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THE ASYMPTOTIC STABILITY FOR A
SYSTEM OF DIFFERENTIAL EQUATIONS

YOUNHEE Ko*

1. Introduction

The basic idea behind Liapunov’s direct method involves the study of
an auxiliary function along solutions to a system of differential equations,
and several steps are involved in order to use this approach. First, one
must construct the auxiliary function-usually called a Liapunov function
-which satisfies certain properties in compliance with the theory that has
been developed. Then, the system of equations itself and the derivative
of the Liapunov function along solutions to the system are examined
for various attributes. Among the qualitative properties of solutions
that one often can investigate using this technique are stability, uniform
stability, asymptotic stability, uniform asymptotic stability.

One of the goals of this paper is to improve and supplement previous
theorems in the literature regarding globally asymptotically stable and
globally uniformly asymptotically stable for ordinary differential equa-
tions. In particular, we concentrate on two main directions ; namely,
we seek to (i) present sufficient conditions to ensure the globally uni-
form asymptotic stability of the zero solution of differential equation,
(ii) present the examples to apply our results.
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2. The Basic Definitions and Notation

Notation 2.1. We concern ourselves with systems of equations

z = f(t,ﬂ?), (E)

where z € R™ and R" denotes Euclidean n-space. When discussing
global results, such as global asymptotic stability, we shall always assume
that f : Rt x R® — R* [ R* = [0,00) ] is continuous. On the other
hand, when considering local results, we shall usually assume that f :
R* x B(h) > R* [B(h) ={z e R" |0 < |z| < h,for some h > 0} ].
On some occassions we may assume that ¢ € R, rather than t € R*.
Unless otherwise stated, we shall assume that for every (to, &), to € R,
the initial value problem

= f(t’x)’ z(to) = € )

possesses a unique solution ¢(t,t,, £) which depends continuously on the
initial data (fo,&). Since it is very natural in this chapter to think of ¢
as representing time, we shall use the symbol 2o in (I) to represent the
initial time (rather than using T as was done earlier). Furthermore, we
shall frequently use the symbol zg in place of £ to represent the initial
state.

Definition 2.2. A point z, € R" is called an equilibrium point of
(E) (at time t* € R*) if
ft,z.) =0 forall t>t".

Other terms for equilibrium point include stationary point, singular
point, critical point, and rest position. Note that if z, is an equilibrium
point of (E) at ¢*, then it is an equilibrium point at all 7 > t*. Note also
that in the case of autonomous systems

= f(z) (4)
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and in the case of T-periodic systems

' =ft,z), flt,z)=f(t+T, 1), (P)

a point z, € R™ is an equilibrium at some time ¢* if and only if it is an
equilibrium point at all times. Also note that if z. is an equilibrium (at
t*) of (E), then the transformation s = ¢ — ¢* reduces (E) to

dz/ds = f(s +t",z),

and z. is an equilibrium (at s=0) of this system. For this reason, we
shall henceforth assume that t* = 0 in Definition 2.2 and we shall not
mention t* further. Note also that if z, is an equilibrium point of (E),
then for any £, > 0

¢(t7 to, xe) = Ze for all t > to,
i.e., z, is a unique solution of (E) with initial data given by ¢ (o, %0, ze) =
Te.

Definition 2.3. The equilibrium z = 0 of (E) is stable if for every
€ > 0 and any 5 € R there exists a (¢, £9) > 0 such that

|p(t,t0,€)| <€ forall t>tg

whenever

€] < &(e, o).

Definition 2.4. The equilibrium z = 0 of (E) is said to be uniformly
stable if 6 is independent of ¢, in Definition 2.3, i.e., if § = 8(¢).

Definition 2.5. The equilibrium z = 0 of (E) is asymptotically sta-
ble if

(i) it is stable, and

(i) for every to > O there exists an n(ty) > 0 such that

lim ¢(t,4p,£) =0 whenever  |£] < 7.
t—o0
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The set of all £ € R™ such that ¢(t,20,£) = 0 as t = oo for some
to > 0 is called the domain of attraction of the equilibrium z = 0 of
(E). Also, if for (E) condition (ii) is true, then the equilibrium z =0 is
said to be attractive.

Definion 2.6. The equilibrium z = 0 of (E) is uniformly asymptot-
ically stable if

(i) it is uniformly stable, and

(i) there is a dp > 0 such that for every ¢ > 0 and for any to € Rt,
there exists a T'(¢) > 0, independent of g, such that

|¢(t7 tﬂaf)l <Eg, for all t Z to + T(E)
whenever €| < do.

