Semilinear Elliptic Singular Perturbation Problems
with Nonuniform Interior Behavior
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Summary

In this paper we investigate certain intermediate solutions for the Dirichlet problem €Au+f(x,u)=
0in O, u=0 on 80, where ¢is a small positive parameter and 1 is a bounded domain in R® with

C2+« poundary for some ac(0,1).

1. Introduction

In 1972, Sattinger used the method of sub
and super solutions to study the stability of
solutions of the elliptic boundary value prob-
lem

Lu+ f(z,u)=0 inQ,
Bu=h onof,

where L is a uniformly elliptic second order
operator and B is a linear boundary operator,
as equilibrium solutions of the parabolic
problem
Lv+ f(z,v) =v; in(0,00) x 12,
Bv=h on (0,00) x 89,
u(z,0) = uo(z).

* Ay +engs
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Specifically, he showed that solutions of the
elliptic problem which are obtained by
monotone iteration from a sub or super so-
lution have one-sided stability, If there is a
unique solution between a sub-super solution
pair, then it is stable.

Several years later, Matano established that
an ‘intermediate solution® exists between any
two stable solutions. Existence of these
intermediate solutions has also been
established by others (see Brown, Budin,
Hess, DeFigueiredo) using degree theory,
variational methods or some combination
thereof, especially in the case that f is
independent of x

In this paper we investigate certain
intermediate solutions for the Dirichlet problem

EDu+ f(z,u) =0 in 0, (1)
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u=0 on 89, (2)

where ¢ is a small positive parameter and 01
is a bounded domain in R* with a C*<
boundary for some «€ (0,1). Howes has
obtained solutions of (1), (2) between sub
and super solutions which exhibit boundary
layer behavior while converging uniformly to
stable zeroes of f on compact subsets of Q1
as ¢ —0. The results of Sattinger and Matano
lead us to anticipate that there may be one or
more intermediate solutions of (1), (2), if f
has at least two stable zeroes.

Under appropriate conditions on the
nonlinearity, it will be shown that there is an
intermediate solution of (1), (2) having more
complicated limiting behavior than that of the
maximum and minimum solutions, When f is
independent of x, our results are closely
related to the work of Clement and Sweers,
who showed that positive solutions of the

_boundary layer type are locally unique. In
order to establish the main result, we first
show that in the case where f is independent
of x and Q is a ball centered at the origin,
there is an intermediate solution with a “spike’
at x=0, the width of which is O(¢ ).

In the final section, we specialize our
results to the case of an ordinary differential
equation, Here the nonlinearity need have only
one stable zero and one unstable zero in order
to generate a solution with one or more
spikes, Moreover, the location of these spikes
can often be determined by using a
geometrical approach due to Kath and based
on the Melnikov integral,

We conclude this section by notixig some
general properties of solutions of (1).

Lemma 1. Let h: R*—{0,°) be a C* function, M,
N, be positive constants and B € (0,2). Then there is an
L)0 so that: if u is a solution of (I) on Q.

33 > 81 20, k7 1(Js1,89]) C Q, and
If(z,u(z, )| > M,

l“(:)c)l <N,
for 8 < h(z) < 83, then 3-8 < Lel"'sﬁ for

all ¢ > 0.

Proof. Consider the case that f(z,u(z,¢)) > M.
Define

(z) = - ems (hz) — o1 )3 ~ he) - .
Then vr=-N where A(x)=s, or s;, v=N where
h=5(5+8)., and Ar=0((s,-s,)™ .

Let U=A"'(S, $) C O and w=u-r. Then w
>0 on 8U and w{0 at some points in U
Now

Aw < -MF2 O((s2 — 31)'2)

on U By the maximum principle, Aw cannot
be negative everywhere on U, so there is an L
for which s,-s,(L¢ 1758,

Lemma 2 Let N be a pasitive consiant. There & an L
w that f v saiifies (1) and [ul <N, the | D <L on
{1, where D is any fist order differential operator.

Proof. The conclusion follows from the
standard Schauder estimates for linear elliptic
boundary value problems,

Taken together, these lemmas give a fairly
precise version of the well-known “folk
theorem” that layer regions for solutions of
(1) tend to be of thickness 0(¢) .

