On Ill-posed problems and Regularization Methods

Kim Do-hyun

III-posed 문제와 調整方法에 관한 소고

金 道 鉉

1. Introduction

The operator equation Tx=y where T is a mapping some space into another has a solution if and only if y is in the range of T. This embodies the notion of a solution in the traditional sense; it is an ideal situation. On the other hand, one may look at the problem from a different angle.

In this paper we introduce the weighted generalized inverse of a linear operator in Hilbert space and we investigate the solutions of constrained minimization problem.

Let X and Y be (real or complex) Hilbert spaces and let $A: X \rightarrow Y$ be a bounded linear operator. We denote the range of A by R(A), the null space of A by N(A), and the adjoint of A by A*. For any subspace S of a Hilbert space H, we denote by S* the orthogonal complement of S and the closure of S by \bar{S} . Then we have the following orthogonal decompositions of X and Y [Groetsch(1977)]:

 $X = N(A) \oplus N(A)^{\perp} = N(A) \oplus \overline{R(A^*)}$ $Y = N(A^*) \oplus N(A^*)^{\perp} = N(A^*) \oplus \overline{R(A)}$ The closed range theorem holds:

R(A) is closed in Y if and only if $R(A^*)$ is

closed in X. Consider an operator equation of the first kind:

(1.1) Ax=y, $x \in X$, $y \in Y$.

Definition 1.1. For a given $y \in Y$, an element $u \in X$ is called a least squares solution of the operator equation if and only if $\|Au-y\| \le \|Ax-y\|$ for all $x \in X$.

Definition 1.2. An element ν is called a least squares solution of minimal norm of (1.1) if and only if ν is a least squares solution of (1.1) and $\|\nu\| \in \|\mathbf{u}\|$ for all least squares solutions \mathbf{u} of (1.1)

A least squares solution of minimal norm is also called a best approximate solution or a pseudo-solution. For each $y \in R(A) \oplus R(A)^{\perp}$, the set of least squares solutions is non-empty, closed, and convex. Hence there is a unique minimal norm solution.

Definition 1.3. Let A be a bounded linear operator from X into Y. The generalized inverse, denoted by A^+ , is a linear operator from the subspace $R(A) \oplus R(A)^+$ into X, defined by A^+ $y = \nu$ where ν is the least squares solution of minimal norm of the equation Ax = y.

Definition 1.4. The operator equation (1.1) is said to be well-posed (relative to the spaces X and Y) if for each $y \in Y$, (1.1) has a unique best

approximate solution which depends continuously on Y: otherwise the equation is said to be illposed.

Note: when A is a linear operator with inverse, then $A^+ = A^{-1}$ and the least squares solution of minimal norm coincides with the exact solution.

Theorem 1.5. Let $A: X \rightarrow Y$ be a bounded linear operator. Then the following statements are equivalent:

- (a) The operator equation (1.1) is well-posed.
- (b) A has a closed range in Y.
- (c) A^+ is a bounded linear operator on Y into X. Proof) (b) \Leftrightarrow (c): The proof is in the Groetsch [1977], (a) \Leftrightarrow (b): If A has a closed range, then Y = R(A) \oplus R(A) $^+$ =D(A $^+$), where D(A $^+$) is the domain of A $^+$

Thus we know that (a). (b). (c) are equivalent.

Remarks. (1) According to theorem 1.5, if the range of A is closed, then the operator equation is well-posed and A^+ is defined on all of Y, since $R(A) = \overline{R(A)}$. If R(A) is not closed, then the operator equation (1.1) is ill-posed and A^+ is an unbounded densely defined operator.

(2) For $y \in D(A^+)$, $A^+y \in N(A)^+$ and the set of all least squares solutions S is a nonempty closed convex set:

 $S = \{u : u = A^+y + v \text{ for } v \in N(A)\}$

(3) Thus, for $y \in D(A^+)$, the least squares solution of minimal norm u of the operator equation (1,1) is the least squares solution which lies in $N(A)^+$.

2. Existence and Uniqueness of the solution of the problem

Let $L:T \to Z$ be a bounded linear operator, where Z is a Hilbert space. We assume that the range R(L) of L is closed in Z, but the range R(A) of A is not necessarily closed in Y. We consider the following minimization problem: Let $S_z = |x|$ $\epsilon X: x$ is a least squares solution of Lx = z, $z \in Z$!

Then the problem is to find $w \in S$, such that

(2.1) $\| \mathbf{A}\mathbf{w} - \mathbf{y} \| \le \| \mathbf{A}\mathbf{x} - \mathbf{y} \|$ for all $\mathbf{x} \in \mathbf{S}_z$.

