A NOTE ON STRATIFFBLE SPACES AND \mathfrak{N}-SPACES

by Sang Hun Rhee.

Contents

1. Introduction
2. Definitions and elementary properties
3. Main theorems
4. Properties by mappings
5. Conclusions

1. Introduction

Stratifiable spaces have been introduced by Borges [1] and [4] CEDER proved that any \boldsymbol{x}-space is k-semistratifiable spaces. In this note, we give a simple characterization of \boldsymbol{x}-space. We show that the image of Nagata space under a closed pstuco-open finite to one compact mapping is stratifiable and that the image of a compact and \boldsymbol{X}-space under a k-mapping is an \mathfrak{k}-space. In the end we investigates the properties of the image of \boldsymbol{k}-spaces and stratifiable spaces under \boldsymbol{N}-mapping.

2. Definitions and elementary properties

DEFINITION 2.1. [1]. A topological space X is a stratifiable space if X is T_{1} and, to each open $U \subset X$, one can assign a sequence $\left\{U_{n}\right\}_{\infty=1}^{\infty}$ of open subsets of X such that
(a) $U_{n}^{-} \subset U$,
(b) $\bigcup_{n=1}^{\infty} U_{n}=U$,
(c) $U_{n} \subset V_{n}$ whenever $U \subset V$,

This correspondence $U \rightarrow\left\{U_{n}\right\}_{n=1}^{\infty}$ is a stratification of X whenever the U_{n} satisfy (a), (b) and (c) of DEFINITION 2. 1.

DEFINITION 2.2. [5]. A topological space X is a semi-stratifiable space if, to each open set $U \subset X$, one can assign a sequence $\left\{U_{n}\right\}_{m=1}^{\infty}$ of closed subset of X such that
(a) $\bigcup_{n=1}^{\infty} U_{n}=U$,
(b) $U_{n} \subset V_{n} \quad$ whenever $U \subset V$.

The correspondence $U \rightarrow\left\{U_{n}\right\}_{i=1}^{\infty}$ is called a semi-stratification for the space X. M. Henry showed, in [5], that stratifiable spaces are semi-stratifiable spaces, but these implication cannot be reversed.

DEFINITION 2.3. [2]. A regular T_{1} space with a σ-locally finite k-network is called an x-space.

DEFINITION 2.4. [2]. A k-network \mathscr{P} for a space X is a family of subsets of X such that if $C \subset U$, with C compact and U open in X, then there is a finite uion R of members of \mathscr{P} such that $C \subset R \subset U$.

A network \mathscr{P} for a space X is a family of subsets of X such that if $x \in U$, with U open. then there is a $P \in \mathscr{P}$ such that $x \in P \subset U$.

DEFINITION 2.5. [2]. A k-semistratification of a space X is a semistratifiable $U \rightarrow\left\{U_{n}\right\}_{n=1}^{\infty}$ for the space X such that given any compact subset K with $K \subset U$, there is a natural number n with $K \subset U_{n}$.
M. Henry. [5], obtained the following.

LEMMA 2.5. A space X is k-semistratifiable if and only if to each closed set $F \subset X$, one can assign a sequence $\left\{U_{n}\right\}_{n=1}^{\infty}$ of open subsets of X such that
(a) $\bigcap_{n=1}^{\infty} U_{n}=F$
(b) $U_{n} \subset V_{n}$ whenever $U \subset V$,
(c) If $F \cap K=\phi$ with K compact in X,
then there is open set U_{n} with $U_{n} \cap K=\phi$.

Clearly stratifiable spaces are k-semistratifiable and k-semistratifiable spaces are semi-stratifiable, but these implications cannot be reversed.

Notation and terminology will follow that of J. L. Kelley [11] and all mappings will be continuous and subjective, and N is the set of natural numbers. we denote the interior of a subset A of a topological space by Int (A).

