On Nearness Structures of T₁ Topological Spaces

Song Seok-zun

T, 位相空間의 Nearness 構造에 관하여

宋錫準

I. Introduction and Preliminaries

The concepts of nearness spaces were first introduced by Herrlich in [7]. It has been proved to be a useful tool in the classification of extensions of topological spaces; see for examples [3], [5] and [8]. Bently [3], Herrlich [8], Reed [10] and others have used nearness to classify the principal T_1 extensions of a T_1 spaces. In [5], Dean generalize Ree's result to classify the principal T_0 extensions of a T_0 spaces.

In this paper, we isolate a wide class of nearness structures, called the nearness structures with generating collections, that are induced by T_1 extensions of a particular type. These we shall call T₁ extensions generated by cocountable open sets. The set of nearness structures with generating collections compatible with a symmetric topological space is a complete lattice. We show that in any serious investigation of the lattice of nearness structures compatible with a T₁ topological space, these structures with generating collections will play a special role. This paper is concluded with applications; The category of nearness spaces with generating collections and bijective nearness

preserving maps is bicoreflective in the category of nearness spaces and bijective nearness preserving maps.

Let X be set and $\xi \subset P^2X$ and consider the following axioms;

- (N1) If $B \in \xi$ and A corefines B (i.e. for each $A \in A$ there exists $B \in B$ such that $B \subset A$) then $A \in \xi$
- (N2) If $\bigcap A \neq \emptyset$ then $A \in \xi$
- (N3) $\phi \neq \xi \neq P^2 X$
- (N4) If A∪B= {A∪B: A ∈ A B∈B}∈ \(\xi\$, then A∈\(\xi\$ or B∈\(\xi\$
- (N5) If $cl_{\xi}A \in \xi$, then $A \in \xi$. $(cl_{\xi}A = \{x \in X : \{\{x\}\}, A\} \in \xi\}$ and $cl_{\xi}A = \{cl_{\xi}A : A \in A\}$.)

Definition 1.1. (8) (X, ξ) is called a nearness space or N-space if and only if ξ satisfies (N1)-(N5).

This space was introduced by H. Herrlich (8).

Definition 1.2. If (X, ξ) and (Y, η) are N-spaces; then a function $f:(X, \xi) \to (Y, \eta)$ is called *u nearness preserving map* if and only if $A \in \xi$ implies that $f(A) \in \eta$.

. Definition 1.3. Nearness ξ on X is compatible with a topology t on X if and only if $\operatorname{cl}_{\xi}(A) = \overline{A}$

for all ACX. (i.e. the given topology is equal to the topology induced by the nearness structure ξ .)

Throughout this paper, for the other definitions, we use the definitions of Bang [1] and [2] (or the definitions of Herrlich [8] and [7].)

II. Nearness Structures with Generating Collections.

Definition 2.1. Let (X, t) be a T_1 topological space. Let A, D \subseteq X and A, D \subseteq PX. Let I be a set and $D_1\subseteq$ PX for each $i\in I$. Define;

- (1) ξ(D)={A⊂PX: ∩Ā=∩{Ā:A∈A}≠φ}∪{A⊂ PX:Ā∩D has uncountable elements of X for each A∈A}
- (2) $\xi(D) = \{A \subset PX : \bigcap \overline{A} \neq \emptyset\} \cup \{A \subset PX : \text{for each } A \subseteq A, \text{there exists } D \subseteq D \text{ such that } \overline{A} \cap D \text{ has uncountable elements of } X\}.$
- (3) ξ[D] = {A ⊂PX: ∩ Ā≠φ}∪{A ⊂PX: there exist D∈D such that Ā∩D has uncountable elements of X for each A∈A}
- (4) $\xi(\{D_i : i \in I\}) = \{A \subset PX : \bigcap A \neq \emptyset\} \cup \{A \subset PX : \text{there exists } i \in I \text{ such that for each } A \in A \text{ there exists } D \in D_i \text{ such that } \overline{A} \cap D \text{ has uncountable elements of } X \}$.

Remark 2.2. We can rewrite each of the notations in Definition 2.1 as follows;

- (1) $\xi(D) = \xi(\{\{D_1\}, I = \{1\} \text{ and } D_1 = \{D\}\})$
- (2) $\xi(D) = \xi(\{\{D_1\}\}; I = \{1\} \text{ and } D_1 = \{D\})$
- (3) $\xi[D] = \xi(\{D_c\} : I = D \text{ and } D_c = D\})$

And we have that $\xi[D] = \bigcup \{\xi(D): D \in D \text{ and } \xi(\{D_i:i \in I\}) = \bigcup \{\xi(D_i):i \in I\}$.

