-0.341561 0.0060609 

 
      

-0.356947 -0.024385 
 

      
-0.414199 -0.047418 

 
      

-0.441829 -0.068992 
 

      
-0.474372 -0.087772 

 
      

1.4447 -0.104658 
 

       
0.614859 

 
       

0.562012 
 

       
0.522889 

 
       

0.478836 
 

       
0.439219 

 
       

0.4007 
 

       
0.367269 

 
       

0.340353 
 

       
0.925581 

 
       

0.90221 
 

       
0.877045 

 
       

0.857293 
 

       
0.840807 

 
       

0.818002 
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0.790675 

 
       

0.766203 
 

       
-0.489277 

 
       

-0.504683 
 

       
-0.518935 

 
       

-0.533291 
 

       
-0.695178 

 
       

-0.699547 
 

       
-0.702984 

 
       

-0.706319 
 

       
-0.709143 

 
       

-0.712129 
 

       
-0.714438 

 
       

-0.716827 
 

       
-0.496005 

 
       

-0.519763 
 

The flow stress outputs from the constructed model are compared with the original 

experiment flow stress values, and the comparison result is shown in Fig.7. 7. The magnitude 

of flow stress and the trend of stress variation are highly consistent with experimental data. 

All in all, the RT model can fully predict the flow stress variation of the studied alloy under 

experimental plastic deformation conditions. However, as we can see in Fig.7. 6 and Table7- 

1, in order to achieve high accuracy, the RT model needs to be cumbersome. This will lead to 

the consumption of computer computing power during the simulation process. 
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Fig.7. 7. Regression verification of the RT model at different experimental deformation 
conditions, divided by strain: (a) 0.001 s-1, (b) 0.01 s-1, (c) 0.1 s-1, and (d) 1 s-1. 

 

  



88 

 

8 RF MODEL 

RF is an ML algorithm based on DT, which adopts many DTs to make decisions. Moreover, 

RF is a typical bagging learning process combining multiply single models (weak learning) 

outputs [87]. In the bagging algorithm, the substitution methods are always adopted to select 

random samples in the training set, which means single data points can be selected many 

times. After generating multiple samples, the models will be trained separately. Based on 

task types (regression or classification), the estimated values with more accuracy will be 

generated because of the average predicted values or multiple values. The RF is composed of 

randomly created DTs. Each node in the DT is a random subset of features used to calculate 

the output. The working mechanism of RF integrates the outputs of single DTs to generate 

the final output result. In brief, the RF algorithm uses multiple (randomly generated) DTs to 

generate the final output. In addition to bagging learning, another assembled learning model 

named boosting learning exists. Different from the random selection thought of bagging 

learning, boosting trees enhances the classification or regression ability of models by 

concatenating multiple CART tree patterns. Boosting trees adjust weights based on the error 

from the last CART tree to minimize the error step by step [88]. As a consequence, boosting 

trees cannot solve the overfitting problem of DT to some extent. Besides, the DT receives an 

excellent regression result in the last chapter, and there is no need to introduce boosting trees 

to reduce the regression error a step more. 
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As mentioned in Chapter 7, overfitting is a tricky problem that constantly occurring in DT. 

However, when multiple DTs consist of an RF algorithm, their prediction results will be 

more accurate, especially when the DTs are unrelated. Furthermore, RF is able to deal with 

classification and regression problems with high precision. Since feature bagging can stay 

accurate when some data is missing, the RF classifier is always used as an effective tool for 

predicting missing values. However, because data in every DT in RF is required to be 

calculated, the processing process can be pretty time-consuming. 

8.1 RF 

The construction of RF consists of two parts: random selection of data and random selection 

of selected features, see Fig.8. 1. 

 

Fig.8. 1. Data random selection and feature random selection in RF. 
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The sub-datasets are constructed by sampling with returns from the origin database. The data 

volume of the sub dataset keeps the same as the original database. Samples in different sub-

datasets can be duplicated, and the samples in the same sub-dataset can be duplicated as well. 

After that, the sub-datasets are utilized to construct sub-RTs, and each sub-RT outputs a 

result based on the data in the sub-dataset. Finally, the constructed sub-RTs form an RF. 

When a new sample datum is input to ask a classification result through RF, the RF will 

output it by voting on the judgment results of sub-decision trees. In the regression task, the 

average value of sub-RT will be the output. 

Similar to the random selection of the dataset, each splitting process of the subtree in the RF 

does not use all the features to be selected but randomly selects a certain feature from all the 

features to be selected, and then selects the best feature from the randomly selected features. 

This process will guarantee that the RTs in the RF are different from each other, improve the 

diversity of the system, and thus improve the regression performance. The flow chart of RF 

operation is illustrated in Fig.8. 2. 
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Fig.8. 2. Operation mechanism flow chart of RF. 