3. Main theorems

For this section, we consider the following terminologies. A collection \mathscr{B} of subsets of X is said to be a pseudo base if for each compact subset K of X and each open subset U of X containing K there is a $B \in \mathscr{B}$ such that $K \subset B \subset U$. Let \mathscr{S} be a subbase for a space X and let \mathscr{P} be a σ-locally finite family of subsets of X such that if $C \subset U \in \mathscr{C}$ with C compact, then $\exists R=\bigcup_{n=1}^{\infty} P_{i} \in \mathscr{P}$ such that $C \subset R \subset U$. We call such a family \mathscr{S}^{0} (after Michael's \mathscr{S} - k-pseudo base) an \mathscr{S}-k-network.

THEOREM 3.1. Let X be a regular T_{1}-space and \mathscr{S} be a subbase for X. Then X is \boldsymbol{x}-space iff it has a σ-locally finite \mathscr{S}-k-network.

PROOF. The necessity is trivial. To prove the condition sufficient, Suppose that $\mathscr{P}=\bigcup_{n=1}^{U} \mathscr{P}_{n}$ is a σ-locally finite \mathscr{S}^{-k}-network for X.

Let \mathscr{M} be the class of all finite subsets of N and for each $E \in \mathscr{M}$ put $\mathscr{F}(E)$ is the class of all finite intersections of members of $U\left\{\mathscr{P}_{n}: n \in E\right\}$. Since $U\left\{\mathscr{P}_{n}: n \in E\right\}$ is a subset of $\mathscr{F}(E)$ and each \mathscr{P}_{n} is locally finite. Then each $\mathscr{F}(E)$ is locally finite so that $\mathscr{F}=\cup\{\mathscr{F}(E): E \in \mathscr{M}\}$ is σ-locally finite. We shall show that \mathscr{F} is a k-network for X. First suppose that $C \subset U \in \mathscr{B}$, where C is compact \mathscr{B} is a base for X consisting of all finite intersections of members of \mathscr{S}. Then $U=\bigcap_{n=1}^{\infty}\left\{S_{i}: S_{i} \in \mathscr{S}\right\}$ and for each $i(i=1,2, \cdots n)$, there is a finite union R_{i} of members of \mathscr{P} such that $C \subset R_{i} \subset S_{i}$. Then $C \subset \bigcap_{i=1}^{n} R_{i} \subset U=\prod_{i=1}^{n} S_{i}$
and $\bigcap_{i=1}^{n} R_{i}$ can be expressed as a finite union of members of \mathscr{F}. For by constract and \mathscr{P} is a σ-locally finite \mathscr{S} - k-network for X. Now let U be an arbitrary open set, and $C \subset U=\bigcup B_{i}\left(B_{i} \in \mathscr{B}\right)\left(C\right.$ is compact). Then $C \subset \bigcup_{i=1}^{n} B_{i}=U\left(B_{i} \in \mathscr{B}\right)$ and $B_{i} \subset U$ for each i. Since C is normal. Let $\mathscr{C}=\left\{B_{i}: i=1,2,3, \cdots n\right\}$. Then \mathscr{U} is a point finite open cover of a normal C. Then it is possible to select an open set C_{i} for each B_{i} in \mathscr{U} in such a way that $\overline{C_{i}} \subset B_{i}$ and the family of all sets C_{i} is a cover of C. Hence for each i we have $C_{i} \subset C_{i}^{-} \subset B_{i}$. Therefore $C_{i} \subset R_{i} \subset B_{i}$ for each i. Applying the result of the previous paragraph, we can find $R_{1}, R_{2}, R_{3}, \cdots$ R_{n} in \mathscr{F} such that $C_{i} \subset R_{i} \subset B_{i}$ for all i. Now if $R=\bigcup_{i=1}^{n} R_{i}$, then $R \in \mathscr{F}$ and $C \subset R \subset U$.