Definition 2.7. The equilibrium z = 0 of (E) is globally asymptot-
ically stable if it is stable, and if every solution of (E) tends to zero
as t — 00.

Definition 2.8.. The equilibrium z = 0 of (E) is globally uniformly
asymptotically stable if

(i) it is uniformly stable, and

(ii) for any a > 0 any € > 0, and to € R™, there exists T'(e,a) > 0,
independent of ¢y, such that

if i¢| < a, then |¢(¢,t0,€)| < € forall t>tg+T(c ).

Notation 2.9. We shall present stability results for the equilibrium
z = 0 of a system

T = f(t,z). (E)

Such results involve the existence of real valued functions v : D = R.
In the case of local results (e.g., stability, asymptotic stability), we shall
usually only require that D = B(h) C R" for some h > 0, or D =
R* x B(h). On the other hand, in the case of global results (e.g., globally
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asymptotic stability), we have to assume that D = R™ or D = R* x R".
Unless stated otherwise, we shall always assume that v(t,0) = 0 for all
t € Rt [resp.,v(0)=0].

Now let ¢ be an arbitrary solution of (E) and consider the function
t — v(t, ¢(t)). If v is continuously differentiable with respect to all of
its arguments, then we obtain (by the chain rule) the derivative of v with
respect to ¢ along the solutions of (E), vz E)» 38

dv
UEE) (t’ ¢(t)) = —5t—(t7 ¢(t)) + VU(t,¢(t))Tf(t, ¢(t))
Here Vv denotes the gradient vector of v with respect to z. For a
solution ¢(t, to, &) of (E), we have

t
vt 0(8) = vlto.&) + [ vis) (7,007, to, ).

Definition 2.10. Let v: R x R"” = R [resp.,,v: R* x B(h) = R] be
continuously differentiable with respect to all of its arguments and let Vv
denote the gradient of v with respect to z. Then vjz : R* x R* = R
[ resp., v : Rt x B(h) - R is defined by

vig)(tz) = )+Z gz, b Dfi(t,2)
(2.1)

- a(t, z) + Vu(t,2)" f (¢, 2).

We call v, the derivative of v (with respect to t) along the
solutions of (E) [ or along the trajectories of (E) ].

Occasionally we shall only require that v be continuous on its domain
of definition and that it satisfy locally a Lipschitz condition with respect
to z. In such case we call v a Liapunov function and we define the
upper right-hand derivative of v with respect to ¢ along the
solutions of (E) by

i (t,2) = Timsup (AL OB +0:6:5) = v(t )}
60+ o
= limsup {U(t + 9,1,' +6- f(ta 27)) - U(t1 JL')} .
80t 0

(2.2)
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When v is continuously differentiable, then (2.2) reduces to (2.1).

Definition 2.11. A continuous function w : R* — R [resp.,w : B(h) —
R] is said to be positive definite if

(i) w(0) =0, and

(ii) w(z) > 0 forall z #£0 [ resp., 0 < |z| < r for some
r>0].

Definition 2.12. A continuous function w : R® — R is said to be
radially unbounded if

(i) w(0) =0,
(it) w(z) >0 for all r € R" — {0}, and
(iii) w(z) — oo as |z| = oo.

Definition 2.13. A function w is said to be negative definite if —w
is a positive definite function.

Definition 2.14. A continous function w : R® = R [resp., w : B(h) =
R) is said to be positive semidefinite if

(i) w(0) =0, and

(ii) w{z) >0 forall z € B(r) and for some r > 0.

Definition 2.15. A function w is said to be negative semidefinite if

—w is positive semidefinite.

Next, we consider the case v : Rt x R™ —+ R [resp., v : R x B(h) =
R).

Definition 2.16. A continuous function v : Rt x R* — R resp,,
v: Bt x B(h) = R ] is said to be positive definite if there exists a
positive definite function w : R® — R [ resp., w : B(h) =& R ] such that
(i) v(¢,0)=0 for all ¢ >0, and
(i) v(t, z) > w(z) forall t>0 and forall z € B(r)

for some r > 0.
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Leiinition 2.17. A continuous function v : Rt x R* - R is radially
unbounded if there exists a radially unbounded function w : R* - R
such that

(i) v(¢t,0) =0 for all ¢t >0, and

(it) v(t,z) > w(z) forall t>0 and forall z € R™
Definition 2.18. A continuous function v : RY x R* =+ R [ resp.,

v: Rt x B(h) = R ] is said to be decrescent if there exists a positive
definite function w : R® —+ R [ resp., w : B(h) = R ] such that

jv(t, z)| < w(z) forall ¢t>0 and forall z € B(r)

for some r > 0.