8.2 Regression verification 

As a bagging RT algorithm, the bagging quantity of RTs must be determined in advance. In 

the present work, the bagging quantity was set as 100. A RF containing 100 regression trees 

is constructed after a random selection combination with returns. Taking the first and second 

RTs as examples, Fig.8. 3 shows the structures. From the graph, it can be seen that the 

selected features influence the trend and depth of RT splitting. This randomness ensures the 

advantage that RF is challenging to fall into overfitting. Since the structure of the RF is a 
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nonparametric model, and its structure is highly complex, no specific model expression will 

be given here. 

 

Fig.8. 3. The structure of the first RT and the structure of the second RT 

Eventually, the flow data were extracted from the RT model by inputting the corresponding 

strains, temperatures, and strain rates. The data points were plotted on the experimental flow 

behavior curves. Fig.8. 4 displays the regression effect. The fitting result is not as good as 

RT model. Except for the four deformation conditions (440 ℃ and 0.001 s-1, 440 ℃ and 0.1 

s-1, 440 ℃ and 1 s-1, and 370 ℃ and 0.01 s-1), the fitting performance under all other 

deformation conditions is not ideal. This model has the worst accuracy in predicting stress at 

low temperatures. At the deformation conditions 440 ℃ and 0.01 s-1, 510 ℃ and 0.01 s-1, the 
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model gives the different stress change trends. Furthermore, at strain rates 0.001 s-1, and 0.01 

s-1, the established RF model may fail to distinguish the flow stress values. 

 

Fig.8. 4. Regression verification of the RT model at different experimental deformation 
conditions, divided by strain: (a) 0.001 s-1, (b) 0.01 s-1, (c) 0.1 s-1, and (d) 1 s-1. 

However, Due to the non-parametric nature and complexity of the RT and RF models, there 

should be difficulties in incorporating the established models into simulation software. There 

is no report about substituting tree models to the simulation environments. Consequently, 

encoding tree models into numerical simulation software is a research problem that needs to 

be overcome. 
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9 MLP MODEL 

Perceptron is a binary linear classifier and is regarded as the simplest feedforward neural 

network [89]. The structure of perceptron comes from biological neurocytes. A single 

neurocyte can be regarded as a machine with two outputs according to its activation 

condition: yes or no. The activation condition of neurocytes depends on the received 

semaphore and the effect of synapses. When the received semaphore exceeds a threshold, the 

neurocyte will be activated, and the signal pause will be transferred to other neurons. With 

the bias, weight, and activation function corresponding to the threshold, synapse, and cell 

body of the neurocyte, the concept of perceptron was proposed. 

 

Fig.9. 1. Perceptron (b), inspired by neurocyte (a). 
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Fig.9 .1(b) shows the structure of a perceptron, which can be written in a mathematical form: 

 
𝑦𝑦 = 𝑓𝑓 ��𝑤𝑤𝑖𝑖𝑥𝑥𝑖𝑖 + 𝑏𝑏

𝑚𝑚

𝑖𝑖=1

� = 𝑓𝑓(W𝑇𝑇X)

𝑊𝑊 = [𝑤𝑤1  𝑤𝑤2   ⋯   𝑤𝑤𝑛𝑛  𝑏𝑏]𝑇𝑇

𝑋𝑋 = [𝑥𝑥1  𝑥𝑥2   …  𝑥𝑥𝑛𝑛  1]𝑇𝑇

 (9-1) 

where y is the scalar output, f is the activation function, w is the weight, x is the input, b is 

the basis. As an anti-symmetric sign function, the definition of f(n) is: 

 𝑓𝑓(𝑛𝑛) = �
+1 𝑖𝑖𝑖𝑖 𝑛𝑛 ≥ 0
−1 𝑖𝑖𝑖𝑖 𝑛𝑛 < 0 (9-2) 

In order to deal with the nonlinear problems, the activation functions introduce the nonlinear 

to the outputs of neurons. There are three activation functions mainly used: 

 

⎩
⎪
⎨

⎪
⎧Sigmoid:

1
1 + 𝑒𝑒−𝑥𝑥

tanh:
𝑒𝑒𝑥𝑥 − 𝑒𝑒−𝑥𝑥

𝑒𝑒𝑥𝑥 + 𝑒𝑒−𝑥𝑥
ReLU: max(0, 𝑥𝑥)

 (8-3) 

The output of the perceptron is a scalar result through an activation function after obtaining 

the inner product of the input vector and weight vector. 

9.1 MLP 

Two types of perceptions can be obtained through the combination of perceptions: SLP and 

MLP. SLP has no hidden layer inside it, and is the simplest feedforward neural network. 

Different from SLP, there is one hidden layer at least in MLP [35]. 

The feedforward neural network is the first and simplest ANN. It contains multiple neurons 

(nodes) arranged in multiple layers. The nodes of adjacent layers have connections or edges. 
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All connections are equipped with weights. There are three types of neurons in a feedforward 

neural network: input, hidden, and output. The neurons receive information from outside 

called input nodes. The input neurons do not do any calculations, which deliver information 

to hidden neurons. Hidden neurons have no connection with the outside world, which take 

the job of calculating and delivering the information from input neurons to output neurons. 

