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The Effects of Stable Thermal Stratification on
the Onset of Double Diffusive Convection
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ABSTRACT

The time of the onset of double—diffusive convection in time—dependent, nonlinear
concentration fields is investigated theoretically and experimentally. The initially quiescent
horizontal fluid layer with a uniform temperature gradient experiences sudden” concentration
change from below. but its stable thermal stratification is to affect concentration effects which
invoke convective motion. The related stability analysis, including Soret effect, is conducted on
the basis of the propagation theory. The resulting critical time to mark the onset of regular cells
are obtained as a function of the thermal Rayleigh number, the solute Rayleigh number, and the
Soret effect coefficient. For a certain value of the Soret effect coefficient, the stable thermal
gradient promote double—diffusive convective motion onset of convective instability in an
initially quiescent,
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I. INTRODUCTION

Buoyancy—driven convection in double—
diffusive  systems has been studied
extensively in connection with wide science
and engineering situations such as
oceanography and crystal growth processing,
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solar ponds and natural gas storage tanks
But the inherent complexity in practical
systems makes it very difficult to predict the
stability criteria by which the effect of
natural convection is determined in the
various systems. This comes from the fact
that the solute concentration and temperature
profiles are nonlinear and time—dependent.
When an initially motionless, stable
thermal—stratified fluid layer 1is placed
between two horizontal plates with its
concentration fields change suddenly, natural
convection will set in at a certain time,
depending on both the thermal Rayleigh
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number and the solute Rayleigh number” .
Therefore, it becomes an important problem
to predict the critical time to mark the onset
of convective motion. For this purpose,
several theoretical models have been used in
deep—pool systems of high Ravleigh
numbers: the amplification theorym. energy
methodT). stochastic model”. and propagation
theoryy) Even though they are all good
models, the present double—diffusive
convection has been analyzed only by the
amplification theory. The amplification theory
has been quite popular. but it involves
difficulties in deciding the initial conditions
and also choosing the growth factor to
determine the onset time. Comparing with
other methods. the energy method predicts
the onset time of buovancy—driven
convection as lower bound. And the
stochastic model involves some arbitrariness.
But the propagation theory which we have
developed. decides deterministically the
criteria to mark the onset time bv using the
concentration or thermal penetration depth as
a length—scaling factor and transforming the
linearized perturbation equations. Predicted
values resulting from the principle of
exchange of stabilities have been consistent

with most of experimental data in systems of
[0 8]

laminar forced convection' and also
fluid—saturated porous laycrsm
Most of analysis on double diffusive

phenomena ignored the Soret effect'® ¥ In

some case, however, Soret effect plays

important roles in  double diffusion

characteristics, even if the temperature
. . 15).16)

gradients are not quite large . In present

study, the stability analysis based on the
propagation theory will be extended to the

onset of double—diffusive convection
incorporating Soret effect, and
electrochemical experiments will be

conducted to support the theoretical analysis.

Il. THEORETICAL ANALYSIS
2.1, Mathematical Formulation

The problem considered here is a
horizontal fluid laver confined between two
rigid boundaries separated by a distance “d”.
as shown in Fig. 1. The fluid laver is initially
qulescent at a constant concentration C, and
stably stratified by a uniform temperature
gradient. At time t=0 the concentration of
lower boundary is reduced and kept constant.
For large concentration difference svstems
natural convection will set in at a certain time
due to buoyancy forces. Under this condition
the density variation of fluid is assumed to

follow the usual equation of state.

p=p,[1-B(T-T,)+¥lc-C,)] (1

where p. T, C. B and ¥ represent the fluid
density. the temperature. the concentration,
thermal expansion coefficient and solutal
expansion coefficient, respectively. The
subscript “0” denotes the reference state.

The phenomenological equation
relating heat (JQ) and solutal diffusion flux
(J. )to the temperature and concentration can
be found as '*'?

3
Iy =—kVT—TC(5%}) vC (2)
1. =-a,[vc-s,cc vT] (3)

where k, p, D . as, S; and C are thermal
conductivity, chemical potential, Dufour

wole /v

Fig. 1.

Schematic diagram of system.
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coefficient, mass diffusivity, Soret coefficient
and solvent concentration respectively. Since
from the Onsager’s reciprocal rule D =a.$S,,
the Dufour coefficient is many order of
magnitude smaller than Soret coefficient in
liquid. Thefore the Dufour effect is normally
neglected in liquid.