Definition 2.19. A continuous function W : Rt — R* is called a
wedge if W(0) = 0 and W is strictly increasing on R*.

In presenting sufficient conditions to ensure that the zero slution of
(E) is globally aymptotically stable and globally uniformly aymptotically
statble the following theorems are basic

Theorem 2.20 ([12, Theorem 8.5]). If there exists a continuously
differentiable, positive definite function v with UEE)(t,:B) < 0,

definite, and if F(t,z) is bounded, then the solution z(t) = 0 of (E) is
asymptotically stable.

if UZE) (t,z) < —c(|z]), where c(r) is continuous on [0, k] and positive

Theorem 2.21 ([11, Theorem 5.9.2]). If there exists a continuously
differentiable, positive definite, decrescent function v with a negative
semidefinite derivative vé g)» then the equilibrium z = 0 of (E) is uni-
formly stable.

Theorem 2.22 ([11, Theorem 5.9.7]). If there exists a continuously
differentiable, positive definite, decrescent, and radially unbounded func-
tion v such that UE ) 18 negative definite for all (¢,7) € R* x R", then
the equilibrium z = 0 of (E) is globally uniformly asymptotically
stable.



X0 HZ=Z M3 25

3. Main Results and Examples

Theorem 3.1. Let a function v : Rt x R® — R be continuous and
locally Lipschitz in z € R™ and let n : Rt — RY be a measurable
function such that [ n(s)ds = oo.

Suppose that there exist wedges W), W, and W3 such that for all
te Rt and z € R",

(i) W1 (=) < v(t,z) < Wa(|z|) and

(i) vl (£, ) < —n(&)Wa(Iz]),

where

rli)n;o Wi(r) = rlibno]o Wa(r) = oo.

Then the zero solution of (E) is uniformly stable and globally asymp-
totically stable.

Proof. Let € > 0 be given. Then there exists a § = 6(¢) > 0 such that
W2 (8) < Wi (e). Let ¢(t, 9, 20) be a solution of (E) such that ¢ > ¢, > 0
and |z(to}] = |zo| < 4. Then we have

W1(|¢(t1 t07x0)|) S U(t, ¢(t,t0,.’l.'0)) S v(tO’IO)
< Wa(lzol) < Wa(d) < Wi(e),

which implies that |¢(t,%0,Zo)| < € if ¢ > to and |zo| < §. This proves
the uniform stability of the zero solution of (E).

Now we show that the domain of attraction of z = 0 of (E) is all of
R™. Fix (tp,z0) € R x R™. Then v(t, ¢(t,tp,zp)) is nonincreasing and
so has alimit r >0, where|zo| < aforanya>0.

Suppose that

&(t,to, z0)) A= 0 as t— oo.

Then there exists r > 0 such that lim; ,o U(t, ¢(¢,20,20)) = r. This
implies
r S 'U(t, ¢(t, tO,IO) S W2(|¢(t)|)
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and
lo(t)| > Wit (r) for all ¢t > ¢.

By integrating v’ along (¢, ¢y, 7o), we obtain

t
wlt, (0, t0,20)) < vlto,20) — [ n(6)Walla(s)ds
to
t
< w0, 0) = Wo(W;' (7)) [ n(s)ds > —c0 st oo,
to
which is a contradiction. Thus the proof is complete.

Example 3.2. Consider a scalar equation
z' = —a(t)g(z) (3.1)

where a : R* — R*. Suppose that there exists a wedge W* such that
zg(z) > W*(|z|) for any z € R, and that f0°° a(s)da = 0co. Then the zero
solution z = 0 of (3.1) is uniformly stable and globally asymptoti-
cally stable.

Proof. Consider the function v(t,z) = 1z2. Then

vfs.l)(t, z) = z(—a(t)g(z))
= —a(t)zg(z)
< —a(t)W*(|z]).

Therefore, all conditions in Theorem 3.1 are satisfied. Hence the zero
solution z = 0 of (3.1) is uniformly stable and globally asymptotically
stable.

Example 3.2 revisted Consider a scalar equation
z' = —a(t)g(z) (3.1)
where a : RY = R* and g : R = R are continuous such that

zg(z) >0 for any z € R — {0}.