The output neurons undertake the task of computing and transmitting information to the 

outside world. The input, hidden, and output neurons consist of input, hidden, and output 

layers, respectively. A feedforward network has one input layer, one output layer, and zero or 

more hidden layers. In a feedforward network, the information is transmitted sequentially 

along the input, hidden, and output layers, and there is no loop within the network. 

Different from the models mentioned before, the operation of the MLP model is a black box. 

People cannot explain how the parameters are obtained, and parameters inside the MLP 

model have no meaning. 

9.1.1 Training of MLP 

The training of MLP is based on the gradient descent algorithm. It is assumed that p is the 

function of x, and the relationship between the independent and dependent variables follows 

the following equation: 

 ∆𝑝𝑝 ≈
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥1

∆𝑥𝑥1 +
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥2

∆𝑥𝑥2 + ⋯+
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥𝑚𝑚

∆𝑥𝑥𝑚𝑚 (9-4) 

In a vector form, the equation can be rewritten as: 
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⎩
⎨

⎧
∆𝑝𝑝 = ∇𝑝𝑝∆𝑥𝑥

∇𝑝𝑝 = �
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥1

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥2

…
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥𝑚𝑚

�

∆𝑥𝑥 = [∆𝑥𝑥1 ∆𝑥𝑥2 … ∆𝑥𝑥𝑚𝑚]𝑇𝑇
 (9-5) 

In each iteration, the value of ∆𝑝𝑝 should be negative to guarantee the decrease of the loss 

function. As ∇𝑝𝑝 is the function of ∆𝑥𝑥, we can assume that ∇𝑝𝑝 = −𝜂𝜂∆𝑥𝑥, then: 

 ∆𝑝𝑝 = −𝜂𝜂∆𝑥𝑥 ∙ ∆𝑥𝑥 (9-6) 

where 𝜂𝜂 is the learning rate. In each iteration, the gradient ∆𝑝𝑝 of p can be calculated, and the 

variable will be updated to take a step toward the fastest descent. The backpropagation 

algorithm is adopted to update weights in each iteration. Taking two hidden layers MLP as 

an example, the Fig. 9.2 illustrates the structure of the MLP. 

 

Fig.9. 2. Topological structure of a two hidden layer MLP. 

In the feedforward propagation process, the output of the first hidden layer is: 
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 [𝑝𝑝11 … 𝑝𝑝1𝑘𝑘] = 𝑓𝑓 �[𝑥𝑥1 … 𝑥𝑥𝑚𝑚] �
𝑤𝑤11 … 𝑤𝑤1𝑘𝑘
⋮ ⋱ ⋮

𝑤𝑤𝑚𝑚1 … 𝑤𝑤𝑚𝑚𝑚𝑚
��+ [𝑏𝑏11 … 𝑏𝑏1𝑘𝑘] (9-7) 

where k is the hidden neuron number in the first hidden layer, m is the input neuron number, 

x is the input data, w is the weight, and b is the bias. Similarly, the output of the second 

hidden layer is: 

 [𝑝𝑝21 … 𝑝𝑝2𝑙𝑙] = 𝑓𝑓 �[𝑥𝑥11 … 𝑥𝑥1𝑘𝑘] �
𝑢𝑢11 … 𝑢𝑢1𝑙𝑙
⋮ ⋱ ⋮
𝑢𝑢𝑘𝑘1 … 𝑢𝑢𝑘𝑘𝑘𝑘

��+ [𝑏𝑏21 … 𝑏𝑏2𝑙𝑙] (9-8) 

where l is the hidden neuron number in the second hidden layer. The output of the MLP is: 

 [𝑝𝑝1 … 𝑝𝑝𝑛𝑛] = 𝑓𝑓 �[𝑥𝑥21 … 𝑥𝑥2𝑙𝑙] �
𝑣𝑣11 … 𝑣𝑣1𝑛𝑛
⋮ ⋱ ⋮
𝑣𝑣𝑙𝑙1 … 𝑣𝑣𝑙𝑙𝑙𝑙

��+ [𝑏𝑏31 … 𝑏𝑏3𝑛𝑛] (9-9) 

At the end of the feedforward propagation process, the loss is calculated by output and the 

expected value, Eq. (9-10) shows the loss function: 

 𝐿𝐿(𝑤𝑤, 𝑏𝑏) =
1

2𝑠𝑠
��𝑝𝑝𝑤𝑤,𝑏𝑏�𝑥𝑥(𝑖𝑖)� − 𝑦𝑦(𝑖𝑖)�

2
𝑠𝑠

𝑖𝑖=1

 (9-10) 

where s is the number of the input data, y is the expected output data, namely, the 

experimental flow stress values. For a single input datum, there is: 

 𝐿𝐿(𝑤𝑤, 𝑏𝑏) =
1
2
‖𝑦𝑦 − 𝑝𝑝‖2 (9-11) 

In the backpropagation process, the loss error information propagates sequentially along the 

output, hidden, and input layers. In order to renew weights, the weights’ effect on the loss 

function should be evaluated first. Take the weight and bias between the first neuron in the 

second hidden layer and the first neuron in the output neuron as an example: 

 