The important parameters to
characterize the onset of motion in the
present system are the solutal Rayleigh

number Rs, the thermal Rayleigh number Ra,
the Schmidt number Sc , Lewis number Le
and Soret effect coefficient defined by

Re—8BATd" L _gmcd (v @
av . s a,
£=S5,CC Let
B
where g, o. v, AT, AC. and C denote the
gravitational  acceleration, the thermal
diffusivity, the kinematic viscosity. the
temperature difference, concentration
difference, and mean concentration of layer.
Under the linear stability theory, the
nondimensionalized conservation equations

incorporating the Soret effect are constituted
as follows '¥719:

1 o

—— -V N'w=Vip ~LeV'0 (4)
(SC pw )V w 19, —LeV/0,
%+Rs%w=vf(¢l+se,) (5)
09, a9,
¥+Ra % w=LeV,29, (6)

where V?is the three—dimensional Laplacian,
and V.? is the horizontal one with respects to
x and y. Here z, 1, w1.80, 081, ¢0 and ¢;. are the
dimensionless vertical distance, time, basic
temperature, perturbed temperature, basic
concentration and perturbed concentration,

respectively. Each variable has been
nondimensionalized by using d, d¥/a a/d, AT,
vor/gBd"’, AC and va./gyd 3 respectively. The
proper boundary conditions are

w]=2ﬂ=¢,=9,=0 for z=0 and z=1 (7)
oz

0,=6,+1=0 at z=0 (8)

9, =0,+1=1 at z=1 9

Eq. (7) satisfies the condition of no

fluctuation of perturbed quantities at rigid
boundaries.

Through the method of separation of
variables, the Graetz type solution for the
basic concentration field is easily obtained as

0, = z-iisin(mtz)exp(-nznzt) ao

a=l NTT

For the deep—pool system of small t, the
basic concentration field is represented by

¢o=erf[4z ] (11)
T

For the thermally stablely—stratified fluid
laver. the dimensionless temperature field
satisfving egs. (8) and (9) will be linear as
shown in Fig. 1. Therefore the basic density
field satisfving the equation of state can be
defined as

5=-1+¢, -Raleg (12)
Rs
where P denotes the nondimensionalized

basic density defined as (p-p,)ACY/p, . The
resultant variation of the profile of the basic
density is shown in Fig. 2 where maximum
magnitude of density locates within the fluid
layer. The density profile is quite similar to
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that of the Ueda et al.’s systemm

2.2. Propagation Theory

For a given Rs, Sc, Ra, Le and ¢ the
time to mark the onset of convective motion
is to be found under the principle of
exchange of stabilities from eq. (4)-(6),
subjected to the boundary condition (7).
Even though the initially stratified density
field may reduce the magnitude of the
generated disturbances, the disturbances are
to be generated continuously. Therefore the
density distribution for molecular diffusion of
heat and ion in aqueous solution is time-—
dependent. This is a formidable task to obtain
quantitative results for the onset time of the
double—diffusive convection. In frozen—time
model the terms involving d()fot are
neglected and therefore the system becomes
time—independent. The proper initial
conditions at T=0 are required in stochastic
model and amplification theory. Among the
models the amplification theory is quite
popular but its amplification factor to
represent manifest convection should be
decided experimentally. However, the
propagation theory described below is a
rather simple, deterministic approach even
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Fig. 2. Base density profiles with respect Ra

though it involves the transient effect and
for Rs=10", Le=300 and 1=0.001.
According to the normal mode analysis,
convective motion is assumed to exhibit the
horizontal periodicity'®. Then the perturbed
quantities are  written in terms of
dimensionless wave numbers a, and a, as

[w,(z.x,y.2)9,(t.x,y.2) 8, (t,x, y,2)]
= {w,'(T,z).q): (T,z).O,'(‘t,z)]exp[i(axx +ayy)] (13)

where ‘i° is the imaginary number,.
Substitution of the above eq. (13) into eq.
(4)—(6) produces the wusual amplitude
functions in terms of the dimensionless
horizontal wave number a=(ai+a;)/2. The
propagation theory employed for finding the
critical time t_ is based on the assumption
that disturbances at the onset of convection
are mainly confined within the solutal
penetration depth A, and the following scale
analysis in terms of A, (xt"?)would be valid

for perturbed quantities of eq. (4)—(6),

respectively:

%~ ,%&~a,v2cl~a,§—; (14)
w gYA,

gyCl~vA—2C‘, W, ~ " o (15)

Then, the following peculiar relation is
obtained from the above equations:

N Rs;

<

3 -1
¥, oV _AC[gyATAC] _AC (16)

oz gy A, o,V

where Rs, is the solutal Rayleigh number
based on the length A, and concentration
difference AC. With increasing Rs both the
dimensionless critical time 1, and the
corresponding A, will become smaller. Now it
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is assumed that for small t the characteristic
value of Rs, (=Rst"?) will become a constant
since pC,/0Z|~AC/A, in eq. (16). This trend
was predicted by Fosters), Wankat and
Homsy”, Jhavary and Homsy® and Choi et
al.Y. In this analysis, we assumed
gYC, >>gPT, , that is, natural convection is
governed mainly by concentration difference.

