J. of Basic Sciences, Cheju Nat. Univ. 2= HFEistn
10(1), 7~13. 1997 10(1), 7-13, 1997

TDMA 7@ o|tjvlEq]| 7]utt
AA)7 RPC Al&He] 24

A design of Real-Time RPC based on
TDMA-implemented Ethernet

o] A F* ol ¥ 7, A A
*AlFdga AAddE FA5ALT AFHES e AP HFH S
Tel: +32-64-54-3594, e-mail:jhlee@venusl.cheju.ac.kr

x
B ePe 24-89-29 AUYS e AN 97 ZAFo 522 12902 AU 4
e B4 AZUE AAGD 3 45E FAVG o FAU AdE AL GF A2 Paol 7
de oHUES JWoR 2 gon 47 AT S3o BUL WAAEE 15 4ol

el A Fsted Aol 2AEI] HA FrEAAG. Mt FA Al2H _’:ﬂl% E713}el o3
Mule] FPANE AEHo2 ALY £ glonz HAT AF ZTaAFo] 329 FEAF TF
=8 A+ At 839 EAARE Mul2 A R qf AL § g 83 A A
o 2o Ayd sl AtE FA A2l &Y EE ¥y AR oF A2 UAEg 4
At 97 Z2AF 3&9 HAR ded EANFE BAdG.

Abstract

This paper proposes and analyzes a communication mechanism capable of
supporting real-time RPC(Remote Procedure Call) which is based on request-
acknowledgment-reply semantic. As an enhanced protocol of TDMA-implemented
Ethernet, the proposed CS(Communication System) dynamically schedules RPC-
related messages according to their attributes, making a network schedule be easily
combined with a server schedule. As RPC schedule produced by combining server
schedule and communication schedule can obviate the waste computation time at
the server. more real-time RPC requests can meet their timing constraints.
Simulation result shows that the RPC over the proposed CS outperforms those over
token bus and TDMA on the various network parameters, such as RPC arrival
time. service time and slack.

ERHBHRRT

1. Introduction

RPC is the traditional and wide-spread
type of interprocess communication and
most of the distributed applications and
distributed system services are built
on top of this facility. In the future,
ODP’s such as CORBA(Common
Request Broker Architecture)(1) and
TINA (Telecommunication Networking
Architecture)(2) will be required to
support diverse distributed real-time
applications, hence, it is necessary to
enhanced RPC
capable of

provide mechanism

efficiently supporting
real-time characteristics. Like other
real-time services, the correctness of a
real-time RPC depends on both the
correctness of the computation result
and the time the result is produced.
In other words, the result is
meaningful only when the computed
result is transmitted back to the caller
within deadline of the RPC. Therefore,
when a server receives a request. it
must check if it can complete
execution and if the communication
system can guarantee delivery of the
result within the deadline of the
request. If a server executes the
request without the guarantee of
communication system(3), the result
may be transmitted back to the client
after deadline of the RPC and the
computation time of the server is
wasted. In addition, server should be
able to inform the client early that it
cannot execute the request so that the

client can send the rejected request to

another server. For this purpose, the
communication system should be able
to reserve necessary amount of
network time within the deadline of
the request and to report to the server
on the reserved time so that the
server completes prior to the reserved
network time. The reserved network
time is the actual deadline for the
server computation, and server can
reschedule the requests afterwards.

according to this deadline.

This paper is organized as follows:
Section 2 describes a CS which can
efficiently support RPC-style real-time
communication satisfying above
requirements. Section 3 designs a
real-time RPC

based on the proposed CS. Section 3

computation model

evaluates the performance and finally
Section 4 concludes this paper along
with the description of future work.

2. Functionality of Communication
System

An RPC generated by a client invokes
server execution and transmission of
three messages, namely. request(REQ),
acknowledgment(ACK), and reply(REP).
ACK is
acknowledgment or denial of the

adopted for earlier
request to the client. The main
function of CS is to schedule efficiently
each type of message and provide
server scheduler with the information
on its schedule. As the RPC request
arrives dynamically, the RPC request

TDMA 78 olC{dEof J1utdt AAIZE RPC Al2Bef 4

arrival time is not known in advance.
This implies that CS scheduler should
follow the dynamic scheduling policy
such as EDF(Earliest Deadline First),
aiming at guaranteeing to meet the
deadlines of requests as many as
possible. However. the server node
generates ACK and REP only after
REQ arrives. It makes each server
node schedule at each arrival time of
REQ by reserving network time for
ACK and REP.