2. Solutions with radial symmetry

Consider the special problem
eAu+g(u)=0 in B, (3)
u=0 ondB, (4)
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where B is the ball of radius R centered at

the origin, Concerning g we assume;

Ay g€ CY0,00);

Az there are numbers 0 < z; < z3 < z3 s0 that
g(zg) =0 for i=1,2,3, ¢'(z;) <0 fori=
1,3, and g has no other zeroes between z;
and z3;

Ay fig(u)du>0 for 0<6 < zy;

Aq fz? g(u) du > 0.

According to a theorem of Gidas, Ni, and

Nirenberg, every positive solution « of (3),

(), is radially symmetric, and ufr,, €)
satisfies

¢2(u"+n:lu')+g(u)=0, 0<r<R,

¥'(0) = w(R) =0, (5)

u'(r)<0, 0<r<R

Let u, be the unique number in (z,,2;) so that
/ o g(u) du = 0.
1

The next lemma yields a positive solution of
(3), (4), with a narrow spike at the enter of
the ball,

Lemma 3. Asume A,~A,and that ¢ &5 small Then
(3), (4) has a positive solution u(r, ¢ ) so that u(0, ¢ )
E(uy,2y) and ufr, ¢ )—z, as ¢ =0 uniformly om
compact subsets of (0, R).

Proof.  Although it is possible to give a more
elementary proof of this lemma, we prefer to
present a brief proof based on published
results,

By a well-known construction (see Howes),
there are subsolutions ¢,,¢,, for (3),(4), so
that ¢,=0 on 8Q, 0{p,z in O, and ¢~z
as ¢ —0 uniformly on compact subsets of Q1

for i=1,3. Now z, and 2, are corresponding

supersolutions for (3),(4), so there are pos-
itive solutions u, between ¢ and z, and u,
between ¢4 and z,, Furthermore, by Theorem
2’ of Clement and Sweers (see also Smoller
and Wasserman), they are the only such
solutions, Consequently, they are stable and
Matano’s result provides an intermediate so-
lution ufr, ¢ ),

Let w be a nonnegative C* function in 0} so
that w(p, except in a small ball U about 0
and w(0) € (2,,2,). Again by ([Clement,
Sweers, Theorem 2’] we have u{w some-
where in U, From Lemma 1, » is near the
zeroes of g except on r intervals of length Of
€).

Using (5), we obtain that u satisfies

: .
W) =) + m - ) [ ar
= u'(‘:;) g(s) ds (6)

for 0<r,<r, <R, Let M)0 be fixed and con-
sider the points r, where |u’(r,)|<M ¢S
From (6)

/"(")g(a) >-0() (0<r<r)

u(r)
at all such r,, It follows that » is near z, or
7z, on (0,R) except for O(¢) intervals,

However, from the remarks in the previous
paragraph, u can be near 2z, only for r near
0. Finally, the fact that »(0))u, follows from
(6) with r,=0.

Actually, this lemma is true under slightly
more general hypotheses. In A4,, it is enough
to assume that z, an 2z, are of finite order
and that g changes sign as it passes through
each of them.

In section 4 we will show that for ordinary
differential equations, the nonlinearity need
have only two zeroes to produce a solution
with one or more spikes. The following
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example shows that two zeroes may not suf-
fice if n)2.

Example 1.

EAut+(u—-1P-u+1=0 inB,
u=0 ondB.

Recall that every positive solution of this
problem is radial, If » is such a solution with
u(0,¢)>1, then (0, ¢))>2 by the maximum
principle, Let r=u-1. Then v satisfies

EDv+ P -—v=0,

v (0, ¢)=0, and »(0, ¢)>1. However, a the-
orem due to Ni states that such a v must be

> rt2

. We conclude
n-2

positive for all r if p

that the Dirichlet problem does not have a
positive solution ¥ with (0, ¢ )1 in this case

for any value of ¢ .

