제주대학교 Repository

원자로 용기 외벽냉각 평가를 위한 1차원 이상유동 실험 및 해석

Metadata Downloads
Alternative Title
1-D Two-phase Flow Investigation for External Reactor Vessel Cooling
Abstract
During a severe accident, when a molten corium is relocated in a reactor vessel lower head, the RCF(Reactor Cavity Flooding) system for ERVC (External Reactor Vessel Cooling) is actuated and coolants are supplied into a reactor cavity to remove a decay heat from the molten corium. This severe accident mitigation strategy for maintaining a integrity of reactor vessel was adopted in the nuclear power plants of APR1400, AP600, and AP1000.
Under the ERVC condition, the upward two-phase flow is driven by the amount of the decay heat from the molten corium. To achieve the ERVC strategy, the two-phase natural circulation in the annular gap between the external reactor vessel and the insulation should be formed sufficiently by designing the coolant inlet/outlet area and gap size adequately on the insulation device. Also the natural circulation flow restriction has to be minimized. In this reason, it is needed to review the fundamental structure of insulation. In the existing power plants, the insulation design is aimed at minimizing heat losses under a normal operation. Under the ERVC condition, however, the ability to form the two-phase natural circulation is uncertain. Namely, some important factors, such as the coolant inlet/outlet areas, flow restriction, and steam vent etc. in the flow channel, should be considered for ERVC design.
T-HEMES 1D study is launched to estimate the natural circulation flow under the ERVC condition of APR1400. The experimental facility is one-dimensional and scaled down as the half height and 1/238 channel area of the APR1400 reactor vessel. The air injection method was used to simulate the boiling at the external reactor vessel and generate the natural circulation two-phase flow.
From the experimental results, the natural circulation flow rate highly depended on inlet/outlet areas and the circulation flow rate increased as the outlet height as well as the supplied water head increased.
On the other hand, the simple analysis using the drift flux model was carried out to predict the natural circulation flow rate and estimate the pressure drop distribution from the momentum equation. The calculated circulation flow rate was similar to experimental results within about 15% error bound. Also the effect of the turbine flow meter, which was installed to measure the circulation flow rate, was found that the natural circulation flow rate decreased due to the form loss of the turbine flow meter. And the simple analysis without the pressure drop of the turbine flow meter was performed to estimate the natural circulation phenomena under the actual ERVC condition.
Author(s)
김재철
Issued Date
2007
Awarded Date
2007. 2
Type
Dissertation
URI
http://dcoll.jejunu.ac.kr/jsp/common/DcLoOrgPer.jsp?sItemId=000000003928
Alternative Author(s)
Kim, Jae-Cheol
Affiliation
제주대학교 대학원
Department
대학원 에너지공학과
Advisor
김신
Table Of Contents
Ⅰ. 서론 = 1
1. 연구배경 및 필요성 = 1
2. APR1400 원자로의 단열재 구조 및 원자로 용기 외벽냉각 계통 = 2
1) 단열재의 구조 = 2
2) 원자로 용기 외벽냉각(ERVC)을 위한 조건 = 2
3. 관련연구 = 4
1) 임계열속(CHF)에 관한 연구 = 4
(1) SBLB 실험 = 4
(2) ULPU 실험 = 5
(3) KAIST 임계열속 실험 = 7
2) 자연순환 이상유동의 특성에 관한 연구 = 9
(1) 자연순환 이상유동에 관한 실험적 연구 = 9
(2) 개방형 자연순환 루프에서의 불안정성에 관한 연구 = 11
(3) 준-밀폐형 자연순환 루프에서의 불안정성에 관한 연구 = 14
4. 연구의 목적 = 17
Ⅱ. 실험장치 및 실험결과 = 19
1. T-HERMES-1D 실험장치 = 19
1) 실험장치의 구성 = 20
(1) 주 실험부 = 20
(2) 물탱크 = 22
(3) 공기주입 계통 = 22
2) 실험 계측 및 보정 = 25
(1) 물 유량측정 = 25
(2) 기포율 측정 = 26
(3) 공기주입량 = 28
(4) 냉각수 유입구 및 Turbine유량계에 의한 차압 = 29
(5) 절대압력 = 31
2. 실험 결과 = 32
1) 공기주입량 변화의 영향 = 32
2) 유입구 및 유출구 면적변화의 영향 = 35
3) 보조 물탱크 수위 변화의 영향 = 36
4) 배출구 높이 변화의 영향 = 37
Ⅲ. 해석방법 및 해석결과 = 38
1. 해석 방법 = 38
1) 가정 = 38
2) 지배방정식 = 38
(1) 벽면의 마찰계수 = 39
(2) 평균드리프트 속도(mean drift velocity) = 39
(3) 기포율 및 밀도 = 40
(4) Covariance term = 40
(5) 형상저항계수(K) = 41
(6) 압력기울기 = 43
3) 자연순환 유량의 계산 = 44
2. 해석결과 및 실험결과와의 비교 = 45
1) 자연순환 유량 = 45
(1) 공기주입량 및 배출구 면적의 영향 = 45
(2) 공급수두 영향 = 46
(3) 계산 오차 = 47
2) 기포율 = 48
Ⅳ. 토의 = 49
1. 압력강하량 비교 = 49
2. 해석 모델의 적합성 = 52
3. 3차원 실험결과와의 비교 = 53
Ⅴ. 결론 = 55
Degree
Master
Publisher
제주대학교 대학원
Citation
김재철. (2007). 원자로 용기 외벽냉각 평가를 위한 1차원 이상유동 실험 및 해석
Appears in Collections:
Faculty of Applied Energy System > Energy and Chemical Engineering
공개 및 라이선스
  • 공개 구분공개
파일 목록

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.