The proposed CS is based on TDMA
protocol implemented on Ethernet type
bus, because its guarantee mechanism
is straightforward{4]). In addition, a
hand-over mechanism can be easily
added. which enables a node to get a
part of slot time of another node. As
generally known, in TDMA, time axis
is divided into equally sized frames,
and each of the frames is divided into
equally sized slots assigned to
individual nodes. The disadvantage of
TDMA is that the large amount of
time is wasted when nodes do not
send messages. However, on TDMA
implemented by software(5,6]). it is
possible to dynamically mediate the
slot time (by hand-over function) on
each arrival of RPC request. For this
purpose, the proposed CS invites a
new type of message. called hand-over
request(HOR). Like REQ. HOR
implicitly passes the access right to
the network over to receiver node until
the node receives the corresponding

ACK. That is. part of a slot time

-9

owned by a node can be used by the
receiver of REQ and HOR. ACK plays
the following two roles: It informs the
client whether server can execute the
request within deadline(T-ACK) or
not{N-ACK). It also
requester whether an HOR request has
been accepted(H-ACK) by the receiver
of hand-over request or not(HN-ACK).

informs the

Frame
type dur req

. | fr[moes]
n-1 ———{ACK64 —HREPBOOJ

n [REP900 J-+{ACK 64 |

(a) slot table

type req when type dur req
REQ HT 64
REQ [HT 64 |
1]
} |
HOR SL 2000
(b) edf queue (c) time table

Figure 1 Data structure for each node

For the
scheduling RPC requests, each node

purpose of efficiently

maintains a table for its own slot

XERBRBHRT

which contains reserved messages such
as ACK and REP along with edf queue
for REQ and HOR, as shown in Figure
1(a) and (b), respectively. Slot table
contains the messages which have
been reserved in advance and will be
transmitted via its slot. The messages
in edf queue can be sent only if the
slot table entry of the frame is empty.
In Figure 1, HO means part of slot
time is handed over to another node.
Each entry of both slot table and edf
queue has req field which describes
the characteristic of a request, such as
deadline, required bandwidth. and so
on. In addition, a node has time table
by which its clock indicates to CS that
it is time to send a message(See
Figure 1(c)). In the figure, HT means
that the time quantum is handed over
from another node, while SL means its
original slot. The last entry of time
table is always SL and whenever the
last entry is deleted, a new SL entry
is inserted.

CS has three main functions as
shown in Figure 2. c¢s_send is invoked
on each of slot time and handed over
time(Refer Figure 1(c)). Its function is
to send the messages in its slot table
of corresponding turn{when slot table
entry is ACK or REP) or keep silent
for the time duration handed over to
another node{when slot table entry is
HO). and then transmit messages in
edf queue if remaining time is
sufficiently available. In contrast, CS

continuously calls c¢s_receive waiting

procedure cs_send()
if (my slot time) {
forall entries in the slot table
if (type == Handed Over) keep silent;
else send a message;
for the remaining slot time
send messages in the edf queue;

else /* my time handed over from another node */
send corresponding message;
end procedure

procedure cs_receive() {
receive message();
switch message type
case ACK, REP : send to the client;
case HOR :
if (requested amount is available)
update slot table;
send H-ACK;
else send HN-ACK;
case REQ:
cs_reserve(ACK); /* with hand-over */
if (failure) send N-ACK ;
return;
send T-ACK:
invoke the server scheduler;
end procedure

procedure cs_reserve() {

if (the network time is available in its own slot)
update slot table;
return success,

if (without hand-over) return failure

within (predefined time)
find unrequested node and slot in the range;
send HOR to that node:
wait for the reply;
if (H-ACK is received) return success;

return failure:

end procedure

Figure 2 Description of CS
for a new rmessage. c¢s_reserve is
invoked by server node when REQ
arrives to reserve network time for
ACK, as well as by the
scheduler when it attempts to reserve
network time for REP. The caller of
this procedure should specify range

server

and duration. Then c¢s_reserve reserves

- 10 -

TDMA 73 o|Hu|Eoi 7|ut3t dAZE RPC Al2”e 4|

as much time as duration within time
interval specified by range. The
procedure first checks if the sufficient
slot time of its own in the specified
range is available. If not, it sends
HOR to the node within the range,
one by one, until H-ACK is returned
or predetermined time is elapsed. The
requested node checks its slot table
and sends back H-ACK(after updating
its slot table) or HN-ACK. cs_reserve
also provides reservation without
hand-over so that the network time
for REP can be reserved only out of
the slot time of the server. Hand-over
procedure for REP can block the serve
scheduler, as CS sends HOR via edf

queue.

With the functionalities described above,
CS provides the following primitives:

- sendedf : inserts a message into edf
queue.
- sendslot ' sends a message via
reserved slot.
- readfromcs @ reads a message from
CS.
- reserve @ reserves a part of slot time

/* with or
without hand-over */

for message.