Theorem 2.3. Let (X,t) be a T_1 topological space. Let I be a set and $D_i \subseteq PX$ for each $\in I$. Then $\xi = \xi(\{D_i : i \in I\})$ is a nearness structure compatible with T_1 topology t. And hence $\xi(D)$, $\xi(D)$ and $\xi[D]$ are also nearness structures compatible with t.

Proof. (N1) If $\mathbf{B} \in \xi$ and A corefines B, then case 1) if $\cap \overline{\mathbf{B}} \neq \emptyset$ then $\cap \overline{\mathbf{A}} \neq \emptyset$ by definition of corefineness, and hence $\mathbf{A} \in \xi$, case 2) if there exists $i \in I$ such that for each $\mathbf{B} \in \mathbf{B}$ there exists $\mathbf{D} \in \mathbf{D}_i$ such that $\overline{\mathbf{B}} \cap \mathbf{D}$ has uncountable elements of X, then for each $\mathbf{A} \in \mathbf{A}$, there exists a $\mathbf{B} \in \mathbf{B}$ such that $\mathbf{B} \subseteq \mathbf{A}$ because A corefines B. Hence there exists $i \in I$ such that for each $\mathbf{A} \in \mathbf{A}$, there exist above given $\mathbf{D} \in \mathbf{D}_i$ and $\mathbf{B} \in \mathbf{B}$ such that $\overline{\mathbf{A}} \cap \mathbf{D} \supset \overline{\mathbf{B}} \cap \mathbf{D}$. Therefore $\overline{\mathbf{A}} \cap \mathbf{D}$ has also uncountable elements of X, i.e. $\mathbf{A} \in \xi$.

(N2), (N3) are trivially satisfied.

(N4) Suppose $A \not\in A$ and $B \not\in A$. Then $\cap \overline{A} \lor \overline{B} = \emptyset$ And for each $i \in I$, there exists $A \in A$ and $B \in B$ such that $\overline{A} \cap D$ and $\overline{B} \cap D$ has countable elements of X for all $D \in D_i$. Hence $(\overline{A} \cup B) \cap D = (\overline{A} \cap D) \cup (\overline{B} \cap D)$ has countable elements of X for all $D \in D_i$. Thus $A \lor B \not\in E$.

(N5) For any ACX and $x\in \overline{A}$, we have $\{x\} \subset \overline{\{x\}} \cap \overline{A}$. Then $\{\{x\}, A\} \in \xi$ and $x\in cl_{\xi}A$. Hence $\overline{A} \subset cl_{\xi}A$. Conversely, if $x\in cl_{\xi}A$, then $\{\{x\}, A\} \in \xi$. Since $\{\overline{x}\} \cap D$ is countable for each DCX, (because (X, t) is T_1 space), it follows that $\{\overline{x}\} \cap \overline{A} \neq \emptyset$. Hence $x\in \overline{A}$ and $cl_{\xi}A = \overline{A}$ for all ACX. Suppose that $cl_{\xi}A \in \xi$. If $\cap cl_{\xi}A \neq \emptyset$, then since $cl_{\xi}A = \overline{A}$, $\cap \overline{A} \neq \emptyset$. Hence $A \in \xi$. And if there exists $i\in I$ such that for each $cl_{\xi}A \cap D$ has uncountable elements of X, then there exists the $i\in I$ such that for each $A \in A$ there exists $D \in D_i$ such that $\overline{A} \cap D = cl_{\xi}A \cap D$ has uncountable elements of X. Hence $A \in \xi$. Moreover, the fact that ξ is compatible with t is shown in the proof of (N5).

Definition 2.4. The given ξ in Theorem 2.3 is called compatible (with t) nearness structure on X with generating collection $\{D_i:i\in I\}$.

Theorem 2.5. For any T_1 topological space (X, t), the set $S=\{\xi: \xi \text{ is a compatible nearness structure on } X \text{ with generating collection} \}$ is a

complete lattice with respect to inclusion. Especially

- (1) The discrete nearness $\xi(\phi) = \{A \subset PX : \bigcap \overline{A} \neq \phi\}$ is the smallest compatible nearness structure on X with generating collection.
- (2) The indiscrete nearness $\xi(X)=\xi(\phi)\cup\{A\subseteq PX: \overline{A} \text{ has uncountable elements of } X \text{ for each } A\subseteq A\}$ is the largest compatible nearness structure on on X with generating collection.
- (3) If $\Omega = \{\xi_i : i \in I, \xi_i \text{ is a compatible nearness structures on } X \text{ with generating collection} \} \subseteq S$, inf $\Omega = \bigcap_{i \in I} \xi_i$ and sup $\Omega = \bigcup_{i \in I} \xi_i$.

Proof. The proof is evident.