With the above reasoning the
dimensionless amplitude functions of
disturbances, based on relation (13), are
assumed to have the form of

[w;(z,2)8;(r,2).0; (v, 2)|= [ew (€)' @G 0° )] (17

where §=z/\/;. The similarity variable § is
introduced to take into account of the
position and temporal dependencies of
disturbances. By using relations (13) and
(17) the following new set of dimensionless
stability equations are obtatned,

(Dz—a'sz' =§lg(—%§D’+%a'ZCD—a'z}v'
+a” (0" —Led") (18)

(Dz+icD—a.z }'=—%W. (20)

with boundary conditions:
w =Dw' =¢"=0"=0 for {=0and{—oe (21)

where a"=avt, Rs'=Rst¥?, Ra’ =Rat® and
D=d/d{ . These equations involve time—
dependent properties implicitly. It is assumed
that a", Ra" and Rs are all eigenvalues and

the principle of exchange of stabilities is kept.

This is essence of the propagation theory.
For a given Sc, Le, a", € and Ra" the
minimum value of Rs' will be found
numerically.

2.3. Solution Method

In order to integrate the stability
equations, eq. (18)—1(21), trial value of the
eigenvalue Rs' and the boundary conditions
D'w", D¢ and D8 at {=0 are assumed
properly for given Sc, Le, a', € and Ra’.
Here the value of Sc and Le are fixed at
2100 and 300, respectively, in order to
consider double diffusion of heat and copper
ion in aqueous sulfuric acid and copper
sulfate solution. Since boundary conditions
represented by eq. (21) are all homogeneous,
the value of Dw at {=0 can be assigned
arbitrarily. This procedure is based on the
outward shooting method in which the
boundary value problem is transformed into
the initial value problem. The trial values,
with together the four known conditions at
the heated boundary, give all the information
to make numerical integration. The
integration based on the 4th—order Runge-—
Kutta method is performed from (=0 to
fictitious distance to satisfy the infinite
boundary conditions. By using the Newton—
Raphson iteration the trial value of Ra’,
D'w’. D¢ and DO  are corrected until the
stability equations satisfy the infinite
boundary conditions within the maximum
relative tolerance of 107 Then, by
increasing the distance step by step, the
above integration is repeated. Finally, the
value of Rs" is decided through the
eXtrapolation.

IIl. RESULTS AND DISCUSSION

With changing values of a’ and then
Rs". the neutral stability curves are obtained
for Le=300 which denotes the ratio of
molecular diffusivity for heat to that for ion
transfer. And, also the Schmidt number is
taken to be 2100 for the present system
involving double diffusion of heat and copper
ion in aqueous solution. The resulting neutral
stability curves are shown in Fig. 3.
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According to the present theory it is
considered that for a given Ra’" the minimum
value of Rs’ and a", as shown in Fig. 3,
characterizes the critical condition of
convective motion. By using the relation of
Rs:=Rs,/E and Ra, =Rat!, we can obtain
the critical time 1, for a given Rs and Ra.
For a given Sc, Le and Rs, as Ra
increases the onset time is further delaved
for £€20. However, this trend is reversed for
€< -1, as shown in Fig. 4. This figure shows
the effect of the temperature gradient on the
critical time. The results are for several
values of Ra, the minimum or maximum
bound of this figure, i.e. T,=7.53Rs""?
corresponds to the case of the zero
temperature gradient of Ra=0 . In this
limiting case the Lewis number and Soret
coefficient do not affect the critical time, and
the present values of 1, are about on fourth
of Ueda et al’s results predicted by the
amplification theorv'” . It is thought that the
most dangerous instabilities initiated at the
time t. will grow to manifest themselves
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Fig. 3. Neutral stability curves for Sc=2100,
Le=300 and £=0.

around the time 41, . For deep—pool
system, 41 represents manifest convection
very well'®. This may support Foster's
viewpoint that with correct dimensionless
relations obtained the times predicted for the
time of convection motion would be too short
by a factor of about 4%

IV. CONCLUSION

In the present study, the onset of double—
diffusive convection in an initially stably
stratified fluid layer with temperature
gradient has been analyzed by using
propagation theory. Quantitative results for
the onset time are presented for the specific
situation of double diffusion of heat and
copper ion in aqueous solution. The layer
with larger Ra requires the larger buoyancy
force to induce convective motion because of
more stable stratification for €>20. For a
certain range of g, that is e€<-1, further
increase of Ra promote the convective
motion. This feature implies the Soret effect
plays an important role in double—diffusive
convection,

Rs".

Ra’.

Fig. 4. Critical conditons for various €.
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