DEFINITION 3.2. [9]. Let (X, \mathscr{T}) be topological space and let $g: N \times X \rightarrow \mathscr{F}$ such that $x \bigcap_{n=1}^{\infty} g(n, x)$ for each $x \in X$ if $y_{n} \in g(n, x)$ for each $n \in N$ implies that the sequence $\left\langle y_{n}\right\rangle$ has x as a cluster point. Then (X, \mathscr{T}) is called a first countable space.

DEFINITION 3.3. [9]. Let (X, \mathscr{F}) be a topological space and let $g: N \times X \rightarrow \mathscr{F}$ such that (1) $x \in \bigcap_{n=1}^{\infty} g(n, x) \quad$ for each $x \in X$.
(2) If $y_{n} \in g(n, x)$ and $P_{n} \in g\left(n, y_{n}\right)$ for each $n \in N$, implies that the sequence $\left\langle p_{n}\right\rangle$ has x as a cluster point. Then (X, \mathscr{F}) is called a γ-space.

DEFINITION 3.4. Let (X, \mathscr{G}) be topological space, let $g: N \times X \rightarrow \mathscr{G}$ such that (1) $x \in \bigcap_{n=1}^{\infty} g(n, x)$ for each $x \in X$.
(2) If $x_{n} \leqslant g(n, x)$ for each $n \in N$, implies that the sequence $\left\langle x_{n}\right\rangle$ has a cluster point. Then (X, \mathscr{F}) is called a q-space.

LEMMA 3.5. Let (X, \mathscr{G}) be a regular space in which points are G_{8}.. Then (X, \mathscr{T}) is a first countable space iff (X, \mathscr{F}) is a q-space.

PROOF : The necessity is trivial.

To converse, let X is a rezular q-space and let a point $x \in X$ is a G_{s}-subset of X. Then there is a function $g: N \times X \rightarrow \mathscr{T}$ such that $\{x\}=\bigcap_{n=1}^{\infty} g(n, x)$ and $x_{n} \in$ $g(n, x)$ for each $n \in N$, Then the sequence $\left\langle x_{n}\right\rangle$ has a cluster point in X. It follows that if $x_{n} \in g(n, x)$ for each $n \in N$, then every subsequence of $\left\langle x_{n}\right\rangle$ has x as its unigue cluster point, since $\bigcap_{n=1}^{\infty} g(n, x)=\{x\}$. Hence the sequence $\left\langle x_{n}\right\rangle$ has a cluster point x.

The following LEMMA is obvious from the DEFINITIONS.
LEMMA 3.6. Suppose a topological space X has a semi-stratification $U \rightarrow\left\{U_{n}\right\}_{n=1}^{\infty} \quad$ with the property that if U is an open in X and $P \in U$, then $P \in$ Int $\left(U_{n}\right)$ for some $n \in N$. Then X is a stratifiable.

By [4] LEMMA 3.5, and LEMMA 3.6. we obtain the following COROLLARY.
COROLLARY 3.7. Let X be a k-semistratifiable q-space in which points are$G_{0}{ }^{\prime}$. . Then X is stratifiable.

PROOF. Let U be an open set in a k-semistratifiable and q-space X and U $\left\{U_{n}\right\}_{n=1}^{\infty}$ is an increasing k-semistratification for the space X, and $P \in U$. Assumethat $P \subset X-\operatorname{Int}\left(U_{n}\right)$ for each $n \in N$. Since X is q-space, there exists decreasing sequence $\left\langle V_{(n)}\right\rangle$ of neighborhoods of P such that if $x \in V_{(n)}$ for each $n \in N$, then $\left\langle x_{n}\right\rangle$ has a cluster point in X. We may assume that each point x_{n} is in the open s $\geq t U$ and $\{P\}=\bigcap_{n=1}^{\infty} V(n)$. It follows that if $x_{(n)} \in V(n)$ for each $n \in N$, then every subsequence of $\left\langle x_{n}\right\rangle$ has P as its unique cluster point, so $\left\langle x_{(n)}\right\rangle$ convirges to P. Thus $\left\{x_{n}: n \in N\right\} \cup\{P\}$ is compact subset of U. Therefore exists a positive integer m such that $\left\{x_{n}: n \in N\right\} \cup\{P\} \subset U_{n}$ for each $n \geqq m$. which is contradict to choic $n g$: x_{n}. Thus by LEMMA $3.6, X$ is a stratifiable.