Definition 2.6. Let (X,t) be a T_1 topological space. Let D, E $\subset X$, and D $\subset PX$. Define

- (1) $A(D) = \{A \subseteq X : \overline{A} \cap D \text{ has uncountable elements of } X \}$
- (2) $A(D) = \{A \subseteq X : \text{ there exists } D \subseteq D \text{ such that } \overline{A} \cap D \text{ has uncountable elements of } X \}$
- $(3) \mathbf{A}_{\mathbf{p}} = \{ \mathbf{A} \subseteq \mathbf{X} : \mathbf{p} \in \overline{\mathbf{A}} \}$
- (4) $D \le E$ if U is open and E-U is countable then D-U is countable
- (5) $D \sim E$ provided $D \leq E$ and $E \leq D$.

Proposition 2.7. Let (X,t) be a T_1 topological space. Then

- (1) A(D), A(D) and A are stacks.
- (2) If X and D have uncountable elements,
 A(D) and A_p are grills, but not filters in general.
 (3) ξ(D) is concrete.
- **Proof.** (1) Since $A(D) \subseteq \text{stack } A(D)$, let $B \subseteq \text{stack } A(D)$. Then there exists $A \subseteq A(D)$ such that $A \subseteq B$. Hence $A \cap D \subseteq B \cap D$ and $B \cap D$ has uncountable elements of X. Therefore $B \subseteq A(D)$. Hence A(D) = stack A(D). For A(D) and A_p , the proofs are similar.
- (2) Since any finite subset $F \subseteq X$ is not contained in A(D), $A(D) \neq PX$. And $A(D) \neq \phi$ since $X \subseteq A(D)$. Now, if $A \cup B \subseteq A(D)$, then $A \cup B \cap D = (\overline{A} \cap D) \cup (\overline{B} \cap D)$ has uncountable element of X. Hence $\overline{A} \cap D$ or $\overline{B} \cap D$ has uncount ole elements of X. That is, $A \subseteq A(D)$ or $B \subseteq A(D)$. Conversely,

if $A \in A(D)$ or $B \in A(D)$, it is trivial that $A \cup B \in A(D)$. Hence A(D) is a grill. Similarly A_D is a grill. Next, consider the real space (X, t) with Euclidean topology t. Let A be positive rationals and B be negative rationals and D be irrationals. Then A(D) is not a filter, since $A, B \in A(D)$ but $A \cap B = \emptyset \not\in A(D)$. For A_D , Consider $A = (-\infty, p)$, $B = (p, \infty)$ in (X, t). Then we have that A_D is not a filter.

(3) The clusters are $\mathbf{A}_{\mathbf{p}} = \{\mathbf{A} \subseteq \mathbf{X} : \mathbf{p} \in \overline{\mathbf{A}}\}$ for $\mathbf{p} \in \mathbf{X}$ and $\mathbf{A}(\mathbf{D})$. If $\mathbf{D} \in \xi(\mathbf{D})$, then $\cap \overline{\mathbf{D}} \neq \phi$ or $\overline{\mathbf{A}} \cap \mathbf{D}$ has uncountable elements of X for each $\mathbf{A} \in \mathbf{D}$ In case $\cap \overline{\mathbf{D}} \neq \phi$, there exists some $\mathbf{p} \in \cap \overline{\mathbf{D}}$ and we have $\mathbf{D} \subseteq \mathbf{A}_{\mathbf{p}}$ In other case, $\mathbf{D} \subseteq \mathbf{A}(\mathbf{D})$. Hence $\xi(\mathbf{D})$ is concrete.

Proposition 2.8. For T_1 topological space (X, t) we have

- (1) D<E if and only if A(D)⊂A(E).
- (2) $A(D) \subseteq A(E)$ implies $\xi(D) \subseteq \xi(E)$.
- (3) If $\xi(D) \subseteq \xi(E)$ and $\bigcap \overline{A(D)} = \phi$ then $A(D) \subseteq A(E)$.

Proof. (1) Suppose D<E and let A \in A(D). Suppose A $\not\in$ A(E). Then $\overline{A}\cap E$ has countable elements of X. Let U=X $-\overline{A}$. Then E-U= $E\cap U^c=E\cap \overline{A}$ has countable elements of X. Since D<E, it follows that D-U is countable but this is contradict to A \in A(D). Hence A(D) \subset A(E). Conversely, suppose A(D) \subset A(E) and let U \in t with E-U countable. Suppose D-U has uncountable elements of X. Let A=X-U. Then $\overline{A}\cap D=A\cap D=(X-U)\cap D=(X\cap U^c)\cap D=U^c\cap D=D-U$ has uncountable elements of X. Hence A \in A(D) \subset A(E). But $E\cap \overline{A}=E\cap A=E\cap U^c=E-U$ has countable elements of X. This is contradict. Therefore D<E.