⎩
⎨

⎧
𝜕𝜕𝜕𝜕
𝜕𝜕𝑣𝑣11

=
𝜕𝜕𝐿𝐿
𝜕𝜕𝜕𝜕

×
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

×
𝜕𝜕𝜕𝜕
𝜕𝜕𝑣𝑣11

= −(𝑦𝑦 − 𝑝𝑝)𝑓𝑓′(𝑝𝑝)𝑝𝑝21

𝜕𝜕𝜕𝜕
𝜕𝜕𝑏𝑏31

=
𝜕𝜕𝐿𝐿
𝜕𝜕𝜕𝜕

×
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

×
𝜕𝜕𝜕𝜕
𝜕𝜕𝑏𝑏31

= −(𝑦𝑦 − 𝑝𝑝)𝑓𝑓′(𝑝𝑝)
 (9-12) 
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where c is the add value before the activation function operation. Then the weight and bias 

can be updated: 

 
𝑣𝑣11′ = 𝑣𝑣11 − 𝜂𝜂(𝑦𝑦 − 𝑝𝑝)𝑓𝑓′(𝑝𝑝)𝑝𝑝21
𝑏𝑏31′ = 𝑣𝑣11 − 𝜂𝜂(𝑦𝑦 − 𝑝𝑝)𝑓𝑓′(𝑝𝑝)  (9-13) 

The updated weights of the output neurons are: 

 �
𝑣𝑣11′ … 𝑣𝑣1𝑛𝑛′
⋮ ⋱ ⋮
𝑣𝑣𝑙𝑙1′ … 𝑣𝑣𝑙𝑙𝑙𝑙′

� = �
𝑣𝑣11 … 𝑣𝑣1𝑛𝑛
⋮ ⋱ ⋮
𝑣𝑣𝑙𝑙1 … 𝑣𝑣𝑙𝑙𝑙𝑙

� − 𝜂𝜂(𝑦𝑦 − 𝑝𝑝)𝑓𝑓′(𝑝𝑝) �
𝑝𝑝21 … 𝑝𝑝21
⋮ ⋱ ⋮
𝑝𝑝2𝑙𝑙 … 𝑝𝑝2𝑙𝑙

�

[𝑏𝑏31′ … 𝑏𝑏3𝑛𝑛′ ] = [𝑏𝑏31 … 𝑏𝑏3𝑛𝑛] − 𝜂𝜂(𝑦𝑦 − 𝑝𝑝)𝑓𝑓′(𝑝𝑝)

 (9-14) 

Take the weight between the first neuron in the first hidden layer and the first neuron in the 

second hidden layer an example to calculate the renewed weight: 

 
𝜕𝜕𝜕𝜕
𝜕𝜕𝑢𝑢11

=
𝜕𝜕𝐿𝐿
𝜕𝜕𝑝𝑝21

×
𝜕𝜕𝑝𝑝21
𝜕𝜕𝑐𝑐21

×
𝜕𝜕𝑐𝑐21
𝜕𝜕𝑢𝑢11

 (9-15) 

the first part 𝜕𝜕𝐿𝐿
𝜕𝜕𝑝𝑝21

 can be calculated: 

 

⎩
⎪⎪
⎨

⎪⎪
⎧
𝜕𝜕𝐿𝐿
𝜕𝜕𝑝𝑝21

= �
𝜕𝜕𝐿𝐿𝑖𝑖
𝜕𝜕𝑝𝑝21

𝑛𝑛

𝑖𝑖=1
= �

𝜕𝜕𝐿𝐿𝑖𝑖
𝜕𝜕𝑐𝑐𝑖𝑖

×
𝜕𝜕𝜕𝜕𝑖𝑖
𝜕𝜕𝑝𝑝21

𝑛𝑛

𝑖𝑖=1
𝜕𝜕𝐿𝐿𝑖𝑖
𝜕𝜕𝑐𝑐𝑖𝑖

=
𝜕𝜕𝐿𝐿𝑖𝑖
𝜕𝜕𝑝𝑝𝑖𝑖

×
𝜕𝜕𝑝𝑝𝑖𝑖
𝜕𝜕𝑐𝑐𝑖𝑖

𝜕𝜕𝜕𝜕𝑖𝑖
𝜕𝜕𝑝𝑝21

= 𝑣𝑣1𝑖𝑖

 (9-16) 

the second part 𝜕𝜕𝑝𝑝21
𝜕𝜕𝑐𝑐21

: 

 
𝜕𝜕𝑝𝑝21
𝜕𝜕𝑐𝑐21

= 𝑓𝑓′(𝑝𝑝21) (9-17) 

the third part 𝜕𝜕𝑐𝑐21
𝜕𝜕𝑢𝑢11

: 

 
𝜕𝜕𝑐𝑐21
𝜕𝜕𝑢𝑢11

= 𝑝𝑝11 (9-18) 

Combining Eq. (9-15), Eq. (9-16), and Eq. (9-17): 