3. Existence and behavior of
an intermediate solution

Now 01 in (1),(2), wil represent an
arbitrary smoothly bounded domain in R*= We
make the following assumptions about f:

As feCNTQ xR);

Ag there are C¥(Q1) functions z;(z) (i = 1,2,3)
so that
21(2) < 25(z) < 23(=), z22(2) > 0, f(z,zi(z))
=0(i=1,23),

fu(®,2i(2)) < 0 (i = 1,3), and z3(zx) is the

unique zero of f between 2y and z3 (z € Q1);
Ar 13" f(z,u) du > 0 for 2 € 50 and 6
between 0 and z,;

Ag there is a nonempty open set W C Q so that

fi’(z) f(z,u)du >0 forz e W.

zy(z)

As in section 2, u.(x) is defined to be the
unique solution of
/""(’)f(z,u) du=0
7 (z)
for xeW,
Our fundamental result is contained in :
Theorem I Assume As—A,. Let 750 be a smafl oon-
stant and Jet ¢ be sufficendy small. Then for each boll B
CW, (). (2, has a solution u(x, ¢ ) 30 that:

(a) zy{z) — v < u(z,¢€) if dist(z,80) >> ¢
(8) u(z,¢) < z3(z) +v forallz € {1;

(c) 3z € B so that u(z,¢) < ug(z) + 7;

Furthermore, there is a computable & >0, independent of ¢
, So that

(d) maz{u(z,¢) : = € A} = u(zo,¢) > z(zo) + 5.

Proof. We will construct two pairs of sub
and super solutions ¢,,4,, and ¢,, 4.,

Let t(x} represent the distance of each x
from 8Q and s(x) the point on 80 closest
to x, Then t and s induce a coordinate sys-
tem on a small neighborhood of 81 (see
Berger, Fraenkel} .

Because of assumptions A,-A,, the problem
has a subsolution of the form

er(2,9) = 21(2) — v+ N(o(z), {2, ),
where I is a boundary layer correction (see
Howes), Here I has the following
properties : I' =0 outside a small
neighborhood of the boundary and I =7-2,(x)
for x€8Q .

A corresponding supersolution is ,(x)=z,
(x)-C, where C is a small positive constant
chosen so that z,(x)-C)max{0,z,(x)} for all x
€n.
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A larger supersolution is %,(x, ¢ ) =z,(x) +
Dt for some sufficiently large positive
constant D.

In order to define an associated subsolution
9., let an open ball B,{(x,,r,) CB and a C’
function g(u) be chosen so that

9(u) < f(z,u),
g(v)=0atzT <G < 73,
9(%) <0 fori=1,3,

z3
/ g(v) du > 0,
21

for x €B, and appropriate ¥, The zeroes Z,{x
}, Z.(x) of g here are chosen to be close to
the zeroes of f, while Z,(x) is slightly larger
than u,(x) for x EB,. Let v be a solution of
¢ *Av+g(v) =0 in B, given by Lemma 3 (with
appropriate translation of the indepen- dent
and dependent variables) so that v—Z,{z, as

¢ =0 uniformly on compact subsets of B,\ {x
) and r(x;) € (u,(x,), uy(x))+7). Let X be

a smooth cutoff function so that Xx=1 for 0<

IJt—x,IS—;L , X=0, for |x-x,|2r,, and 0<X

<1. Then it is readily checked that ¢ ,=Xv +
(1-x) ¢, is a subsolution for (1), (2).

Note that ¢, has these propertiess: ¢,2¢..

¢:=9¢, outside B,, ¢:{¢p;, and ¢,(x,) € (u,
(x), ulx)+7),

By the statement and proof of Theorem 1.6
in Amann, there is a solution x(x ¢} of (1),
(2), which satisfies (a),(b) and (¢), and
such that u(x ¢ ))>z,(x) for some x€ 1,

In order to prove (d), we first make a
change of dependent variable, Let

w(z,¢) = u(z,€) — z3(z) + min{z(z) : ¢ € Q}.

Then w(x ¢ ) satisfies :

EAw + F(z,w,e) =0, in Q (7)

w<0, ondQ (8)

wher F(x, w, ¢ )=f(x, w+2;(x)-min z;) + ¢ *Az,,
Let the zeroes of F corresponding to z,,2,,12,,
be denoted a,a.,as;, respectively, Note that
a,)0 is essentially fixed with maximum
variation O(¢ ).