- (2) If $\mathbf{D} \in \xi(\mathbf{D})$, then $\bigcap \mathbf{D} \neq \phi$ or $\mathbf{A} \cap \mathbf{D}$ has uncountable elements of X for each $\mathbf{A} \in \mathbf{D}$ If $\bigcap \mathbf{D} \neq \phi$, then $\mathbf{D} \in \xi(\mathbf{E})$. In the other case, $\mathbf{D} \subseteq \mathbf{A}(\mathbf{D})$. Hence $\mathbf{D} \subseteq \mathbf{A}(\mathbf{E})$ by assumption. Hence $\mathbf{A} \cap \mathbf{E}$ has uncountable elements of X for each $\mathbf{A} \in \mathbf{D}$. Hence $\mathbf{D} \subseteq \xi(\mathbf{E})$.
- (3) For any $A \in A(D)$, $\overline{A} \cap D$ has uncountable elements of X. Then $A(D) \in \xi(D) \subseteq \xi(E)$. Since

 $\bigcap \overline{A(D)} = \emptyset$, $\overline{A} \cap E$ has uncountable elements of X for each $A \in A(D)$. Therefore $A \in A(E)$ and $A(D) \subset A(E)$.

Definition 2.9. Let (X, t) be a T_1 topological space. Let C, $D \cap X$, and $C_i \cap X$ for each $i \in I$ and $D_i \cap X$ for each $j \in J$. Define

- (1) C is called concrete provided C, $D \in C$ and C < D implies $C \sim D$.
- (2) C < D if for each $C \in C$, there exists $D_C \subset D$ such that if U is open and D-U has countable elements of X for $D \in D_C$ then C-U has countable elements of X.
- (3) C~D provided C<D and D<C
- (4) $\{C_i : i \in I\} < \{D_j : j \in J\} \text{ if } i \in I \text{ and } A \subseteq A(C_i) \text{ then there exists } j \in J \text{ with } A \subseteq A(D_i).$
- (5) $\{C_i: \not\in I\} \sim \{D_j: j\in J\} \text{ if } \{C_i: \not\in I\} < \{D_j: j\in J\} \text{ and } \{D_i: j\in J\} < \{C_i: \not\in I\}.$
- (6) $\{C_i : \notin I\}$ is called concrete provided $\notin I$, $j \in J$ and $C_i < C_j$ implies $C_i \sim C_j$.

Proposition 2.10. For T_1 topological space (X, t), we have

- (1) C \lt D if and only if A(C) \subseteq A(D).
- (2) $A(C) \subseteq A(D)$ implies $\xi(C) \subseteq \xi(D)$.
- (3) If $\xi(C) \subseteq \xi(D)$ and $\bigcap A(C) = \phi$, then $A(C) \subseteq A(D)$.

(1) Suppose C<D. Let $A \in A(C)$. Then there exists $C \subseteq C$ such that $\overline{A} \cap C$ has uncountable elements of X. Suppose AOD has countable elements of X for each D∈D_C. Then U=X-A is open and $D-U=D\cap U^{c}=D\cap \overline{A}$ has countable elements of X for each D∈D_C. Hence C-U has countable elements of X. But C-U= C∩Uc=C∩A has uncountable elements of X. This is a contradiction. Therefore $A(C) \subseteq A(D)$. Conversely, suppose $A(C) \subseteq A(D)$. Let C∈C. Suppose C has uncountable elements of X. (If C has countable elements, then it is trivial.) Put $A(C) = \{A \subset X : \overline{A} \cap C \text{ has uncountable ele-} \}$ ments of X} and $D_C=\{D:D\in D, \text{ there exists}\}$ $A \in A(C)$ with $A \cap D$ has uncountable elements of

- X}. Let U be open set such that D-U has countable elements for each $D \in D_C$. Suppose C-U has uncountable elements. Let A=X-U. Then $A \in A(C)$ since $\overline{A} \cap C = A \cap C = U^C \cap C = C U$ has uncountable elements. And since $A(C) \subset A(D)$, there exists $D \in D_C$ with $\overline{A} \cap D$ uncountable. Then $\overline{A} \cap D = (X-U) \cap D = U^C \cap D = D U$ has uncountable elements. But D U has countable elements, we have a contradiction. Therefore C < D.
- (2) Since $\xi(C) = \xi(\phi) \cup \{A \subset PX : A \subseteq A(C), \text{ we have that } A(C) \subseteq A(D) \text{ implies } \xi(C) \subseteq \xi(D).$
- (3) If $A \in A(C)$, there exists $C \in C$ such that $\overline{A} \cap C$ has uncountable elements of X. Then $A(C) \in \xi(C) \subseteq \xi(D)$. Since $\overline{A(C)} = \phi$, for each $A \in A(C)$, there exists $D \in D$ such that $\overline{A} \cap D$ has uncountable elements of X. Therefore $A \in A(D)$ and $A(C) \subseteq A(D)$.