4. Properties by mappings

DEFINITION. 4. 1. [3] A mapping $f: X \rightarrow Y$ is compact if $f^{-1}(y)$ is compact for each $y \in Y$.

DEFINITION. 4.2. [3] A mapping $f: X \rightarrow Y$ is aka-mpping if $f^{-1}(K)$ is a compact subset of X whenever K is compact set in Y.

DEFINITION. 4.3. A mapping $f: X \rightarrow Y$ is called compact covering if every compact subset of Y is the image of some campact sibset of X.

EDWIN HALFAR [3] showed that if a mapping $f: X \rightarrow Y$ is clos?d and compact, then f is k-mapping.

DEFINITION 4.4. A mapping $f: X \rightarrow Y$ is pseudo-open if for each $y \in Y$ and any neighbourhood U of $f^{-1}(y)$. it follows that $y \in \operatorname{Int}[f(U)]$.

LEMMA 4.5. If $f: X \rightarrow Y$ is a pseudo-open finite-to-one mapping and X is a first countable space, then Y is first countable.

PROOF. Since f is finite to one, we put $f^{-t}(y)=\left\{x_{1}, x_{2}, \cdots x_{n}\right\}$ for every $y \in Y$. Then for each x_{i}, there exists a countable decreasing open neighborhood base $\left\{U_{\left(x_{i}\right)}^{n}\right\}_{n=1}^{\infty}$. Let $U^{n}=\bigcup_{i=1}^{m} U_{i=i}^{n}$ Then $\left\{\operatorname{Int}\left[f\left(U^{n}\right)\right]\right\}$ is a countable base of y. For, let U be an open neighborhood of \boldsymbol{y}. Then $f^{-1}(U)$ is an open neighborhood of f^{-1} (y). Hence there exists an integer k_{i} such that $U_{(i=1)}^{k_{i}} \subset f^{-1}(U)$. Let $k=$ max $\left\{k_{1}, k_{2}, \cdots k_{*}\right\}$. It follows that $y \in\left[n t\left[f\left(U^{*}\right)\right] \subset U\right.$.

Using an analogue to proof Theorem 2.3. in [5] the following LEMMA 4.6. may be proved.

LEMMA 4.6. If a mapping $f: X \rightarrow Y$ is a pseudo-open closed compact mapping and X is a k-semistifiable space, then Y is k-semistratifiable.

PROOF. If $F \subset Y$ be a closed, then $f^{-1}(F)$ is closed in X. For each closed set F of Y and each natural number n, let $F_{n}=\operatorname{Int}\left[f\left(f^{-1}(F)_{n}\right)\right]$ where $f^{-1}(F) \rightarrow f^{-1}$ $(F)_{n}$ is a dual k-semistratification for \boldsymbol{X}. we will show that the corres pondence $F \rightarrow\left\{F_{n}\right\}$ is a dual k-semistratification for Y. Since $f^{-1}(F) \subset f^{-1}(F)_{x}$ for each $n \in N$, $f^{-1}(F)_{n}$ is an open neighborhood of $f^{-1}(y)$ for each $y \in F$, and f is a pseudo open mapping, therefore, we have $F \subset \bigcap_{n=1}^{\infty} I n\left[f\left(f^{-1}(F)_{n}\right)\right]=\bigcap_{n=1}^{\infty} F_{n}$. For the reverse
direction, assume $z \in F$. Then $f^{-1}(z) \cap f^{-1}(F)=\phi$ witin $f^{-1}(z)$ compact in X, and therfore there exists a natural number n such that $f^{1}(z) \cap f^{-1}(F)=\phi$. Then $z\left(F_{n}\right.$ for some n consequently, we have $F=\bigcap_{n=1}^{\infty} F_{n}$. Next, if F and G are closed subsets of Y such that $F \subset G$, then clearly $\operatorname{Int}\left[f\left(f^{-1}(F)_{n}\right)\right] \subset \operatorname{lnt}\left[f\left(f^{-1}(G)_{n}\right)\right]$. Finally, et $K \cap F=\phi$ in Y with K compact and F closed in Y. Then $f^{-1}(K) \cap f^{-1}(F)=\phi$, $f^{-1}(K)$ is compact and $f^{-1}(F)$ is closed in X. Hence, $f^{-1}(K) \cap f^{-1}(F)_{n}=\dot{\phi}$ for some n. Therefore, $K \cap \operatorname{Int}\left[f\left(f^{-1}(F)_{m}\right)\right]=\phi$. By LEMMA 2.5., Y is k-semistratifiable.