In this section we state the conditions under which the solution of the problem (2.1) exists and is unique. Since for any $u \in S_z$, $u=L^+z+v$ for some $v \in N(A)$, the constrained minimization problem (2.1) is equivalent to

inf $\| \| Ax - y \| : x \in S_z \|$ = inf $\| \| \| A(L^+z + x_1) - y \| : x_1 \in N(L) \|$ = inf $\| \| \| \| \| \| : u \in AS_z \|$.

Note that AS_z is a translate of the subspace AN(L). Thus the problem has a solution for every $y - A(L^+z) \in AN(L)$ if and only if AN(L) is closed, and the solution is unique if and only if $N(A) \cap N(L) = |0|$.

Throughout this paper, we assume that $N(A) \cap N(L) = |0|$ and AN(L) is closed, i.e. that the constrained minimization problem (1.1) has a solution for each $y-A(L^+Z) \in D(A_L^+)$ and the solution is unique.

Proposition 2.1 Suppose that $T: X \to Y$ is a bounded linear operator and let P be the projection of Y onto $\overline{R(T)}$, then the following conditions on $u \in X$ are equivalent:

- (a) Tu = Pb,
- (b) $||Tu b|| \le ||Tx b||$ for all $x \in X$,
- (c) T * T u = T * b.

Proof) See Groetsch (1977)

We define a new inner product in X:

(2.2)
$$[\mathbf{u},\mathbf{v}] = \langle \mathbf{A}\mathbf{u}, \mathbf{A}\mathbf{v} \rangle_{\mathbf{Y}} + \langle \mathbf{L}\mathbf{u}, \mathbf{L}\mathbf{v} \rangle_{\mathbf{z}} \text{ for } \mathbf{u}, \mathbf{v} \in \mathbf{X}.$$

Let $M = \{x \in X : A * Ax - A * y \in N(L)^+\}$.

Then the following proposition is an immediate consequence of the definition of $[\cdot,\cdot]$ and the assumption that $N(A)\bigcap N(L)=|0|$.

Proposition 2.2 (a) The equation (2.2) defines an inner product in X.

(b) M is a closed subspace of X and is the orthogonal complement of N(L) with respect to the new inner product, i.e., $X = N(L) \oplus_{L} M$.

Proof) (a) It is easy and omitted.

(b) For every $x \in \overline{M}$ there is a sequence (x_n) in M such that $\lim x_n = x$. Hence $Ax_n \to Ax$ since A is a bounded linear operator.

Thus, for all $u \in N(L)$, $[u, A*Ax_n-A*y] = 0$ if and only if $\lim_{n \to \infty} [Au, A*Ax_n-A*y] = [Au, Ax-y] = 0$ Namely, $A*Ax-A*y \in N(L)^{\perp}$

Since $x \in \overline{M}$ was arbitrary, M is closed and so $X = N(L) \oplus_{L} M$,

Theorem 2. 3 An element $w \in X$ is a solution to the problem (1.1) if and only if $A*Aw-A*y \in N(L)^{\perp}$ and $L*L_w=L*z$.

Proof) By proposition 2.1, $w \in S_z = \{x \in X : x \text{ is a least squares solution of } Lx = z, z \in Z \}$ if and only if $L^*Lw = L^*z$.

Let $w \in S_z = |L^+z+s|$ $s \in N(L)|$ such that $||Aw-y|| \le ||Ax-y||$ for all $x \in S_z$

Then $\|A(L^+z+s)-y\| \le \|A(L^+z+x)-y\|$ for all $x \in N(L)$, where $w=L^+z+s$.

Since $Y = \overline{R(A_L)} \oplus R(A_L)^+$ where A_L denote the restriction of A onto N(L), $As = |y - A(L^+z)| \in R(A_L)^+$ Thus, for all $x \in N(L)$, $(Ax, As = |y - A(L^+z)|) = 0$ if and only if $(x, A^*As = A^*, y - A(L^+z)) = 0$ for all $x \in N(L)$, Hence $A^*Aw = A^*Ay \in N(L)^+$

By this theorem, the problem of constrained minimization (2.1) is equivalent to finding an element $\mathbf{w} \in \mathbf{M}$ such that $\mathbf{L}^*\mathbf{L}\mathbf{w} = \mathbf{L}^*\mathbf{z}$. Thus the solution \mathbf{w} is the least squares solution of \mathbf{X}_{L} —minimal norm of the equation (1.1).