Proposition 2.11. Let (X, t) be T_1 topological space. Then

- (1) $\xi(D)$ is concrete nearness structure for $D \subseteq PX$
- (2) If D is concrete collection in the sense of definition 2.9(1), then $\xi[D]$ is also concrete nearness structure.
- (3) $\xi[D]$ is concrete nearness structure if and only if there exists a concrete collection C such that $\xi[D] = \xi[C]$.
- (4) If {D_i: ∉I} is concrete collection then ξ({D_i: ∉I}) is concrete nearness structure.
- (5) $\xi(\{D_j:j\in J\})$ is concrete nearness structure if and only if there exsits a concrete collection $\{C_i:\in I\}$ such that $\xi(\{D_i:j\in J\})=\xi(\{C_i:\in I\})$.

Proof. (1) $\xi(D)=\{A \subset PX: \bigcap A \neq \phi\} \cup \{A \subset PX: \text{ for each } A \subseteq A \text{ there exists } D \subseteq D \text{ such that } \overline{A} \cap D \text{ has uncountable elements of } X\}=\xi(\phi)\cup \{A \subset PX: A \subset A(D)\}$. If D is empty or contains only the sets which have countable elements, then $\xi(D)=\xi(\phi)$ and hence is concrete. If D contains an uncountable set then the clusters in $\xi(D)$ are of the form $A_p=\{A \subset X: \hat{p} \in \overline{A}\}$ for $p \in X$ or A(D). Hence for each $A \in \xi(D)$, if $\bigcap \overline{A} \neq \phi$ then

 $A \subseteq A_p$ for some $p \in \cap \overline{A}$, and if $A \subseteq A(D)$, A is contained in a cluster A(D). Hence $\xi(D)$ is concrete. (2) Suppose D is concrete. If D is empty or consists only of the sets which have countable elements then $\xi[D] = \xi(\phi)$ and thus is concrete. If D has the set which have uncountable elements then the clusters in $\xi[D]$ are of the form A_p for $p \in X$ or A(D), where $D \in D$ and D has uncountable elements of X. Each $A \in \xi[D]$ is contained in one of these clusters, and thus $\xi[D]$ is concrete.

(3) Suppose $\xi[D]$ is concrete. Let $C = \{D \in D: A(D) \text{ is a cluster in } \xi[D]\}$. If $C = \emptyset$ then we are through. Suppose $D \in C$ and $E \in C$ with $D \in E$. Then by Proposition 2.8 (1), $A(D) \in A(E)$. But A(D) is a cluster and hence A(D) = A(E). Thus $D \sim E$ and C is concrete. If $A \in \xi[D]$ and $A \in A \notin E$ then $A \in \xi[C]$. Otherwise, since $E \in E$ is concrete, there exists a cluster of the form $E \in E$ and thus $E \in E$. Therefore $E \in E$ and thus $E \in E$. Therefore $E \in E$ and thus $E \in E$. Therefore $E \in E$ is concrete exists a concrete collection such that $E \in E$. Therefore $E \in E$ is concrete nearness structure by (2).

(4) Let $\{D_i:i\in I\}$ be a concrete collection. Let $\xi=\xi\{D_i:i\in I\}$. The clusters in ξ are of the form A_p for $p\in X$ or $A(D_i)$ for $i\in I$ and D_i containing at least one uncountable subset of X. For, let D_i contain at least one uncountable subset of X and suppose that $A(D_i)\subset A(D_j)$ for some D_i which containing an uncountable subset of X. Then by Theorem 2.10 (1), $D_i\subset D_j$. Since the collection $\{D_i:i\in I\}$ is concrete, we have that $D_i \sim D_j$ and hence $A(D_i)=A(D_j)$. Thus $A(D_i)$ is a cluster. Hence $\xi(\{D_i:i\in I\})$ is concrete nearness structure.