Now we choose &)0 and a C' function G (u
) so that: G(0)20: G has exactly three
zeroes b,{b,(bs so that b, € (max{a,(x),0), a,
(x)), b:{a,(x), and bs€ (a.(x), as(x)) for
all xeQ: G(w))F(x,w) for 0 w< a,(x)+ 8 (b

'
and x€ 1. andgb‘ G(s) ds{0 for b,{0 <b,,

Suppose that w(x, ¢ ) <a,{(x)+ & for all x€
fi and all sufficiently small ¢ . Replace F by
a modified function F so that F(w)=F(w) for
0< w<a,(x)+¢é and G(w) > F(w} for a,(x)+
§{w<by and x€ 0. Then w still satisfies (7)
with F replaced by F. Now consider

EDu+Gu)=0 inV, 9)
u=0 on dV, (10)

where ¥ is a ball centered at the origin which
contains 1, Let ¢ =max{w,0}. Then ¢ is a
subsolution for (9), (10), so that max{¢ (x) : x
E VDb,
(10). has a positive, radially symmetric so-

by is a supersolution, Then (9),

lution i(r, ¢ ) with max T=i(0))b,.

On the one hand,

SE N+ [ (;’ 6oy ds=(1-n) [[ Ly,

(0

&)
_ G(s) ds<0 for all r>0. On the other

so that S
0]

hand, since & (0) € (b:.8s),

/bl G(s)ds >0
s ,
u(0)
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so we have a contradiction, Consequently, for
all small ¢, w(x ¢))a,(x)+ & for some =x,
S0

u(z,€) > 2p(z) — min{z3} + ag(z) + §

> 2(z) + & + O(?)

for some x € a.

Our proof of (d) is an adaptation of an
argument due to Dancer and Schmitt in which
they show for the case where f is independent
of x that positive solutions of the Dirichlet
problem have maximum values at least w,.
Consequently, in that case we can take & =u,
~1,.

Theorem 1 gives us an intermediate solution
of (1).(2), which has in addition to boundary
layer behavior of the monotone type some
more complicated limiting behavior as ¢ —0, It
appears to be difficult to give more precise
information about this solution in this
generality, However, the next theorem rules
out the possibility of classical shock layer
behavior in W,

Theorem 2 Assome As-A,. Let r)0 be independent of
¢, let B(y,r) be a ball with dosure in W, and let u be
the sohtion of (1), (2) giren by Theorem 1. If u(x, ¢
)—2,(x) as ¢ =0 for xCB(y,r), then there is a 2 )
0 independent of ¢ so that u(x, ¢ )>2,(x)+ 2om B(y,r
+2) for ol small ¢ .

Proof. Suppose no such 2 exists, Then

there are sequences & —0 and x so that «
(xp € )<z (x) +-L and dia(x, 9By 1))t .
Consider B.EB(x',TZ ) CW. For n sufficiently

large, we can choose a nonnegative constant
C so that C>-2,(x) for x€ B, and g(u+C)f
(xu) for x€B and appropriate u so that g
satisfies 4,-4,. (We take C=0 if z,50.) Then
v+ C is a supersolution for

eAv +g(v) =0 in Bp, (11)
v =0 on 8Bn, (12)

and we can construct a positive subsolution ¢
for (11).(12) much as in Theorem 1 with
maximum in B(yr) so that max<p)u.(x.)+C
L and ou+C. Then (11).012). has a

positive solution » between the sub and

supersolutions with its maximum at x,. However,

we then have both ufx,e,)+C<{z(x)+C(z

1 1
)x.)+E+C and v{x.))u.(x.)+C-—r—‘- ,a
contradiction of v{u+C.

The local uniqueness result of Clement and
Sweers gives a stronger conclusion if [ is
independent of x and w)0. Namely, for every
C>0 there is no ¢ -independent ball B so that
u(x, ¢ )>2,(x)+C for x€ B and all small ¢ .

We conclude this section with an example
which illustrates these results and which also
provides a counter-example to a theorem of
De Santi dealing with the existence of
solutions to (1), (2), with spike layers,

Example 2,

2Au + f(r,u) =0 in B(0,1)

u=0 on 8B(0,1),

where B(0,1) is the unit ball in R*
Assume f satisfies As-A,, with 2,50 and W a
ball centered at the origin. Also assume fi(ru)
{0 for 0{r{1 and all ., Then Theorem 1’ of
Gidas, Ni, Nirenberg implies that all positive
solutions of the Dirichlet problem are radially
symmetric and are decreasing as functions or
r.