Again with the support of CS, a
real-time RPC can be designed as
shown in Figure 3. A server executes
an RPC request only when it can
reserve network time for REP. After
REP is reserved, the reserved network
time becomes the actual deadline of

- 11 -

the request. Afterwards. when another

message arrives, the server will

reschedule requests according to the
actual deadline. A new request can be
inserted to server queue as long as the
execution of the request does not
result in missing of actual deadlines of
all requests pending in the server

queue.

procedure rpc_client
sendedf REQ, reqdscr);
wait for the acknowledgment;
if (N-ACK received or timeout} some action
else wait for REP;
end procedure

procedure rpc_server
waiting for REQ from any client;
schedule the request; /* edf scheduling */
compute earliest finish time;
reserve(REP); /* without hand-over */
if (success)
slotsend(ACK);
insert the regdscr to server queue;
else slotsend(NACK);
end procedure

Figure 3 RPC model based on the
proposed CS

3. Simulation results

The performance of the proposed
measured via
SMPL(7]. The
simulation compares RPC over the
proposed CS with RPC over token bus
and normal TDMA. We have measured

scheme has been

simulation using

success ratio of the real-time RPC
request according to request arrival
time(Figure 4), service time(Figure 5)
and finally slack(Figure 6). In the
simulation, we assumed that the
length of ACK and HOR is 64 bytes,
that of REP is fixed to 500 bytes. The

ERHMBHT

0.8
1]
D
06 ~ /
]
2]
@<
0.4 -
i
@
G—=© Proposed RPC
02 G—aRPC over Token Bug -
+—+ RPC over TDMA
0.0 . L N N
0.0 10.0 200 30.0 40.0 50.0 60.0

Average arrival time {ms)

Figure 4 Success ratio according to
arrival time

1.0 =] T v —r

O——€ The Proposed RPC
G—-& RPC over Token Bug
+——+ RPC over TDMA 1

08

0.6 ~

Success Ratio

02+

0.0
0.0

200 30.0 40.0

Service Time(ms)

10.0 50.0

Figure 5 Success ratio according to
service time

of node is 4. requests arrive
exponentially. The slot time for TDMA
and maximum token holding time for

in MARS

number

token bus is 2 ms as

- 12

system(5)]. Token bus shows better
performance when network load is low
due to its flexible network access

pattern and when service time is very
small due to less damage resulted from

waste of server execution time.

08 ;
i
i
0.6 -
2
s
2 04
g OO The Proposed RPC
G—=8 RPC over Token Bug
+——+ RPC over TDMA
02
0.0 . L
0.0 05 1.0 15 2.0
Slack (ms)

Figure 6 Success ratio according to
slack

4. Conclusion and Future Work

In this paper. we have proposed CS
capable of supporting real-time RPC.
It's main function is to schedule RPC
requests and provide synchronization
with server scheduler. In this scheme,
guaranteed RPC requests never fail to
meet their deadlines. The obviation of
server execution time mainly enhances
the success ratio of the real-time RPC

requests.

In addition, the following problems will

TOMA 28 O|C{UIEof Z|gkst AAIZE RPC AlARIS| HA|

be

1)

2]

3]

researched:

Apply the functions designed for
TDMA to another protocols such as
token ring, CSMA/CD, and so on.
Schedule efficiently when an request
accompanies another RPC requestsuch
as query to name server.

Design an internetworking device such
as bridge to support network-wide

RPC.
gy

Object
Common

Group, The
Broker:
oM

December

Management
Object
Architecture and Specification,
No.91.12.1,

Request

Document,
1991.

F. Dupuy and P. Graubmann et al.,
DPE Phase 0.1 Specification, TINA
Consortium, December 1993.

Dao
“Remote procedure call protocols for

Marina and Kwei-Jay Lin,

real-time systems,” Proceedings of

5)

{6)

_13-

IEEE Euromicro
216-223. 1991.

Nicholas Malcomn, Wei
Chris Barter,
for

Workshop, pp.
Zhao.
“Guarantee protocols
distributed
hard real-time systems.” Proceedings
of IEEE INFOCOM: The Conference
on Computer Communications.
1078-1086, 1990.

Hermann

and

communication in

pPp.
Kopetz and et al.,
“Distributed fault-tolerant real-time
systems of MARS." IEEE Micro. pp.
25-40, Feburary 1989.

Junghoon Lee and Heonshik Shin,
bandwidth’
scheme for Ethernet-based real-time
of the First
Workshop
Computing
pPp.

“A variable allocation
communication,” Proc.
International on Real-
Time Systems and
Applications, 28-32, December
1994.

M. H.
Computer Systems: Techniques and

Tools. MIT Press, 1987.

MacDougall, Simulating

	초록
	Abstract
	1. Introduction
	2. Functionality of Communication System
	3. Simulation results
	4. Conclusion and Future Work
	참고문헌