(5) If the condition holds then $\{\{D_j:j\in J\}\}$ is concrete nearness by (4). Conversely, suppose that $\xi=\xi(\{D_j:j\in J\}\}$ is concrete nearness. Let $I=\{i:i\in J \text{ and } A(D_i) \text{ is cluster in } \xi\}$. The cluster in ξ are of the form A_p for $p\in X$ or $A(D_i)$ for $i\in I$. Since ξ is concrete nearness, it follows that $\xi(\{D_j:j\in J\})=\xi(\{C_i:i\in I\})$. To see this; let any $A\in \xi(\{D_i:j\in J\})$. Then A is contained in

some cluster $A(C_i)$ for $\in I$. Hence $A \in \xi(\{C_i: i\in I\})$ by definition 2.1 (4). Now it suffice to show that $\{C_i: i\in I\}$ is a concrete collection. Suppose that $C_i < C_i$ for i, $j\in I$. Then $A(C_i) \subset A(C_i)$ by Theorem 2.10 (1) and since $A(C_i)$ is a cluster, we have $A(C_i) = A(C_i)$. Therefore $C_i \subset C_i$ and hence there exists a concrete collection $\{C_i: i\in I\}$ such that $\xi(\{D_i: j\in J\}) = \xi(\{C_i: i\in I\})$.

III. T₁ -Extensions Generated by Cocountable Open Sets and Applications.

Definition 3.1. An extension (e, Y, t) of (X, t(X)) is a topological space (Y, t) and a dense embedding $e: X \rightarrow Y$. (e, Y, t) is called strict or principal extension of (X, t(X)) if the collection $\{cl_Y(e(A)): A \subseteq X\}$ is a base for the closed sets in Y.

We will assume that the embeddings $e:X\to Y$ are injections and thus not distinguish between A and e(A) for $A\subset X$.

Definition 3.2. For (Y, t) an extension of X, we define $\mu_y = \{U \cap X : y \in U \in t\}$ for $y \in Y$. μ_y is called the trace filter of y on X.

Definition 3.3. (Y, t) is called T_1 -extension of X generated by cocountable open sets if for each $y \in Y - X$ there exists $C_y \subset PX$ such that $\mu_y = \{ \bigcup \in t(X) : C - \bigcup \text{ has countable elements of } X \text{ for each } C \in C_y \}$.

Theorem 3.4. Let (Y, t) be a T_1 -extension of X generated by cocountable open sets. Let $y \in Y - X$ and $A \subseteq X$. Then $y \in \operatorname{cl}_Y A$ if and only if there exists $C \in C_y$ such that $\operatorname{cl}_X A \cap C$ has uncountable elements of X.

Proof. Suppose $y \in cl_Y A$. Now $\mu_y = \{U \in t(X):$

C-U has countable elements of X for each $C \in C_v$. Suppose $cl_X A \cap C$ has countable elements of X for each $C \subseteq C_v$. Let $U = X - cl_X A$. Then U = t(X) and $C = C \cap U^c = C \cap cl_X A$ countable elements of X for each C∈C_v. Hence $U \in \mu_V$ and thus there exists V∈t with $v \in V$ and $V \cap X = U$. Then $V \cap A = (V \cap X) \cap A = U \cap A$ CU∩cl_XA=ø, which is contradict to y∈cl_VA. Therefore there exists $C \in C_V$ such that $cl_X A \cap C$ has uncountable elements of X. Conversely, if y∉cl_VA, then there exists V∈t with y∈V such that $V \cap A = \phi$ Then $A \cap V \cap X = \phi$, and hence $d_{\mathbf{Y}} \mathbf{A} \subseteq (\mathbf{V} \cap \mathbf{X})^{\mathsf{c}}$. Since $V \cap X \in \mu_V$, $C = (V \cap X)$ has countable elements of X for each CECv. But $C-(V\cap X)=C\cap (V\cap X)^{c}\supset C\cap cl_{X}A$; uncountable, which is impossible. Hence yeclyA.

Example 3.5. The reals can be constructed as a T_1 -extension of its subspace generated by cocountable open sets.

Proof. Let R be the set of reals and S=R-{0}. Let t be a topology on R such that t= {G \subset R: either 0 $\not\in$ G or if 0 \in G then R-G has countable elements of reals}. Then (R,t) is a T₁-extension of (S,t(S)) using identity embedding. Put C₀={S}. μ_0 ={U \in t(S):S-U has countable elements of S for any S \in C₀}. Hence (R, t) is a T₁-extension of (S,t(S)) generated by cocountable open sets.

Theorem 3.6. Let (X,t) be a T_1 topological space and $Y=X\cup\{y\}$ with $y\not\in X$. If $t(Y)=t\cup\{U\cup\{y\}:U\in t \text{ and } Y-U \text{ has countable elements of } Y\}$, then (Y,t(Y)) is an one point extension of X generated by cocountable open sets.

 Y-U has countable elements of Y} = {U \in t(X): X-U has countable elements of X}, there exists $C_y = \{X\} \subseteq PX$ such that $\mu_y = \{U \in t(X): C-U \text{ has countable elements of } X \text{ for each } C \subseteq C_v = \{X\}$ }. The proof is completed.

Theorem 3.7. Let (Y,t) be a T_1 -extension of X. Set $\xi = \{D \subset PX : \bigcap c|_Y D \neq \emptyset\}$. Then Y is an extension of X generated by cocountable open sets if and only if ξ is a compatible nearness structure with generating collection.