Then

(1) the zero solution z = 0 of (3.1) is unique to the right,

(2) the zero solution z = 0 of (3.1) is uniformly stable, and

(3)if f0°° a(t)dt = oo, then the zero solution z = 0 of (3.1) is globally
asymptotically stable.

Proof. (1) If z > 0, then |z|' = 2’ = —a(t)g(t) < 0. If z <0, then
2l = (~2) = —2' = a(B)g(z) < 0.

That is, |z]' < 0 for all z € R — {0}. Thus |¢(t)| is nonincreasing for
any solution ¢(t) of (3.1). Therefore, ¢(t) = 0 for all ¢ > ¢, if there exists
to > 0 such that ¢(fg) = 0.

(2) Let € > 0 be given. Then |¢(t,10,Z0)| < |Zo| < €ifto 20, t2>to
and |zo] = |2(to)| = |#(to)| < €. Put § = €. Then the zero solution £ =0
of (3.1) is uniformly stable.

(3) Let ¢(t,to,Zo) be a solution of (3.1). Then ¢(¢,0,z0) > 0 for all
t > 0if ¢(0) = zo > 0, and ¢(¢,0,20) < 0 for all t > 0 if ¢(0) = zo <O,
since the zero solution of (3.1) is unique to the right.

Case 1). Let ¢(0) = zo > 0. Then ¢(t,0,zo) is nonincreasing, since
|¢(#)|' <0 for any t > 0.

Now we claim that limy_,o, ¢(t) = 0. Suppose not. Then there is
a p > 0 such that lim; , ¢(tf) = p. By assumption on g 1/g(z) is
bounded for all z € (p,#(0)). Thus we have

/:(0) ?gadxzﬁ-a(t)dt=/owa(t)dt=oo,

which is a contradiction.

Case 2). Let ¢(0) = zo < 0. Then ¢(t,0,xo) is nondecreasing, since
l¢(t)]' <0 for any ¢t >0.

Now we claim that lims_, o ¢(£) = 0. Suppose not. Then there is
a g < 0 such that lim; o ¢(t) = g. By assumption on g  1/g(z) is
bounded for all z € (¢(0),g). Thus we have

foo ayte= [, ot = [ atts = =0,
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which is a contradiction. Hence the proof is complete.

In the process of the above proof of Example 3.2 revisted we do not use
the result of Theorem 3.1. Suppose that we replace the condition that
zg(x) > 0 for any z € R — {0} with the condition that zg(z) > W*(|z|)
for some wedge W* and any r € R in Example 3.2 revisted. Then we
apply Theorem 3.1 to prove the Example 3.2 revisted.

Remark 3.3. We can easily find a function g(z) such that zg(z) > 0 for
z € R — {0} implies that there exists a wedge W* such that W*(|z|) <
g(z)z for any z € R. Consider g(z) = Mz", where M > 0 and n is
a positive odd number. Then zg(z) = Mz"*! > 0if z € R — {0}.
Furthermore, we can consider W*(|z|) = zg(z) = Mz,

Remark 3.4. In practical it is almost imposible that we find the exam-
ple which satisfies the condition v E)(t,z) < —c(|z|) without satisfying
the condition v(t, z) < W (|z|) for some wages ¢, W. Therefore Theorem
3.1 generalizes partially Theorem 2.20. Also Theorem 3.1 generalizes
Theorem 2.21 since if 7 is a constant function, then [;*n(s)ds = oo.

Lemma 3.5. Let n : Rt -» Rt be a measurable function such that
limg 00 f:+s n(s)ds = oo uniformly with respect to t € Rt. Then for
any M > 0 there exists a § = §(M) > 0 such that

t+4
/ n(s)ds > M for any te€ R*.
t

Proof. Suppose that limg_, f:+s n(s)ds = oo uniformly with respect
tot € Rt. Then for 1 there exists y > 0 such that f:“" n(s)ds > 1 for
any t € R,

Let M > 0 be given. If M < 1, then we may take 6 as § = &y. if
M > 1, then there exists a positive integer N with M < N. Thus we



t+50 t+240 t+Nép
M<N </ n(s)ds +/ n(s)ds +--- +/ n(s)ds
t t+é8o t+(N—1)éo

t+Négp
= / n(s)ds
t

for any t € R. That is, § = N§g. Hence the proof is complete.