Regularization. Existence and Uniqueness of the Regularized Solution.

When the range of A is closed, the problem (2.1) is well-posed. Hence our interest is in the case that the range of A is not closed and therefore the problem is ill-posed.

Instead of solving this ill-posed problem directly we will regularize it by a family of stable minimization problems.

Let W be the product space of Y and Z with the usual inner product: $W=Y\times Z$

$$\begin{split} &\langle (y_1,\ z_1),\ (y_2,z_2)\rangle_w \!=\! \langle y_1,y_2\rangle_Y \!+\! \langle z_1,z_2\rangle_z \\ &\text{for}\ y_1,y_2 \in Y\ \text{and}\ z_1,z_2 \in Z. \end{split}$$

We drop the subscripts X, Y and Z for the inner product and norms whenever the meaning is clear from the context.

For $\alpha > 0$, let C_{α} be a linear operator from X into W defined by $C_{\alpha} x = (Ax, \sqrt{\alpha} Lx)$ for $x \in X$

Lemma 3.1 For $\alpha > 0$, the range R(C α) of C α is closed if R(L) and A(N(L)) are closed. Proof) See to Song (1978).

Corollary 3.2 Suppose that R(L) and A(N(L)) are closed. Suppose that $N(A) \cap N(L) = |0|$. Let b = (y,0) in W. Then, for $\alpha > 0$, the operator $C_{\alpha}x = b$ is well-posed.

Proof) See to Song(1978).

We denote by U_{α} the unique least squares solution of minimal norm of the equation $C_{\alpha}x=b$ for each $\alpha>0$. That is, $U_{\alpha}=C_{\alpha}^{-1}x=b$.

From the definition of C_{α} and inner product of W,

$$\begin{array}{ll} C_{\alpha}x-b=(Ax,~\sqrt{\alpha}~Lx)-(y,0)=(Ax-y,~\sqrt{\alpha}~Lx)\\ \text{and} & \parallel C_{\alpha}x-b\parallel^2\\ &=\langle C_{\alpha}x-b,~C_{\alpha}x-b\rangle\\ &=\langle Ax-y,~Ax-y\rangle+\alpha~\langle Lx,~Lx\rangle\\ &=\parallel Ax-y\parallel^2+\alpha\parallel Lx\parallel^2\\ \text{Let us write}~J_{\alpha}(x)=\parallel Ax-y\parallel^2+\alpha\parallel Lx\parallel^2 \end{array}$$

Theorem 3.3 Let $\alpha > 0$. An element X_{α} in X minimizes the quadratic functional $J_{\alpha}(x)$ if and only if $(A*A + \alpha L*L)x_{\alpha} = A*y$.

Proof) An element x_{σ} in X minimizes the quadratic functional $J_{\sigma}(x)$ if and only if $J_{\sigma}(x)=2(A*Ax-A*y)+2(L*Lx_{\sigma})=0$, i.e., $(A*A+\sigma L*L)x_{\sigma}=A*y$.

We can approximate least squares solutions by applying the steepest descent method. The method of steepest descent for minimizing J_{α} (x) is given by $x_{n+1} = x_n - \alpha_n r_n$, where $r_n = C^* C_{\alpha}$ $x_n - C^* b$ and

$$\alpha_n = \frac{\parallel r_n \parallel^2}{\parallel C_n r_n \parallel^2},$$

The sequence generated by steepest descent method converges to an element $u \in S_{\alpha} = \{z : \inf \| C_{\alpha} x - b \| \| = \| C_{\alpha} z - b \| \| \}$. $\{x_n\}$ converges to u_{α} if and only if $x_0 \in R(C_{\alpha}^*)$ for any initial approximation $x_0 \in X$.

Literature cited

- Groetsch, C. W., 1977. Generalized inverses of linear operators, p. 113~118. Dekker, New York.
- Groetsch, C. W., 1980. Elements of applicable functional analysis, p.109~120. Dekker, New York.
- Kreyszig, E., 1978. Introductory functional analysis with application, p. John Wiley and
- Sons, New York.
- Nashed, M. Z., 1976. Generalized inverses and applications. p. 225~243.
- Song, M. S., 1978. Regularization Projection methods and finite element approximations for ill posed linear operator equations, Ph. D. Dissertation, University of Michigan, p. 4~17.

국 문 초 록

본 논문에서는 Hilbert 공간상에서 제한된 선형연산자의 minimization 문제를 조사하는 과정에서 그 연산자가 ill-posed인 경우 해의 존재성을 논하였다.