Suppose Y is a T₁-extension of X generated by cocountable open sets. Then for each $y \in Y - X$, there exists $C_v \subset PX$ such that $\mu_{V} = \{U \in t(X): C - U \text{ has countable elements of } X$ for each $C \in C_v$. Let I = Y - X and $\eta = \{(\{C_v\})\}$ $y \in I$). It suffices to show that $\xi = \eta$. Let $D \in \xi$. Then there exists $y \in \cap cl_{\mathbf{Y}} \mathbf{D}$. If $y \in \mathbf{X}$ then $\bigcap_{X} D \neq \emptyset$ and $D \in \eta$. If $y \in Y - X$, then $y \in cl_V D$ for each D∈D. Then by Theorem 3.4, there exists $C \in C_v$ such that $cl_X D \cap C$ has uncountable elements of X. Hence D∈n. On the other hand suppose $D \in \eta$. If $cl_X D \neq \emptyset$ then $\bigcap cl_Y D \neq \emptyset$ and $D \in \xi$. Otherwise, there exists C_V such that for each D \in D there exists $C\in C_v$ such that $cl_XD\cap C$ has uncountable elements of X. Then by Theorem 3.4, y∈cl_YD for each D∈D and thus ∩cl_VD≠φ and D∈ξ.

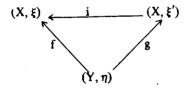
Conversely, suppose & is a compatible nearness structure with generating collection. Let y \(\inf Y - X\) and let $\mu_{V} = \{U \cap X: y \in U \in t\}$ be the trace filter. Consider $D_V = \{D \subset X : y \in cl_Y D\}$. Then D.E. Hence there exists CCPX such that $D_V = ACX$: there exists C∈C such that cl_XD∩C has uncountable elements of X} since $\cap \operatorname{cl}_{\mathbf{X}} \mathbf{D}_{\mathbf{U}} = \phi$. It suffices to show that the given trace filter μ_{v} is equal to $\{U \in t(X): C-U \text{ has countable } \}$ elements of X for each $C \in \mathbb{C} = \nu_v$. Let $U \in \mu_v$. Then there exists V∈t such that U=V∩X and y∈V. Suppose there exists C∈C such that C-U has uncountable elements of X. Let D=C-U. Since $\operatorname{cl}_X D \cap C = \operatorname{cl}_X (C - U) \cap C$ has uncountable elements of X, $D \in D_v$ and thus $y \in cl_V D$. But this is impossible. Hence C-U has countable

elements of X for each CEC. Thus $\mu_{V} \subset \nu_{V}$. On the other hand, let U = v. Now there exists S∈t such that S∩X=U. Suppose there exists V∈t such that y∈V and V∩X⊂U. Then y∈S $\cup V \in t$ and $(S \cup V) \cap X = U$ and $U \in \mathcal{L}_{V}$. suppose for each VEt with yEV, we have that $V \cap X \not= U$. Let $x \in (V \cap X) - U$. Set $D = \{x_v : for v \in V \cap X \neq v \in V \in V \}$ Then $y \in cl_Y D$ and $D \in D_V$. Hence y∈V€t}. there exists C∈C such that cl_XD∩C has uncountable elements of X. But D∩U=\$\phi\$ implies $d_XD\cap U=\phi$ Since $U\in \nu_V$ implies C-U has countable elements of X, which is contradict to the fact that $C-U\supset(C\cap cl_XD)-U=(C\cap cl_XD)\cap U^{c}\supset$ $(C \cap cl_X D) \cap cl_X D = C \cap cl_X D$; uncountable. Hence $U \in \mu_V$ and thus $\mu_V = \nu_V$. Therefore Y is T_1 . extension of X generated by cocountable open sets.

Lemma 3.8. Let (X,t) be a T_1 nearness space. Set $\xi' = \bigcup \{\eta : \eta \text{ is a compatible nearness structure}$ on X with generating collection and $\eta \subseteq \xi\}$. Then $\xi' \subseteq \xi$ and ξ' is a compatible nearness structure with generating collection.

Theorem 3.9. The category of T_1 nearness spaces with generating collections and bijective nearness preserving maps is bicoreflective in the category of T_1 nearness spaces and bijective nearness preserving maps. The coreflection is given by i: $(X, \xi') \rightarrow (X, \xi)$.

Proof. Consider the following diagram:



where f is a one-to-one and onto nearness preserving map, (Y, η) is a nearness space with generating collection and g(y)=f(y) for each $y \in Y$. Then g must be unique. Hence it suffices to show that g is a nearness preserving map.