 
𝜕𝜕𝜕𝜕
𝜕𝜕𝑢𝑢11

= ��
𝜕𝜕𝐿𝐿𝑖𝑖
𝜕𝜕𝑝𝑝𝑖𝑖

×
𝜕𝜕𝑝𝑝𝑖𝑖
𝜕𝜕𝑐𝑐𝑖𝑖

× 𝑣𝑣1𝑖𝑖
𝑛𝑛

𝑖𝑖=1
� × 𝑓𝑓′(𝑝𝑝21) × 𝑝𝑝11 (9-19) 
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Consequently, the weight and bias can be updated: 

 
𝑢𝑢11′ = 𝑢𝑢11 − 𝜂𝜂 ���

𝜕𝜕𝐿𝐿𝑖𝑖
𝜕𝜕𝑝𝑝𝑖𝑖

×
𝜕𝜕𝑝𝑝𝑖𝑖
𝜕𝜕𝑐𝑐𝑖𝑖

× 𝑣𝑣1𝑖𝑖
𝑛𝑛

𝑖𝑖=1
� × 𝑓𝑓′(𝑝𝑝21) × 𝑝𝑝11�

𝑏𝑏21′ = 𝑏𝑏21 − 𝜂𝜂 ���
𝜕𝜕𝐿𝐿𝑖𝑖
𝜕𝜕𝑝𝑝𝑖𝑖

×
𝜕𝜕𝑝𝑝𝑖𝑖
𝜕𝜕𝑐𝑐𝑖𝑖

× 𝑣𝑣1𝑖𝑖
𝑛𝑛

𝑖𝑖=1
� × 𝑓𝑓′(𝑝𝑝21)�

 (9-20) 

For the same reason, the weight 𝑤𝑤11 can be renewed as well: 

 
𝑤𝑤11′ = 𝑤𝑤11 − 𝜂𝜂 ��� �

𝜕𝜕𝐿𝐿𝑖𝑖𝑖𝑖
𝜕𝜕𝑝𝑝𝑖𝑖𝑖𝑖

×
𝜕𝜕𝑝𝑝𝑖𝑖𝑖𝑖
𝜕𝜕𝑐𝑐𝑖𝑖𝑖𝑖

×
𝜕𝜕𝑐𝑐𝑖𝑖𝑖𝑖
𝜕𝜕𝑝𝑝1𝑗𝑗

×
𝜕𝜕𝑝𝑝1𝑗𝑗
𝜕𝜕𝑐𝑐1𝑗𝑗

𝑢𝑢1𝑗𝑗
𝑙𝑙

𝑗𝑗=1

𝑛𝑛

𝑖𝑖=1
�× 𝑓𝑓′(𝑝𝑝11) × 𝑥𝑥1�

𝑏𝑏1′ = 𝑤𝑤11 − 𝜂𝜂 ��� �
𝜕𝜕𝐿𝐿𝑖𝑖𝑖𝑖
𝜕𝜕𝑝𝑝𝑖𝑖𝑖𝑖

×
𝜕𝜕𝑝𝑝𝑖𝑖𝑖𝑖
𝜕𝜕𝑐𝑐𝑖𝑖𝑖𝑖

×
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𝜕𝜕𝑝𝑝1𝑗𝑗

×
𝜕𝜕𝑝𝑝1𝑗𝑗
𝜕𝜕𝑐𝑐1𝑗𝑗

𝑢𝑢1𝑗𝑗
𝑙𝑙

𝑗𝑗=1

𝑛𝑛

𝑖𝑖=1
�× 𝑓𝑓′(𝑝𝑝11)�

 (9-21) 

After finishing an update of weights and biases, the backpropagation MLP finishes one 

iteration. The process will continue till the loss meet the set value or the iteration meets the 

maximum number. The operation process flow chart of the backpropagation MLP is 

illustrated in Fig.9. 2. 

 

Fig.9. 3. Operation mechanism flow chart of back propagation MLP. 
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9.2 Regression verification 

Due to flow behavior modeling being a four-dimensional nonlinear problem, a one-hidden 

layer perceptron is able to handle it. In this work, Bayesian regularization was adopted in the 

training process. In order to determine the hidden layer number, the trial-and-error method 

was adopted, and the MSE and R value were hired as indictors. The variation of model 

accuracy with the number of hidden layer neurons is shown in the following figure. 

 

Fig.9. 4. The MSE and R variation along with the hidden layer neuron number. 

It is obvious in Fig.9. 4 that the MSE and R keep stable after the neuron number reaches 5. 

Therefore, the hidden neuron number is determined as 5. The maximum iteration number 

was set as 1000. The error curve drops sharply in the initial stage, then becomes slight after 

100 iterations. After 400 iterations, the error change becomes stable until the algorithm found 

the best training result after 798 iterations, with the MSE 0.82284 and R 0.9998, see Fig.9. 5 

and Fig.9. 6. 
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Fig.9. 5. MSE variation during the optimization process. 

The Fig.9. 5 shows the fitting performances of the training and test data groups. 

 

Fig.9. 6. The fitting performances of the training and test data groups. 
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As can be checked in Fig.9. 6, all R values are above 99.98%, which indicates the predicted 

data keep excellent correlation relationships with the expected data. In addition to this, the 

vast majority of errors are concentrated around 0, which reveals the high accuracy of the 

established back propagation MLP model. In sum, the established model is fully able to 

describe the flow behavior of experimental Al-Mg-Si alloy. 