THEOREM 4.7. Let X be a Nagata space. If $f: X \rightarrow Y$ is closed pseudo-open finite to one compact mapping. Then Y is stratifiable.

PROOF. By [4]. Since Nagata space are equivalent to the space is first countable and stratifiable. Since first countable and k - semistratifiable is stratifiabie. Hence by LEMMA 4.5. and LEMMA 4.6., Y is stratifiable.

COROLLARY 4.8. Let X be k-semistratifiable and if f is pseudo-open k-mapping and Y is first countable. Then Y is a Nagata space.

THEOREM. 4.9. If $f: X \rightarrow Y$ is a strongly continuous function. Then f is compact covering mapping.

PROOF. It is sufficient to show that image of any compact subset of X is compact. Let A be a compact subset of X. Since f is stronly continuous, therefore $f^{-1}(y)$ is open for every y in Y, then clearly $\left\{f^{-1}(y): y \in f(A)\right\}$ in an open covering of A. Hence there are the family many points $y_{1}, y_{2}, \cdots y_{n} \in f(A)$ such that $A \subset U$ ($\left.f^{-1}\left(y_{i}\right): i=1,2, \cdots n\right\}$. If $f(A)$ not compact, there is $z \in f(A)$ such that $z \neq y_{i}$ for every $i=1,2, \cdots n$, therefore there is a element $x \in A$ such that $f(x)=z$. Therefore $x \notin\left(1 f f^{-1}\left(y_{1}\right): i=1, \cdots n\right\}$, it is contradict. Hence $f(A)$ is compact.
S. MACDONALD AND S. WILLARD in [10] showed the following THEOREM 4. 10 -

THEOREM 4.10. X is compact if and only if every funtion image of X is regular.

T HEOREM 4.11. If $f: X \rightarrow Y$ is k-mapping and X is compact and X-space.

Then Y is \mathbb{N}-space.

PROOF. Since X is N-space, let $\mathscr{V}=\bigcup_{n=1}^{\infty} \mathscr{V}$ be a σ-locally finite k-network for X. We shall prove that $\mathscr{W}=\bigcup_{n=1}^{\infty} \mathscr{W}_{n}$, where $\mathscr{W}_{n}=\left\{f(V): V \in \mathscr{V}_{n}\right\}$, is a σ-locally finite k-network for Y. Since f is continıous, each \mathscr{W} will be locally finite in Y. To prove that \mathscr{W} is a k-network for Y, let K be a compact subset of Y and U be an open sabset of Y sah that $K \subset U$. Since f is k-mapping, $f^{-1}(K)$ $\subset f^{-1}(U)$, therefore $f^{-1}(K)$ is compact and $f^{-1}(U)$ is open set. Let R be a finite union of members of such that $f^{-1}(K) \subset R \subset f^{-1}(U)$. Hence $K \subset f(R) \subset U$ and $f(R)$ is a finite union of member of \mathscr{W}. since X is compact, by THEOREM 4.10. Y is regular. Y is \boldsymbol{N}-space.

COROLLARY 4.12. If $f: X \rightarrow Y$ is k-mapping and X is compact and X-space aind Y is first countable. Then Y is stratifiable.