Let $A \in \eta$. If $\bigcap \operatorname{cl}_X(f(A)) \neq \phi$ then $f(A) \in \xi'$. Suppose $\bigcap_{\mathbf{C} \in \mathbf{X}(f(\mathbf{A})) = \emptyset}$. Then $\bigcap_{\mathbf{C} \in \mathbf{Y}} \mathbf{A} = \emptyset$, and since η is compatible nearness structure with generating collection, there exists a generating collection C∈PY such that for each A∈A, there exists $C \subseteq C$ such that $cl_Y A \cap C$ has uncountable elements of Y. Since Y is T₁ space, each A∈A has uncountable elements of Y. Let D={C: C∈C and C has uncountable elements of Y}. Then $D \in \eta$ and $f(D) \in \xi$. Then $\xi(f(D)) \subseteq \xi'$. To see this, note that each f(D) has uncountable elements of X for each DED since f is one-toone. Let $B \in \xi(f(D))$. If $\bigcap cl_Y B \neq \emptyset$ then $B \in \xi'$. Suppose ∩cl_XB=\(\phi\). Then, for each B∈B there exists $D \in D$ such that $cl_X B \cap f(D)$ has uncountable elements of X. Since X is T₁ space, B has uncountable elements of X and f-1(B) has uncountable elements of Y since f is an onto Similarly $f^{-1}(cl_X B \cap f(D))$ has unmapping. countable elements of Y, and $f^{-1}(cl_X B \cap f(D))=$ $f^{-1}(cl_{\mathbf{X}}B)\cap f^{-1}(f^{(D)})=f^{-1}(cl_{\mathbf{X}}B)\cap D$ since f is one-Hence $\{f^{-1}(cl_X B): B \in B\} \in \eta$, and thus $\{cl_X B: B \in B\} = \{f(f^{-1}(cl_X B): B \in B\} \in \xi, \text{ and thus}$ B∈£' since f is a nearness preserving map. Hence $\xi(f(D))\subset \xi'$. We claim that $f(A)\subseteq \xi(f(D))$. For, let A∈A As previously noted, A has uncountable elements of Y and there exists C∈D such that clyAOC has uncountable elements of Y. Then $f(cl_YA\cap C)\subseteq f(cl_YA)\cap f(C)\subseteq cl_X(f(A))\cap f(C).$ Now f(clyA∩C) has uncountable elements of X since f is one-to-one. Thus $cl_X(f(A))\cap$ f(C) has uncountable elements of X for each $A \in A$ and $f(A) \in \xi(f(D))$. Now $g(A) = f(A) \in \xi'$. Thus g is a nearness preserving map.

Literature cited

- Bang Eun-Sook, 1984. Some properties of separation axioms on nearness structures Cheju National University Journal Vol.18, Natural Sciences, 187-192.
- [2] Bang Eun-Sook, 1984. A note on the topological R_o-regular spaces, Cheju National University Journal Vol. 18, Natural Sciences, 193-195.
- [3] Bently H.L., 1975. Nearness spaces and extensions of topological spaces, Studies in Topology, A. ademic Press, New York, 47-66.
- [4] Carlson J.W., 1983. Subset generated nearness structures and extensions, Kyungpook Math. J. 23(1) June, 49-61.
- [5] Dean A.M., 1983. Nearnesses and T_oextensions of topological spaces, Canad.

- Math. Bull 26(4), 430-437.
- [6] Hastings M.S., 1982. On heminearness spaces, Proc. Amer. Math. Soc. 86(4), 567-573.
- [7] Herdich H., 1974. A concept of nearness,Gen. Top. Appl. 4, 191-212.
- [8] Herrlich H., 1974. Topological structures, Methematical Centre Tracts 52, Amsterdam.
- [9] Herrlich H., and Strecker G.E., 1973.Category Theory, Allyn and Bacon, Boston.
- [10] Reed E.E., 1978. Nearnesses, proximities, and T₁-compactifications, Trans. Amer. Math. Soc. 236, 193-207.
- [11] Thron W.J., 1966. Topological Structures, Holt, Rinehart, and Winston, New York.

國文抄鎖

本 論文에서는 生成集合을 갖는 nearness 構造를 硏究하였다. 먼저 生成集合을 갖는 nearness 構造의 여러가지 性質들을 調査하여 이 nearness 構造들의 集合이 完備束이 됨을 보였고, 또 concrete nearness 構造가 되는 條件들을 調査하였다.

다음으로 이 nearness 構造의 應用으로서 한점 擴張空間을 만들었고, 또 生成集合을 갖는 nearness 空間들과 全單射 nearness 보존寫像들의 category 가 一般的 nearness 空間들과 全單射 nearness 보존寫像들의 category 안의 bicoreflective 임을 證明하였다.