Let B,CW be a small ball centered at the
origin and let u(r, ¢ ) be the positive solution
of Theorem 1 corresponding to B,. Now max {x
(ne):0<sr<1}=u(0,¢))2,(0)+ 48 for some
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positive & independent of ¢ , and u(r, ¢ ) {u,(r
)+r somewhere in B,, By Lemma 1 and
Theorem 2, u(r ¢) must descend from its
maximum at r=(0 to a value near z, or z,
when r{{1.

Now consider the identity for r,{r,:

1”2
3¢ ra) - wr) 4 Hn-1) [T L ar
T3

= [7 frupe) dr
_ qulra)

= Loy F@) dut [2(107,0) = fr1,00r)

u(ry)

u{r3)
dr S/u(r.) f(r1,u) du + Ofrg — ry).

It the length of the interval on which w is
near z, is bounded away from 0 as ¢ —0,
then the identity gives a contradiction of the
assumed properties of f when w descends
from 2z, to z, or 0, We conclude, as in
Lemma 3, that u(r, ¢ ) has a narrow spike at
0 and converges to 2z, as ¢ —0 uniformly on
compact subsets of (0,1).

To obtain a counter-example to De Santi's
result, assume W=28(0,1) and f(r,0) >0 for
0<r>1. Recall thatS::: f(ru) du=0 for 0<r

<1. Then u,(r) is strictly inceasing since
0= f(r, uo(r))ua(r) + /z:‘r()r) fr(r,u) du.

for 0<r¢1. Fix r,€ (0.1) so that f(r ue(r,))>0
for 0<r<1. Let

1= [ “;")’ f(r,u) du.

We have I(r) (r,-r) is positive for 0<r<1,rr,
and wi(r)=0 at r=r,,

The hypotheses of Theorem 4.2 in De Santi
are satisfied here: the conclusion of the the-
orem is that the boundary value problem has
a solution which converges to z, in B\ {r=r,}
and to w,(r,)
Futhermore, the solution would be positive in

on {r=r) as ¢ —0.

this case since it obtained in the proof by the
method of sub and super solutions and since 0
is a subsolution, However, the existence of
such a solution would contradict the fact that
all positive solutions are decreasing as
functions of r,

4. Ordinary differential equations

We now specialize our results to the two
point boundary value problem

u" + f(z,u) =0, (0<z<1) (13)
w(0) = u(1) = 0. T (14)
The assumptions on f will be similar to those
of Theorem 1, but in this case f need have
only two zeroes. For simplicity, we take W=

0.1,
amenable to the same techniques. In addition

but the more general situation is

to the previous hypotheses A; and A4,, we
assume :

Al there are C%([0,1]) functions z1(z) < z2(z)
s0 that z3(z) > 0,
f(z,2;(z)) =0 (i = 1,2), and fu(z,2z1(z)) <0
(z€l0,1))

A's there is a ug(z) > z3(z) so that f(z,ue(z))
> 0, z2(z) is the only zero of f between z;
(z) and ug(z), and f:;(:)) f(z,u)du=0(z €

[0,1]).

The next theorem show that some solution
of (13).(14), has a narrow spike in the in-
terval (0,1].

Theoren 3 Assume A5, A's, A:, and A',. For €
sufficiently small, (13).(14). bhas a sobaion w(x ¢ )
setisfying (a), (c), and (d} of Theorem 1. Furthermore,
max {u{x, ¢ ) : 0¢x{1} = u(x,, € Yuo(xs) +2r, and
there is an interval (a(¢ ) ,b(¢)) comaining x, so that

-123-



8 Chgu National University Journal Vol. 33. (1991)

b(e)-a(e)=0(c )}, uale )}, e }=1z(a(c)), and
ub(e ), e )=1,(b(¢c)).