Finally, the weights and biases were obtained. For the hidden layer: 

 �𝑤𝑤 = �
−9.886 −0.011 0.026 −8.362 −17.965
−0.269 −1.130 −0.358 −0.249 −0.987
0.171 −0.037 0.011 0.165 0.082

�

𝑏𝑏 = [−10.852 0.443 −0.424 −10.001 −21.141]
 (9-23) 

For the output layer: 

 �𝑤𝑤 = [−17.784 −1.052 5.469 60.066 −26.371]
𝑏𝑏 = 18.045

 (9-24) 

 

Fig.9. 7. Regression verification of the MLP model at different experimental deformation 
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conditions, divided by strain: (a) 0.001 s-1, (b) 0.01 s-1, (c) 0.1 s-1, and (d) 1 s-1. 

In order to make a comparison, the predicted flow stress is scattered on the experimental 

flow stress curves. Fig.9. 6 illustrates that all predicted points locate well at the curves. The 

trend of flow stress also maintains a high degree of consistency under all designed 

deformation conditions. In order to guarantee the computing time of simulation works, we 

controlled the structure of the MLP model as simply as possible. The accuracy of the MLP 

model will improve as the model becomes more complex. Compared with the RT and RF 

models, the structure of the MLP model is relatively concise. 
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10 DISCUSSION 

10.1 Performances evaluation of models by R 

R was proposed by Karl Pearson and was designed to describe the linear correlation 

closeness between the studied variables. The Pearson correlation coefficient is the most 

commonly used one adopted in this work. The R is calculated using the product difference 

method, which is also based on the deviation between two variables and their respective 

mean values. The degree of correlation between the two variables is reflected by multiplying 

the two deviations: 

 𝑅𝑅 =
𝐶𝐶𝐶𝐶𝐶𝐶 (𝑌𝑌,𝑃𝑃)

�𝑉𝑉𝑉𝑉𝑉𝑉|𝑌𝑌| 𝑉𝑉𝑉𝑉𝑉𝑉|𝑃𝑃|
 (10-1) 

where 𝐶𝐶𝐶𝐶𝐶𝐶 (𝑌𝑌,𝑃𝑃) is the covariance of Y and P, Y is the set of the experimental flow stress 

data, P is the set of the predicted flow stress data, 𝑉𝑉𝑉𝑉𝑉𝑉|𝑌𝑌| and 𝑉𝑉𝑉𝑉𝑉𝑉|𝑃𝑃| are variances of Y and 

P. 

Correlation plots are generally used to reflect the correlation direction and relationship 

between two variables. The correlation plots about predicted stress values and experimental 

values are presented in Fig.10. 1. The flow stress points were selected from strain 0.1 to 0.8 

at an interval of 0.1. To make a clear display, the confidence bands, confidence ellipses, and 

prediction bands are added, with a degree of confidence of 95%. In addition to this, the 

perfect fit lines (namely, all predicted stress values are consistent with the experimental 

stress values) are drawn. 
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Fig.10. 1. Correlation plots of established models: (a) MLL, (b) GAM, (c) SVR, (d) RT, 
(e) RF, (f) MLP. 

As can be seen in Fig.10. 1(a), the MLL model presents the worst correlation. To be 

specified, the confidence band and confidence ellipse are the most prominent among all 

models, revealing the most significant error. Moreover, the largest angle exists between the 

linear fitting and the perfect match lines. The areas of confidence bands, confidence ellipses, 

and prediction bands gradually decrease in the order of MLL, GAM, SVR, RF, MLP, and RT, 
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and so do the angles between linear fitting lines and perfect fit lines. On the contrary, the R 

gradually increases and approaches the critical correlation value of 1, indicating the related 

performance enhancement. It is clear that the RT model and the MLP model see the most 

excellent correlation, with R values of 0.99998 and 0.99978. 

However, the determination of error by R heavily depends on the number of evaluation 

samples. For example, when the number of sample groups is 1, the absolute value of the 

correlation coefficient is always 1. Consequently, more evaluation methods are needed. 

10.2 Performances evaluation of models by RE 

RE refers to the difference between the actual observation value and the estimated value in 

mathematical statistics. If the regression model is correct, the RE can be regarded as the 

observation value of the error. Residual analysis is often used to examine the reliability of 

data and the rationality of model assumptions. The mathematic form of RE is quite simple in 

the present work: 

 𝑅𝑅𝑅𝑅 = 𝑝𝑝𝑖𝑖 − 𝑦𝑦𝑖𝑖  (10-2) 

i is the sample number of the flow stress. 

The residual plots can help determine whether the fitted linear model meets the relevant 

requirements, see Fig.10. 2. The closer the residual value approaches the horizontal axis of 0, 

the smaller the difference. The RE range of the MLL model is -30~30 MPa, accounting for 

the most extensive error range, and followed by the GAM model, with the RE range of -
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20~30 MPa. At moderate stress, the REs are the largest, indicating the poor performance of 

the model in this stress range. 