PROOF : By THEOPEM 4.11, Y is \mathbb{N}-space and since \mathcal{k}-space is k-semistratifiable and Y is first countable, \boldsymbol{Y} is stratifiable.

DEFINITION 4.13. [9] Let X and Y be topolosical space, let $\Phi: X \rightarrow Y$ be a mapping, and let g be a CO -function for X. Th $\operatorname{sn} \Phi$ is an N-mapping relative to g if given any $y \in Y$. and neighborhood W of y, there is a neighborhood V of \boldsymbol{y} and a positive integer n such that if $g(n, x) \cap \mathbb{\Phi}^{-1}(V) \neq \phi$ then $\mathscr{T}(x) \in W$.

DEFINITION 4.14. [9], Let (X, \mathscr{G}) be topological space and let g be a function from $N \times \mathscr{F}$ into \mathscr{G}. Then g is called a COC-function for X if it satisfies these two conditions : (1) $x \in \bigcap_{n=1}^{\infty} g(n, x)$ for all $x \in X$,

$$
\text { (2) } g(n+1, x) \leqq g(n, x) \text { for all } n \in N \text { and } x \in X \text {. }
$$

By KENNETH ABERNEHY.[9], we have the THEOREM.

LEMMA. 4.15. If Y is a regular space in which points are G_{8}.. Then Y is q-space if and only if there is a metrizable space X and a open mapping from
X onto Y.
PROOF: By THEOREM 2.1 [9] and LEMMA 3.5. is obvious.

LEMMA 4.16. Let (X, \mathscr{T}) and Y be topological spaces. If $f:(X, \mathscr{G}) \rightarrow Y$ is mapping and Y is q-space and \mathbb{N}-space in which points are $G_{8}{ }_{s}$. Then f is an N-mapping.

PROOF, By LEMMA 3.5, Y is first countable and by [4], Y is k-semistratifiable. Therefore Y is stratifiable. Let h be a stratifiable function for Y, and define $g: N \times \mathscr{F} \rightarrow \mathscr{F}$ by $g(n, x)=f^{-1}[h(n, \mathbb{I}(x))]$. Since h is COC-function for X, therefore $f(x) \in h[n, f(x)]$ for every n. Hence $x \in f^{-1} f(x) \subset f^{-1}[h(n, f(x))]$ for every n, therefore $x \in g(n, x)$ for every n, and another condition is trivial. There -fore g is a COC-function for X. Now let $y \in Y$, and let W be an open set containing y. Then $Y-W$ is closed and $y \notin Y-W$, hence there exists an $n_{0} \in N$ such that $y \in U \overline{\left\{h\left(n_{0}, p\right): p \in Y-W\right\}}$. Let $V=Y-U \quad \overline{\left.h\left(n_{0}, p\right): p \in Y-W\right\}}$. Now if $g\left(n_{0}, x\right)$ $\cap f^{-1}(V) \neq \phi, \quad$ then $h\left(n_{i}, \Phi(x)\right) \cap V \neq \phi$. But this means that $\Phi(x) \in Y-W$.

THEOREM : 4.17. Let X and Y be topological spaces. If there is an opent N-mapping from X onto Y. Then Y is stratifiable.

PROOF, Let g be a COC-function for X reltive to which f is an N-mapping. Let $y \in Y, \quad n \in N$. Then choose any $s \in f^{-1}(y)$ and detine $h(n, y)=f[g(n, s)]$ for every n. We claim that h is a stratifiable for Y. Let H be closed in Y, and suppose that $p \in U \overline{\{h(n, z): z \in H}\}$, for each $n \in N$. Suppose $p \notin H ;$ then $p \in Y-H=W^{\prime}$. which is open. Thus there exists a neighborhood V of p and an $n_{0} \in N$ such that if $g\left(n_{0}, x\right) \cap f^{-1}(V) \neq \phi$ then $f(x) \in W$. Now since V is a neighborhood of $p, V \cap(l$ $(h(n, z): z \in H\}) \neq \phi$ for each $n \in N$. Thus there is a $z \in H$ such that $h\left(n_{0}, z\right) \cap V^{\prime} \phi$ Therefore, if t is such that $h\left(n_{0}, z\right)=f\left[g\left(n_{0}, t\right)\right]$, we have $g\left(n_{0}, t\right) \cap f^{-1}\left(V^{\prime}\right) \pm \phi_{0}$. But this implies that $f(t)=z \in W$, an obvious contradition.