Proof. The first step is to modify ffor w)u,(x
)+2r, where 7 is the small positive constant
in the statement of Theorem 1. Let zy(x))u,(x
)+2r be a C*{((0,1)) function and let f,(x u)
be a C' modification of f having the following
properties : fy=f for u<u,(x)+2r, f)0 for z,
() {uz;,(x), and fi(xz;,(x)}=0 (O<x<]).
We apply Theorem 1 to f;, to obtain a solution
u(x,e¢) for sufficiently small ¢ of

S + fi(z,u) =0, (0<z<1) (18)
u(0) = u(1) = 0, (16)

which has the properties listed in that
theorem,

On any interval (x,,x,) where u’ does not
change sign, we claim :

5e(u'?(zg) - v (=z1)] + /m(z’) fi(=zy,u) du
u(z))
=0O(z3 - 71). (1

To establish (17), write (15) in the form
Euy' + fizy,ue’ = [fi(zy,u) - flzu)l'.

Then
50N a) ~ e + [0 filern) du
u(z1)

= ‘/:::[fl(:lvu) - fl(z’u)]u' dz,

and (17) follows from the mean value theorem
for integrals,

We want to show that # (x) <u,(x)+2r for x
€{0,1) and small ¢ so that # is a solution
of the original problem (13),(14). Suppose
that

u(zg) = maz{u(z): 0 < z < 1} > ug(zo) + 27,

for some arbitrarily small values of ¢ ., By
Theorem 1{c) there is an x¢ (0,1) so that u(x

Y{u.(x) +r. We consider only the case that x
(Xu. Let

zg = inf{t € (z,zp) : u(t) = ug(t) + 2v},

1 = sup{t € (z,22) : u(t) = ug(t) + 7}.

Note that x, and 5 are bounded away from
the endpoints as ¢ —0. By Lemma 1, 3 =0
(¢). We also have for x€ (n,x,) that w,(x)
+r<u(x) Su(x)+2r, so (u-uy)"(n) 20,
If (w-u,)’(9)=0, then (17) with z;=p
immediately gives a contradiction,

If (u-uq) ' ()20, then ux(x)(u,(x)+ ¥ on some
interval to the left of . From (17),

uo(z3)+27y 2 2

A(z) fi(z,u) du = 5% [u'’(z) — u'*(z3)]
+ O(z3 — z1).

Choose C independent of ¢ so that

ua(z2}427
/o filz,u) du > C >0,

for z,(x)-r<0<w (x)+7 and x near x,, If u
(x){us(x) +7 and x is near x,, then lu’(x)|>

—?— for x in a small ¢ -independent interval,

so we have a contradiction, It follows that u
is a solution of the original problem (13),(14).

The remaining properties of u now follow
from Lemma 1,

The quesion of possible locdtions of spikes
for solutions of (13),(l14). has been studied
by a number of authors, For the case that f
is independent of x and 2,{0{z;, O'Malley has
used phase plane analysis to show that
solutions exist with increasing numbers of
spikes as ¢ —0, but that the spikes have to
occur at equally spaced points in the interval,
On the other hand, if 0{z,, then Lemma 3 is
applicable, and there is a single spike at the
center of the interval, It is readily shown that
the maximum value of w approaches u, as ¢
-0,
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In case f does vary with x, Kath has used
the Melnikov integral

M(zq) = /_ 2 o) du dt,

oo J2zy(t)
where t=x—:x'- and (1) solves v +f(xs,9=0.v

—0 as t—+oco, and 1‘(0)=0, to fine where
spikes can occur, We refer the reader to his

Example 3.

For (13).(14), assume z,(x)>0 on {0,1) and
M (x,) is strictly decreasing as function of x,
€(0.1). Now M(x,) measures the difference
in energy at x, between the solution of (13)
which approaches z, as t—-c and the so-

lution which approaches z, as t—oo_ (see the

paper for a thorough discussion. Our final figure below.)
example treats only the simplest case.
/ 4 ]
I €l € ’Pé P
2, \,_/\A\
o > o >
e

There are three possibilities, If M (x,) =0
at some x,€ (0,1), then there is a solution u
with a single spike near x, since this is the
only location where a trajectory can make a
complete circuit from a position near z,,
around z,, and back near z,. If M0 on (0,

1], then the spike must occur at the right
endpoint, If M{0 on (0,1), then the spike
occurs at the left endpoint. In all cases, u
follows 2z, on the remainder of the interval
except at the endpoints,
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