 

Fig.10. 2. Residual error plots of established models: (a) MLL, (b) GAM, (c) SVR, (d) RT, 
(e) RF, (f) MLP. 

The RE ranges of the SVR model and the RF model are similar (-20~10 MPa), while the 

SVR model shows large errors in the stress range of 100~150 MPa. As for the RF model, the 

error size is evenly distributed among various stress values. 
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The RE values of the RT model and MLP model have shrunk to the single-digit range, 

demonstrating extreme error accuracy. Compared with the MLP model, the error of the RT 

model is more compact, which means that the model has the highest accuracy. 

10.3 Performances evaluation of models by δ distribution 

The relative error refers to the ratio percentage value of measured absolute error and the true 

value. Generally speaking, the δ is able to reflect the credibility of measurements. It can be 

presented by the ratio of the absolute error and the real value: 

 𝛿𝛿 =  
𝑦𝑦𝑖𝑖 − 𝑝𝑝𝑖𝑖
𝑦𝑦𝑖𝑖

× 100% (10-3) 

The relative error not only indicates the size of the error but also points out the directions of 

positive or negative. By reflecting the predicted deviation values with the same unit 

dimension, the relative error represents the actual size of the true value deviation accurately. 

At the same time, the Gaussian distribution function is utilized to verify the uniformity of 

error distribution: 

 

⎩
⎪⎪
⎨

⎪⎪
⎧𝑦𝑦 = 𝑦𝑦0 + 𝐴𝐴𝑒𝑒−

(𝛿𝛿−𝜇𝜇)2
2𝜔𝜔2

𝜔𝜔 = �
1

𝑁𝑁 − 1
� (𝛿𝛿 − 𝜇𝜇)2

𝑁𝑁

𝑖𝑖=1

𝜇𝜇 =
1
𝑁𝑁
� 𝛿𝛿𝑖𝑖

𝑁𝑁

𝑖𝑖=1

 (10-4) 

where both 𝑦𝑦0 and A are constants, 𝜔𝜔 is the standard deviation of 𝛿𝛿, 𝜇𝜇 is the average value of 

𝛿𝛿, 𝑦𝑦 is the probability of the 𝛿𝛿. In general, the closer 𝜔𝜔 and 𝜇𝜇 to 0, the higher precise the 

model is. The δ distribution plots are presented in Fig.10. 3 for further evaluation. 
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Fig.10. 3. δ distribution plots of established models: (a) MLL, (b) GAM, (c) SVR, (d) RT, 
(e) RF, (f) MLP. 

In Fig.10. 3(a), the δ distribution has good normal distribution characteristics, whereas the δs 

are relatively high (some errors even out of 100%). Additionally, the MLL model shows the 

biggest 𝜔𝜔  (12.44158) and 𝜇𝜇  (-7.49327), which explains the insufficient accuracy of the 

model. Compared with the MLL model, more relative errors of the GAM, SVM, and RF 

models concentrate at the low error range. Although the SVM model provides the lowest 𝜇𝜇 

(14.32932) among the mentioned three models, it does not mean this model owns the highest 
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precision. This is because the low 𝜇𝜇 credits to the offset of positive and negative errors. 

However, the low 𝜇𝜇 implies the uniform error distribution symmetry. Due to the introduction 

of square error, the 𝜔𝜔 does not subject to the influence of positive and negative values. The 

RF model shows the least 𝜔𝜔 among three models. With respect to the RT model and MLP 

model, the RT model has the narrowest 𝛿𝛿 distribution range (from -6 % to 3 %), but the MLP 

model offers better 𝛿𝛿 distribution. Therefore, the 𝜇𝜇 value of the RT model is higher than that 

of the MLP model. On the opposite, the 𝜔𝜔 value of the RT model is lower than that of the 

MLP model. 

10.4 Performances evaluation of models by AARE 

AARE refers to the average absolute values of deviations of all single observation values and 

arithmetic mean. Different from the relative error, the problem of mutual cancellation of 

errors can be avoided by AARE. Consequently, the AARE can better reflect the actual 

situation of the prediction error. The following is the mathematic form of AARE: 

 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 =
∑ �𝑦𝑦𝑖𝑖 − 𝑝𝑝𝑖𝑖

𝑦𝑦𝑖𝑖
�𝑁𝑁

𝑖𝑖=1

𝑁𝑁
 (10-5) 

All predicted and experimental flow stress values were imported into the above equation, 

and the AAREs for each model are listed in Table 10-1. 

Table 10-1 AAREs of different established models. 

 MLL GAM SVR RT RF MLP 
AARE 0.361758 0.165236 0.12158 0.00708 0.149465 0.019797 
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It can be seen that the RT model exhibits the smallest AARE (0.00708), namely, the highest 

model accuracy. Next is the MLP model, with a value of 0.19797. The errors of GAM, SVR, 

and RF models are generally close, with corresponding AARE values of 0.165236, 0.12158, 

and 0.149465, respectively. Besides, the MLL model performs worst, with a value of 

0.361758. In order to make a detailed study, the AAREs in deformation temperatures and 

different process strain rates were summarized, and the AARE histograms are displayed in 

Fig.10. 4. 