Theorem 3.6. Let a function v : Rt x R* — R be continuous and
locally Lipschitz in z € R™ and let n : Rt — RT be a measurable
function such that limg_, f:+s n(s)ds = oo uniformly with respect to
te RT.

Suppose that there exist wedges W), W, and W3 such that for all
t€ R* and z € R",

(i) Wa(J=z]) < v(t, z) < Wa(|z]) and

() vy (6, 2) < —n(OWa (I,

where

Jim Wale) = Jim Walr) = oo

Then the zero solution of (E) is globally uniformly asymptotically
stable.

Proof. Let € > 0 be given. Then there exists a § = é(e) > 0 such that
W2(8) < Wy (€). Let ¢(t, 1o, Zo) be a solution of (E) such that ¢ > ¢, > 0
and |z(to)| = |zo| < 4. Then we have

Wl(|¢(tv t01£0)|) S U(t7 ¢(tv thxO)) S 'U(t[),l'())
< Wa(|zo|) < Wa(d) < Wi(e),

which implies that |¢(t,t0,20)| <€ if t>1; and |zo| < 4. This
proves the uniform stability of the zero solution of (E).

For 1 take 8y = Jp(1) of the uniform stability. By the Lemma 3.5
there is an L = L(¢) such that

t1+L
/ n(s)ds > Wa(do)/Wa(8) forall t, € RY.

ty
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Let ¢(t, o, zo) be a solution of (E) with |zg| < 8. Now we claim that
|¢(t*,to,z0)] < & for some ¢t* € [to,to+ L]. For if this were not true,
we would have

I¢(t, to,xo)l >é forall te [to,to +L]

Thus
t
0 < Wi (8) < (e 9lt b 20)) < it ) + [ v{(, 86

t
< v(to, o) - / n(8)Wa(16(s)))ds

i
< Wa(bo) - Wa(6) L n(s)ds
< Wa(8o) — W (8)Wa(60)/Wa(6) = 0,

which is a contradiction if ¢ = £y + L. Therefore, for ¢ > ¢ty + L and some
t* € [to,to +L] with |¢(t‘)| <4,

Wi(lg(t)]) < v(t,8(t)) < v(t*, ¢(t%))
< Wa(lo(t*)]) < Wa(8) < Wi(e),

which implies that the zero solution of (E) is uniformly asymptotically
stable.

Finally, we show that the domain of attraction of z = 0 of (E) is all
of R". Fix (to,z0) € Rt x R™. Then v(t,¢(t,to, o)) is nonincreasing
and so hasalimit a >0, where |z¢| < a for any a > 0.

Suppose that no T' = T'(a, €) > 0 exists. Then

tl_i’m v(t, d(t,to,z0)) =a >0  for some zo with |z9| < a.
e o)
Thus, for ¢t > t; we have

a S U(t, ¢(t, tO’ xO))

t
< vlto, z0) - /, n(8)Wa(|8(s, to, zo)[)ds

< v(to, 7o) — Wa(W; (a)) / n(s)ds.
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Therefore, the right-hand side of this inequality becomes negative for ¢
sufficiently large. But this is impossible when a > 0. Hence the proof is
complete.

Remark 3.7. Theorem 3.6 generalizes Theorem 2.22 For if 7 is a con-
stant, then limg_, f:+s77(s)ds = oo uniformly with respect to ¢t € R¥.
Furthermore, if v is continuously differentiable, then v is continuous and
locally Lipschitz in £ € R™.

Remark 3.8. Consider a scalar differential equation

1
/ T —
g =3t on [0, c0). (3.2)
Then the zero solution z = 0 of (3.2) is uniformly stable and globally
asymptotically stable (by Theorem 3.1). But it is well known that
the zero solution of (3.2) is not globally uniformly asymptotically stable.

In fact, n(t) = t-{-Ll does not satisfy the condition in Theorem 3.6

Example 3.9. Consider a scalar differential equation

z’ = —[sint|z" on [0, o), (3.3)
where n is a positive odd integer. Then the zero solution of (3.3) is
globally uniformly asymptotically stable.
Proof. Consider the function v(t,z) = 3. Then

Vo0 (6,2(1)) = 22’ = z(~Isint|z")
= —[sint|z"F}.
Let n(t) = [sint], Wy (t) = 1t2, Wa(t) = ¢* and Ws(t) = 5¢"*'. Then
all conditions in Theorem 3.6 are satisfied. Hence the zero solution of
(3.3) is globally uniformly asymptotically stable.
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