5. Conclusions

In a regular T_{1}-space and if \mathscr{S} is a subbase for the space, we are investigated
that the space is \mathbb{N}-space iff it has a σ-locally finite \mathscr{S} - k-network. Also obtained that if a k-semistratifiable q-space in which points are $G_{v^{\prime}, \text {, }}$ then the space is stratifiable, and that if a regular space in which points are $G_{g^{\prime}}$, then q-space is a first countable spaces. It is shown that the image of a k-semistratifiable space under a pseudo-open closed compact mapping is k-semistratifiable space and that if X and Y are two space and if there is an open N-mapping from X onto Y, then Y is stratifiable.

REFERENCES

[1] C.J.R. Borges, On stratifiable spaces. Pac. J. M. 17 (1966) 1-16.
[2] D.J. LUTZER, Semimetrizable and stratifiable spaces. Gen. Top and its applications 1 (1971) 43-48.
[3] E.HALFAR, Compact mappings. Am M. So 1957 August 828-830.
[4] J.G. CEDER. Some Generalizations of metrics spaces. Pac. J. M. 11 (1961) 105-126.
[5] M. HENRY. Stratifiable spaces, semi-stratifiable spaces, and their relation through mappings. Pac. J. M. Vol. 37. No. 30 (1971) 697-700.
[6] J.A. GUTHRIE. A characterization of k.-spaces. Gen. Top, and its applications 1 (1971) 105-110.
[7] E. MICHAEL. X.-spaces. J. Math. Mech. 15 (1960) 983-1002.
[8] R.E. HODEL. Some theorems for topological spaces, Pac. J. of Ma. Vol 30, No. 1, (1969) 59-65.
[9] KENNETH. ABERNETHY. On characterizing cetain classes of first countable spaces by open mappings. Pac. J of M. Vol 53, No. 2. (1974) 319-326.
[10] S. MACDONALD AND. S. WILLARD. Domains of paracompactness and regularity. Can, J. M. Vol XXIV No. 6 (1972) 1079-1085.
[11] J. C. Kelley, General topology, Von. Nostrand, 1955.
＜요 지＞

Stratifiable 空間과 $\boldsymbol{\kappa}$－空間에 관해서

李 少 憲

Stratifiable 空間将 \boldsymbol{x}－空間에 對해서는 최근 C．J．R Borges와 P．O＇Meara에 依혜 定義 되었으며 世界各囼에서 이들 空間에 對部 研究되어 오고 있다．本 論交에서는 \mathbb{N}－空間의定義头 비슷한 性質을 導入하여 同値條件을 구하였으며，第一可附番 公理의 特性과 pseudo－ open finite to one mapping 下에서 第一可附番 公理의 image（像）을 照査한 결가 k－sem－ istratifiable 空間이 stratifiable 空間이 되기위한 侯件올 얻었으머，Nagata 究間에서 한 mapping의 image（像）이 stratifiable 空間이 되기 위한 佟件들을 照査하였으며，그리고 어떤 而數가 k－函數이며 한편 工 空間이 긴밀성（Compact）과 k－空間을 滿足하면 工 甬數 의 image（像）이 또－空間임을 밝혔다．최근 KENNETH ABERNETHY On characte－ rizing certain classes of first countable spaces by open mappings［9］（1974）에 你 한 N－mapping을 導ス，N－mapping의 性質율 얻고 임이의 空間에 粩한 N－mapping의像（image）이 stratifiable 空間임을 照査하였다．