 

Fig.10. 4. AAREs of established models (a) in different temperatures, and (b) in different 
strain rates. 
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From Fig.10. 4(a), we can see that the MLL model shows the highest AAREs in all 

temperatures, and the errors increase with the increase of temperature (from 0.21 to 0.5). The 

SVR, RT, and MLP models show similar increase trends (0.05 to 0.21, 0.005 to 0.01, and 

0.01 to 0.05, respectively), but the AAREs are much lower than the MLL model. From 300 ℃ 

to 370 ℃, the GAM sees a downtrend from 0.12 to 0.04 in AARE. After that, the AARE rises 

to 0.38 till the temperature 510 ℃. The AARE variation of the RF model performs a 

difference, and it keeps a nearly constant (nearly 0.1) from 300 to 440 ℃, while it soars to 

0.32 at 510 ℃. 

As for Fig.10. 4(b), the MLL model still contributes the largest AAREs, but the difference is 

less obvious than Fig.10. 4(a). The AARE (0.37) of the MLL model occurs at the strain rate 

of 0.01 s-1. The GAM keeps high AAREs under all strain rates except 0.01 s-1, with an AARE 

of 0.035. The AAREs of the SVR, RF, RT, and MLP models show a convex distribution with 

increasing strain rate, with the maximum values (0.17, 0.17, 0.01, and 0.04, respectively) 

also appearing at 0.01 s-1 strain rate. The above phenomenon indicates that most models lose 

accuracy at strain rate 0.01 s-1. It is worth noting that the RT and MLP models still keep low 

errors under these conditions. 

10.5 Summary of the chapter 

In this chapter, the accuracy performances of the established models are examined by 

statistical strategies such as correlation coefficient, residual error, relative error distribution, 
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and average absolute relative error. The comparison results show that the RT model gives the 

strongest correlation, shows the narrowest residual and relative error ranges, and provides 

the lowest AARE. All evaluation results point out the fact that the RT model owns the highest 

accuracy. The next is the MLP model, which presents excellent regression ability as well. 

Additionally, the MLP model has a more uniform error distribution than the RT model. 

Although the GAM model, the SVR model, and the RF model are able to take the regression 

work, errors still exist when compared with the MLP model and the RT model. Regardless of 

which statistical analysis method is used as the background, the MLL model performs the 

worst. In other words, the MLL model fails to describe the flow behavior of the AA6061-T6 

alloy at the experimental conditions. Eventually, the MLP and RT models are recommended 

as the flow stress indicator of the studied alloy. 
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11 CONCLUSION 

Three parts were divided in this work to study the deformation mechanism and the 

performance of the AL-Mg-Si AA6061-T6 alloy. In the first part, the Gleeble-3800 thermal 

simulator was adopted to carry out the thermal axial compression tests. Sixteen flow 

behavior curves were obtained. The deformation mechanism dominated by DRV and CDRX 

is discussed by combining the flow stress characteristics. Based on the DMM theory, the 

thermal processing maps are plotted in the second part. In the third part, six different ML 

regression models are utilized to regress the flow behavior of the AA6061-T6 alloy at 

designed deformation conditions. Statistical analysis methods evaluate the description 

performances.  Through the analysis and comparisons of the experiment data, the following 

conclusions are received: 

(1) The flow behavior of the AA6061-T6alloy is the result of the combined effect of WH 

and DS. WH is a manifestation of dislocation multiplication and accumulation. DS is 

caused by DRV and DRX. In this work, CDRX is a typical example of softening; 

(2) CDRX can be divided into two situations: one is a continuous decrease after the stress 

reaches its peak, during which CDRX occurs continuously; Another type is the gradual 

storage of potential energy in materials at low strain rates, with the intermittent 

occurrence of CDRX, mainly manifested by a wavy flow curve; 

(3) On the basis of DMM and Ziegler’s theory, the power dissipation is studied, and the 

thermal processing maps along different deformation conditions are established. The 
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desirable thermal processing conditions are determined as 300 ℃ and 0.001 s-1, 300 ℃ 

and 1 s-1, 440~510 ℃ and 0.1~1 s-1; 

(4) The operation mechanisms of ML algorithms (MLL, GAM, SVR, RT, RF, and MLP) are 

introduced and induced in this work. Aims at describing the flow behavior of the studied 

alloy, six regression models were built; 

(5) Statistical methods (R, RE, relative error distribution, and AARE) were adopted to 

evaluate the regression performances of the ML models. RT possesses the best 

performance (R 0.99995, AARE 0.00708), and the MLP model also shows excellent 

performance (R 0.99978, AARE 0.019797). The precision of the MLL model is the worst 

(R 0.90563, AARE 0.361758); 

(6) In practical applications, models can be flexibly selected according to different needs. If 

high accuracy is required, RT models can be selected; If a high-precision and a 

structurally simple model is needed, the MLP model can be considered. In addition, the 

MLP model has specific equation expressions, but the operation cannot be explained. 
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